• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    拉萨地体南缘早始新世荣玛辉长岩年代学、岩石地球化学特征及其地质意义

    董咪 郎兴海 邓煜霖 王旭辉

    董咪, 郎兴海, 邓煜霖, 王旭辉, 2022. 拉萨地体南缘早始新世荣玛辉长岩年代学、岩石地球化学特征及其地质意义. 地球科学, 47(4): 1349-1370. doi: 10.3799/dqkx.2021.137
    引用本文: 董咪, 郎兴海, 邓煜霖, 王旭辉, 2022. 拉萨地体南缘早始新世荣玛辉长岩年代学、岩石地球化学特征及其地质意义. 地球科学, 47(4): 1349-1370. doi: 10.3799/dqkx.2021.137
    Dong Mi, Lang Xinghai, Deng Yulin, Wang Xuhui, 2022. Geochronology and Geochemistry Implications for Early Eocene Rongma Gabbros in Southern Margin of Lhasa Terrane, Tibet. Earth Science, 47(4): 1349-1370. doi: 10.3799/dqkx.2021.137
    Citation: Dong Mi, Lang Xinghai, Deng Yulin, Wang Xuhui, 2022. Geochronology and Geochemistry Implications for Early Eocene Rongma Gabbros in Southern Margin of Lhasa Terrane, Tibet. Earth Science, 47(4): 1349-1370. doi: 10.3799/dqkx.2021.137

    拉萨地体南缘早始新世荣玛辉长岩年代学、岩石地球化学特征及其地质意义

    doi: 10.3799/dqkx.2021.137
    基金项目: 

    四川省科技计划项目 2020JDJQ0042

    国家自然科学基金项目 41502079

    国家自然科学基金项目 41972084

    国家重点研发计划课题 2018YFC0604105

    成都理工大学珠峰科学研究计划 2020ZF11407

    西北大学大陆动力学国家重点实验室开放基金 18LCD04

    自然资源部深地资源成矿作用与矿产预测重点实验室开放基金 ZS1911

    中国地质调查局项目 DD20190167

    中国地质调查局项目 DD20160346

    详细信息
      作者简介:

      董咪(1996-),女,硕士研究生,研究方向为地质学地球化学. ORCID:0000-0002-4765-6424. E-mail:2430403787@qq.com

      通讯作者:

      郎兴海, ORCID: 0000-0002-3309-3667. E-mail: langxinghai@126.com

    • 中图分类号: P581

    Geochronology and Geochemistry Implications for Early Eocene Rongma Gabbros in Southern Margin of Lhasa Terrane, Tibet

    • 摘要: 印度-欧亚大陆初始碰撞后的新特提斯洋板片断离过程至今尚未得到较好的约束.对拉萨地体南缘荣玛地区早始新世辉长岩开展了锆石U-Pb定年、全岩主微量及Sr-Nd同位素分析,探讨了岩石成因及动力学意义,以进一步约束新特提斯洋板片断离过程.研究结果表明,荣玛辉长岩的锆石U-Pb年龄为51±1 Ma,形成于早始新世;地球化学特征显示富集大离子亲石元素(Rb、Sr、Ba),亏损高场强元素(Nb、Ta、Ti),初始87Sr/86Sr比值为0.705 9~0.706 6,εNdt)值为+3.1~+3.3;与典型弧岩浆岩相比具有较高的Zr(134.28×10-6~230.07×10-6)、TiO2(1.04%~1.51%)、Nb(9.01×10-6~14.67×10-6)含量,显示出典型板内玄武岩的地球化学属性.岩石源区除了来自俯冲板片释放的流体交代的岩石圈亏损地幔外,同时可能受到深部软流圈地幔物质的加入.结合南部拉萨地体已发表的始新世岩浆岩的地球化学及年代学数据,进一步约束新特提斯洋板片断离时间不晚于51 Ma.

       

    • 图  1  青藏高原构造简图(a);拉萨地体岩浆岩分布图(b);研究区地质简图(c)

      图a据Zhu et al., 2011;图b据Liu et al., 2017;图c据Wang et al., 2019

      Fig.  1.  Tectonic sketch map of Tibetan plateau (a); magmatic rock distribution in Lhasa terrane (b); geological map of research area (c)

      图  2  荣玛辉长岩野外露头及显微照片

      Amp.角闪石;Pl.斜长石

      Fig.  2.  Field and microscope photos of Rongma gabbros

      图  3  荣玛辉长岩锆石U-Pb谐和图和206Pb/238U加权平均年龄图及荣玛辉长岩样品锆石的阴极发光图像

      Fig.  3.  LA-ICP-MS zircon U–Pb concordia diagram (a, c, e) and weighted average age diagram (b, d, f) of Rongma gabbros

      图  4  荣玛辉长岩Nb/Y-Zr/TiO2×0.000 1 (a)和Co-Th图(b)

      图a据Winchester and Floyd(1977);图b据Hastine et al.(2007). 南拉萨地体早始新世基性岩数据贾黎黎等(2013)Huang et al.(2017)Ma et al.(2017)

      Fig.  4.  Nb/Y-Zr/TiO2×0.000 1 (a), Co-Th (b) diagrams of Rongma gabbros

      图  5  微量元素原始地幔标准化蛛网图(a)和荣玛辉长岩稀土元素球粒陨石标准化配分图(b)

      南拉萨地体早始新世基性岩贾黎黎等(2013)Huang et al.(2017)Ma et al.(2017);南拉萨地体早侏罗世比马组玄武岩数据引自Kang et al.(2014)

      Fig.  5.  Primitive mantle-normalized trace element diagram (a) and chondrite-normalized REE diagram (b) of Rongma gabbros

      图  6  荣玛辉长岩(87Sr/86Sr)iNd(t)图解

      数据贾黎黎等(2013)Huang et al.(2017)

      Fig.  6.  (87Sr/86Sr)iNd(t) diagram of Rongma gabbros

      图  7  荣玛辉长岩微量元素-Zr图解

      Fig.  7.  Trace element vs. Zr diagrams of Rongma gabbros

      图  8  荣玛辉长岩SiO2-Nb/Ta (a)、SiO2-Zr/Nb (b)、SiO2-(87Sr/86Sr)i (c)、SiO2Nd(t) (d)、La-La/Sm (e)、La-La/Yb (f)、MgO-Ni (g) and MgO-Cr (h)图解

      Fig.  8.  SiO2-Nb/Ta (a), SiO2-Zr/Nb (b), SiO2-(87Sr/86Sr)i (c), SiO2Nd(t) (d), La-La/Sm (e), La-La/Yb (f), MgO-Ni (g) and MgO-Cr (h) diagrams of Rongma gabbros

      图  9  荣玛辉长岩(Ta/La)N-(Hf/Sm)N(a)、Th/Zr-Nb/Zr (b)、U/Th-Th/Nb (c)和La/Yb-Dy/Yb (d)图解

      图a据La Flèche et al., 1998;图b据Zhao and Zhou, 2007;图c据Hawkins and Ishizuka, 2009;图d据Xu et al., 2005

      Fig.  9.  (Ta/La)N-(Hf/Sm)N (a), Th/Zr-Nb/Zr (b), U/Th-Th/Nb (c) and La/Yb-Dy/Yb (d) diagrams of Rongma gabbros

      图  10  荣玛辉长岩微量元素构造环境判别图

      图a据Wood et al.(1979);图b据Meschede(1986);图c据Pearce and Norry(1979)

      Fig.  10.  Discrimination diagrams for tectonic setting of Rongma gabbros

      图  11  南部拉萨地体晚白垩纪-新生代岩浆岩结晶年龄直方图(a)(据Zhu et al., 2019)及荣玛辉长岩成岩模式(b)

      Fig.  11.  Histogram of crystallization ages of Late Cretaceous-Cenozoic magmatic rocks on the southern Lhasa terrane (a) and diagenetic pattern (b) of Rongma gabbros

      表  1  荣玛辉长岩LA-ICP-MS锆石U-Pb测试结果

      Table  1.   Zircon LA-ICP-MS U-Pb analysis data of Rongma gabbros

      测点号 元素含量(10-6) Th/U 同位素比值 年龄(Ma)
      U Th 206Pb* 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 206Pb/238U ±1σ
      XC03-1(29°19'36.9″, 88°23'13.1″)
      1 2 879 2 597 39.97 0.90 0.046 9 0.002 5 0.055 1 0.002 5 0.008 2 0.000 1 53 1
      2 1 454 1 119 20.28 0.77 0.046 0 0.003 2 0.053 7 0.003 9 0.008 2 0.000 1 53 1
      3 1 955 1 660 34.63 0.85 0.048 0 0.005 4 0.057 1 0.006 8 0.008 4 0.000 1 54 1
      4 1 017 1 064 16.57 1.05 0.049 1 0.004 8 0.050 4 0.004 8 0.007 7 0.000 2 49 1
      5 1 250 989 18.93 0.79 0.048 6 0.002 9 0.054 0 0.003 0 0.008 2 0.000 2 53 1
      6 841 657 12.91 0.78 0.047 7 0.006 4 0.050 2 0.006 6 0.007 6 0.000 2 49 1
      7 945 659 13.73 0.70 0.049 2 0.003 5 0.052 3 0.003 5 0.007 9 0.000 1 51 1
      8 648 421 8.75 0.65 0.047 9 0.007 2 0.050 9 0.007 6 0.007 5 0.000 2 48 1
      9 396 256 5.50 0.65 0.048 9 0.004 3 0.050 8 0.003 7 0.007 8 0.000 2 50 1
      10 433 560 8.30 1.29 0.049 4 0.004 6 0.049 7 0.004 2 0.007 7 0.000 2 50 1
      11 742 488 10.48 0.66 0.049 3 0.003 8 0.050 6 0.003 4 0.007 8 0.000 1 50 1
      XC04-3(29°19'36.9″, 88°23'13.1″)
      1 1 325 776 15.98 0.59 0.048 3 0.005 8 0.049 4 0.005 4 0.007 6 0.000 4 49 3
      2 775 752 17.04 0.97 0.046 6 0.008 4 0.055 2 0.008 8 0.008 4 0.000 2 54 2
      3 2 123 1 851 33.16 0.87 0.047 0 0.003 6 0.052 3 0.003 9 0.008 1 0.000 2 52 1
      4 1 241 766 16.77 0.62 0.048 0 0.006 0 0.052 5 0.005 6 0.008 0 0.000 2 51 1
      5 826 446 10.29 0.54 0.050 4 0.006 8 0.052 2 0.006 1 0.008 0 0.000 3 51 2
      6 469 367 6.67 0.78 0.048 6 0.006 8 0.050 2 0.006 0 0.007 7 0.000 2 49 1
      7 1 380 1 532 23.29 1.11 0.047 3 0.007 4 0.051 0 0.006 4 0.008 0 0.000 3 51 2
      8 1 154 1 467 27.28 1.27 0.049 1 0.004 7 0.055 8 0.005 4 0.008 3 0.000 2 53 2
      9 1 600 1 099 26.55 0.69 0.047 1 0.003 2 0.051 0 0.003 4 0.007 9 0.000 1 51 1
      10 2 041 1 232 33.39 0.60 0.048 0 0.004 9 0.050 3 0.005 0 0.007 7 0.000 1 49 1
      11 1 265 830 18.84 0.66 0.046 3 0.003 3 0.057 5 0.005 1 0.0088 0.000 3 56 2
      12 1 220 799 19.05 0.65 0.0492 0.004 6 0.050 3 0.004 1 0.007 5 0.000 2 48 2
      XC05-2(29°19′36. 9″、88 °23′13. 1″)
      1 1 469 1 314 22.96 0.89 0.049 0 0.004 7 0.052 7 0.005 0 0.007 8 0.000 2 50 1
      2 452 351 6.48 0.78 0.052 2 0.007 1 0.051 0 0.005 6 0.007 6 0.000 3 49 2
      3 801 303 8.68 0.38 0.047 3 0.011 0 0.050 8 0.009 2 0.007 9 0.000 4 51 2
      4 947 527 12.74 0.56 0.049 1 0.002 9 0.055 0 0.003 3 0.008 2 0.000 1 53 1
      5 1 019 729 14.02 0.72 0.050 8 0.003 8 0.053 6 0.003 9 0.007 8 0.000 1 50 1
      6 880 1 429 21.70 1.62 0.048 4 0.008 1 0.050 5 0.006 6 0.007 7 0.000 2 50 1
      7 914 501 11.57 0.55 0.048 6 0.006 7 0.050 5 0.006 5 0.007 7 0.000 3 50 2
      8 1 347 652 16.48 0.48 0.048 3 0.003 6 0.050 8 0.003 5 0.007 7 0.000 1 49 1
      9 903 500 11.41 0.55 0.046 9 0.007 0 0.048 2 0.006 6 0.007 8 0.000 2 50 2
      10 956 1 164 17.48 1.22 0.047 4 0.009 0 0.051 6 0.008 9 0.007 9 0.000 4 51 2
      下载: 导出CSV

      表  2  荣玛辉长岩主量元素(%)和微量元素(10-6)分析数据

      Table  2.   Major (%) and trace (10-6) element analyses of Rongma gabbros

      样品编号 XC03-1 XC03-2 XC03-3 XC03-4 XC03-5 XC04-3 XC04-4 XC04-5 XC05-2 XC05-3
      SiO2 50.08 45.33 52.32 49.94 48.07 51.39 48.82 52.96 53.59 53.55
      TiO2 1.43 1.45 1.31 1.51 1.30 1.18 1.42 1.04 1.16 1.14
      Al2O3 27.81 27.79 25.12 26.77 26.42 26.06 27.45 22.33 23.03 22.48
      Fe2O3 8.01 12.13 8.82 9.30 10.48 9.94 7.09 10.01 11.40 11.47
      MnO 0.03 0.06 0.04 0.03 0.05 0.07 0.05 0.06 0.06 0.05
      MgO 1.44 2.13 1.40 1.11 1.98 1.43 1.44 1.83 1.62 1.55
      CaO 0.29 0.31 0.30 0.39 0.47 0.69 0.67 1.09 0.61 0.78
      Na2O 1.01 0.65 1.17 0.77 0.96 1.82 1.34 1.75 0.89 0.94
      K2O 5.33 5.42 4.69 5.75 5.28 3.72 5.80 3.81 3.81 3.63
      P2O5 0.05 0.05 0.05 0.12 0.14 0.09 0.13 0.25 0.15 0.17
      LOI 4.37 4.47 4.04 4.05 4.66 3.83 4.30 4.17 3.42 3.64
      Total 99.85 99.79 99.26 99.75 99.80 99.24 99.51 99.29 99.74 99.40
      Mg# 26.20 25.82 23.91 19.17 27.23 22.19 28.73 26.62 21.97 21.13
      La 55.78 25.51 27.93 30.93 24.48 42.37 61.84 29.22 42.53 35.89
      Ce 83.59 55.24 61.16 71.14 56.62 72.87 97.76 53.93 61.41 63.63
      Pr 10.24 5.44 7.57 9.33 7.66 8.95 12.81 6.48 8.82 8.44
      Nd 34.99 22.07 33.00 41.32 35.47 34.50 51.19 27.83 33.69 33.88
      Sm 5.46 5.05 7.52 9.85 8.51 6.80 8.80 6.63 7.09 7.57
      Eu 1.93 1.53 1.84 2.42 1.86 1.93 2.12 1.75 1.82 1.80
      Gd 5.73 5.03 6.90 9.33 8.46 5.27 7.78 6.94 7.41 7.12
      Tb 1.10 0.90 1.15 1.50 1.36 0.86 1.29 1.11 1.25 1.13
      Dy 7.32 5.83 7.02 8.84 8.27 5.29 8.25 6.68 7.82 6.73
      Ho 1.56 1.24 1.41 1.75 1.70 1.10 1.78 1.35 1.69 1.38
      Er 4.62 3.72 4.03 4.89 4.82 3.19 5.23 3.80 4.96 3.98
      Tm 0.70 0.58 0.61 0.72 0.73 0.51 0.81 0.57 0.77 0.61
      Yb 4.40 3.90 3.99 4.59 4.65 3.34 5.22 3.58 4.97 4.00
      Y 41.98 32.03 33.86 40.73 42.71 28.38 47.12 36.20 47.50 34.80
      Lu 0.66 0.57 0.58 0.65 0.70 0.51 0.81 0.54 0.77 0.59
      Li 14.7 26.1 20.2 11.4 20.0 16.6 12.0 16.6 28.4 28.2
      Be 1.88 2.05 1.66 1.80 1.72 1.59 2.23 1.24 1.51 1.50
      Sc 31.72 37.38 29.93 23.43 33.65 29.17 28.19 31.41 32.61 32.84
      V 455.83 266.78 201.11 96.24 312.30 199.73 214.28 176.48 169.89 216.90
      Cr 6.70 5.64 3.05 0.48 4.45 3.32 3.81 6.42 3.02 2.90
      Co 14.48 27.30 15.18 14.30 22.79 14.80 13.88 20.64 26.95 25.78
      Ni 4.65 6.10 2.93 1.17 5.40 3.37 2.52 4.83 3.11 2.67
      Cu 156.39 109.70 92.47 101.35 101.50 130.40 92.13 98.67 60.15 62.71
      Zn 73.57 150.93 94.93 57.09 105.67 90.80 81.86 101.37 124.36 108.30
      Ga 24.72 27.96 24.62 24.50 26.75 25.31 27.05 23.15 26.04 25.17
      Rb 112.31 103.45 96.01 110.79 104.85 70.36 119.80 72.97 104.67 100.21
      Sr 281.38 211.89 288.56 231.43 272.90 378.63 304.28 326.36 252.98 253.52
      Zr 153.04 162.26 179.74 230.07 161.27 153.02 181.39 134.28 160.26 159.62
      Nb 9.58 10.36 11.16 14.67 10.03 10.58 12.18 9.01 10.24 10.13
      Mo 0.10 0.12 0.22 0.18 0.11 0.66 0.19 0.26 0.15 0.38
      Cs 19.94 16.58 13.95 12.91 19.86 18.99 14.87 18.38 11.84 12.43
      Ba 1 079.57 980.53 933.17 887.49 963.78 1 272.91 1 903.92 905.23 752.59 710.18
      Hf 4.06 4.19 4.70 5.95 4.18 4.03 4.75 3.51 4.18 4.21
      Ta 0.54 0.59 0.65 0.81 0.56 0.59 0.69 0.50 0.59 0.58
      Ti 8 128.64 8 282.05 7 484.63 8 640.58 7 303.29 6 861.87 8 161.26 5 970.61 6 693.00 6 757.76
      Pb 12.23 13.69 12.83 15.05 13.09 8.84 10.16 8.60 7.24 7.84
      Se 0.77 0.62 0.72 1.28 1.06 1.05 1.04 1.06 1.04 0.79
      Th 6.12 6.86 6.95 9.35 6.26 7.02 7.25 5.75 6.32 6.47
      U 1.80 2.35 1.83 2.40 1.91 1.36 2.40 1.09 1.59 1.54
      LaN/YbN 8.55 4.42 4.72 4.55 3.55 8.54 8.00 5.50 5.77 6.06
      δEu 1.05 0.92 0.77 0.76 0.66 0.95 0.76 0.79 0.76 0.74
      δCe 0.80 1.09 1.01 1.02 1.01 0.87 0.81 0.92 0.74 0.87
      下载: 导出CSV

      表  3  荣玛辉长岩Sr-Nd同位素分析数据

      Table  3.   Sr-Nd isotope analysis data of Rongma gabbros

      样品编号 XC03-1 XC04-3 XC05-2
      岩性 辉长岩 辉长岩 辉长岩
      87Rb/86Sr 1.154 540 0.537 540 1.196 860
      87Sr/86Sr 0.706 728 0.707 013 0.707 075
      (87Sr/86Sr)i 0.705 900 0.706 600 0.706 200
      147Sm/144Nd 0.094 290 0.119 100 0.127 160
      143Nd/144Nd 0.512 761 0.512 781 0.512 776
      (143Nd/144Nd)i 0.512 730 0.512 741 0.512 734
      εNd(t) 3.1 3.3 3.1
      TDM1 (Ma) 499 598 662
      TDM2 (Ma) 610 591 603
      下载: 导出CSV
    • [1] Ahmad, T., Harris, N., Bickle, M., et al., 2000. Isotopic Constraints on the Structural Relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya. Geological Society of America Bulletin, 112(3): 467-477. https://doi.org/10.1130/0016-7606(2000)112467: icotsr>2.0.co;2 doi: 10.1130/0016-7606(2000)112<467:ICOTSR>2.0.CO;2
      [2] Arth, J.G., Barker, F., 1976. Rare-Earth Partitioning between Hornblende and Dacitic Liquid and Implications for the Genesis of Trondhjemitic-Tonalitic Magmas. Geology, 4(9): 534. https://doi.org/10.1130/0091-7613(1976)4534: rpbhad>2.0.co;2 doi: 10.1130/0091-7613(1976)4<534:RPBHAD>2.0.CO;2
      [3] Beck, R.A., Burbank, D.W., Sercombe, W.J., et al., 1996. Late Cretaceous Ophiolite Obduction and Paleocene India-Asia Collision in the Westernmost Himalaya. Geodinamica Acta, 9(2/3): 114-144. https://doi.org/10.1080/09853111.1996.11105281
      [4] Cao, H.W., Huang, Y., Li, G.M., et al., 2018. Late Triassic Sedimentary Records in the Northern Tethyan Himalaya: Tectonic Link with Greater India. Geoscience Frontiers, 9(1): 273-291. https://doi.org/10.1016/j.gsf.2017.04.001
      [5] Chu, M.F., Chung, S.L., O'Reilly, S.Y., et al., 2011. India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks. Earth and Planetary Science Letters, 307(3/4): 479-486. https://doi.org/10.1016/j.epsl.2011.05.020
      [6] Chung, S.L., Chu, M.F., Ji, J.Q., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from PostCollisional Adakites. Tectonophysics, 477(1-2): 36-48. https://doi.org/10.1016/j.tecto.2009.08.008
      [7] Chung, S.L., Chu, M.F., Zhang, Y.Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
      [8] Condie, K.C., 1999. Mafic Crustal Xenoliths and the Origin of the Lower Continental Crust. Lithos, 46(1): 95-101. https://doi.org/10.1016/S0024-4937(98)00056-5
      [9] Ding, H.X., Zhang, Z.M., Dong, X., et al., 2016. Early Eocene (c. 50 Ma) Collision of the Indian and Asian Continents: Constraints from the North Himalayan Metamorphic Rocks, Southeastern Tibet. Earth and Planetary Science Letters, 435: 64-73. https://doi.org/10.1016/j.epsl.2015.12.006
      [10] Ding, L., Kapp, P., Wan, X.Q., 2005. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3): 1-18. https://doi.org/10.1029/2004tc001729
      [11] Ding, L., Xu, Q., Yue, Y.H., et al., 2014. The Andean-Type Gangdese Mountains: Paleoelevation Record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 392: 250-264. https://doi.org/10.1016/j.epsl.2014.01.045
      [12] Donaldson, D.G., Webb, A.A.G., Menold, C.A., et al., 2013. Petrochronology of Himalayan Ultrahigh-Pressure Eclogite. Geology, 41(8): 835-838. https://doi.org/10.1130/g33699.1 doi: 10.1130/G33699.1
      [13] Dong, G.C., Mo, X.X., Zhao, Z.D., et al., 2008. Gabbros from Southern Gangdese: Implication for Mass Exchange between Mantle and Crust. Acta Petrologica Sinica, 24(2): 203-210(in Chinese with English abstract). https://www.researchgate.net/publication/285535421_Gabbros_from_southern_Gangdese_Implication_for_mass_exchange_between_mantle_and_crust
      [14] Dong, X., Zhang, Z.M., Liu, F., et al., 2014. Late Paleozoic Intrusive Rocks from the Southeastern Lhasa Terrane, Tibetan Plateau, and Their Late Mesozoic Metamorphism and Tectonic Implications. Lithos, 198/199: 249-262. https://doi.org/10.1016/j.lithos.2014.04.001
      [15] Ferrari, L., 2004. Slab Detachment Control on Mafic Volcanic Pulse and Mantle Heterogeneity in Central Mexico. Geology, 32(1): 77. https://doi.org/10.1130/g19887.1 doi: 10.1130/G19887.1
      [16] Frey, F.A., Green, D.H., Roy, S.D., 1978. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology, 19(3): 463-513. https://doi.org/10.1093/petrology/19.3.463
      [17] Guynn, J.H., Kapp, P., Pullen, A., et al., 2006. Tibetan Basement Rocks near Amdo Reveal "Missing" Mesozoic Tectonism along the Bangong Suture, Central Tibet. Geology, 34(6): 505. https://doi.org/10.1130/g22453.1 doi: 10.1130/G22453.1
      [18] Hawkins, J.W., Ishizuka, O., 2009. Petrologic Evolution of Palau, a Nascent Island Arc. Island Arc, 18(4): 599-641. https://doi.org/10.1111/j.1440-1738.2009.00683.x
      [19] Hofmann, A.W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821X(88)90132-X
      [20] Hoskin, P.W.O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      [21] Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      [22] Hu, X.M., Garzanti, E., Moore, T., et al., 2015. Direct Stratigraphic Dating of India-Asia Collision Onset at the Selandian (Middle Paleocene, 59±1 Ma). Geology, 43(10): 859-862. https://doi.org/10.1130/g36872.1 doi: 10.1130/G36872.1
      [23] Huang, F., Xu, J.F., Chen, J.L., et al., 2016. Two Cenozoic Tectonic Events of N-S and E-W Extension in the Lhasa Terrane: Evidence from Geology and Geochronology. Lithos, 245: 118-132. https://doi.org/10.1016/j.lithos.2015.08.014
      [24] Huang, F., Chen, J.L., Xu, J.F., et al., 2015. Os-Nd-Sr Isotopes in Miocene Ultrapotassic Rocks of Southern Tibet: Partial Melting of a Pyroxenite-Bearing Lithospheric Mantle? Geochimica et Cosmochimica Acta, 163: 279-298. https://doi.org/10.1016/j.gca.2015.04.053
      [25] Huang, F., Xu, J.F., Zeng, Y.C., et al., 2017. Slab Breakoff of the Neo-Tethys Ocean in the Lhasa Terrane Inferred from Contemporaneous Melting of the Mantle and Crust. Geochemistry, Geophysics, Geosystems, 18(11): 4074-4095. https://doi.org/10.1002/2017gc007039 doi: 10.1002/2017GC007039
      [26] Huw Davies, J., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821X(94)00237-S
      [27] Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3/4): 229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
      [28] Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2016. Eocene Neo-Tethyan Slab Breakoff Constrained by 45 Ma Oceanic Island Basalt-Type Magmatism in Southern Tibet. Geology, 44(4): 283-286. https://doi.org/10.1130/g37612.1 doi: 10.1130/G37612.1
      [29] Jia, L.L., Wang, Q., Zhu, D.C., et al., 2013. Rethinking the Geodynamical Implications of the Basic Rocks from Linzhou Basin, Tibet. Acta Petrologica Sinica, 29(11): 3671-3680(in Chinese with English abstract).
      [30] Kang, Z.Q., Xu, J.F., Wilde, S.A., et al., 2014. Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the Early Subduction History of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 200/201: 157-168. https://doi.org/10.1016/j.lithos.2014.04.019
      [31] Kohn, M.J., Parkinson, C.D., 2002. Petrologic Case for Eocene Slab Breakoff during the Indo-Asian Collision. Geology, 30(7): 591. https://doi.org/10.1130/0091-7613(2002)0300591: pcfesb>2.0.co;2 doi: 10.1130/0091-7613(2002)030<0591:PCFESB>2.0.CO;2
      [32] La Flèche, M.R., Camiré, G., Jenner, G.A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3-4): 115-136. https://doi.org/10.1016/S0009-2541(98)00002-3
      [33] Lang, X.H., Deng, Y.L., Wang, X.H., et al., 2020. Geochronology and Geochemistry of Volcanic Rocks of the Bima Formation, Southern Lhasa Subterrane, Tibet: Implications for Early Neo-Tethyan Subduction. Gondwana Research, 80: 335-349. https://doi.org/10.1016/j.gr.2019.11.005
      [34] Lang, X.H., Tang, J.X., Li, Z.J., et al., 2014. U-Pb and Re-Os Geochronological Evidence for the Jurassic Porphyry Metallogenic Event of the Xiongcun District in the Gangdese Porphyry Copper Belt, Southern Tibet, PRC. Journal of Asian Earth Sciences, 79: 608-622. https://doi.org/10.1016/j.jseaes.2013.08.009
      [35] Lang, X.H., Wang, X.H., Deng, Y.L., et al., 2019. Early Jurassic Volcanic Rocks in the Xiongcun District, Southern Lhasa Subterrane, Tibet: Implications for the Tectono-Magmatic Events Associated with the Early Evolution of the Neo-Tethys Ocean. Lithos, 340/341: 166-180. https://doi.org/10.1016/j.lithos.2019.05.014
      [36] Langmuir, C.H., Klein, E.M., Plank, T., 1992. Petrological Systematics of Mid-Ocean Ridge Basalts: Constraints on Melt Generation beneath Ocean Ridges. Mantle Flow and Melt Generation at Mid-Ocean Ridges. In: Morgan, J.D., Blackman, D.K., Sinton, J.M., eds., Mantle Flow and Melt Generation at Mid-Ocean Ridges, Volume 71. American Geophysical Union, Washington, D. C., 183-280. https://doi.org/10.1029/gm071p0183
      [37] Lee, H.Y., Chung, S.L., Ji, J.Q., et al., 2012. Geochemical and Sr-Nd Isotopic Constraints on the Genesis of the Cenozoic Linzizong Volcanic Successions, Southern Tibet. Journal of Asian Earth Sciences, 53: 96-114. https://doi.org/10.1016/j.jseaes.2011.08.019
      [38] Lee, H.Y., Chung, S.L., Lo, C.H., et al., 2009. Eocene Neotethyan Slab Breakoff in Southern Tibet Inferred from the Linzizong Volcanic Record. Tectonophysics, 477(1-2): 20-35. https://doi.org/10.1016/j.tecto.2009.02.031
      [39] Li, S.H., van Hinsbergen, D.J.J., Najman, Y., et al., 2020. Does Pulsed Tibetan Deformation Correlate with Indian Plate Motion Changes? Earth and Planetary Science Letters, 536: 116144. https://doi.org/10.1016/j.epsl.2020.116144
      [40] Lippert, P.C., van Hinsbergen, D.J.J., Dupont-Nivet, G., 2014. Early Cretaceous to Present Latitude of the Central Proto-Tibetan Plateau: A Paleomagnetic Synthesis with Implications for Cenozoic Tectonics, Paleogeography, and Climate of Asia. Geological Society of America, 507: 1-21. https://doi.org/10.1130/2014.2507(01)
      [41] Liu, A.L., Wang, Q., Zhu, D.C., et al., 2018. Origin of the ca. 50 Ma Linzizong Shoshonitic Volcanic Rocks in the Eastern Gangdese Arc, Southern Tibet. Lithos, 304/305/306/307: 374-387. https://doi.org/10.1016/j.lithos.2018.02.017
      [42] Liu, D., Zhao, Z.D., DePaolo, D.J., et al., 2017. Potassic Volcanic Rocks and Adakitic Intrusions in Southern Tibet: Insights into Mantle-Crust Interaction and Mass Transfer from Indian Plate. Lithos, 268/269/270/271: 48-64. https://doi.org/10.1016/j.lithos.2016.10.034
      [43] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      [44] Ludwig, K.R., 2003. User's Manual for Isoplot 3.6: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
      [45] Ma, X.X., Meert, J.G., Xu, Z.Q., et al., 2017. Evidence of Magma Mixing Identified in the Early Eocene Caina Pluton from the Gangdese Batholith, Southern Tibet. Lithos, 278/279/280/281: 126-139. https://doi.org/10.1016/j.lithos.2017.01.020
      [46] Martin, H., Smithies, R.H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1/2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048
      [47] McDonough, W.F., Sun, S.S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      [48] McKenzie, D., O'Nions, R.K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021
      [49] Meng, E., Liu, F.L., Liu, P.H., et al., 2014. Petrogenesis and Tectonic Significance of Paleoproterozoic Meta-Mafic Rocks from Central Liaodong Peninsula, Northeast China: Evidence from Zircon U-Pb Dating and In Situ Lu-Hf Isotopes, and Whole-Rock Geochemistry. Precambrian Research, 247: 92-109. https://doi.org/10.1016/j.precamres.2014.03.017
      [50] Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
      [51] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution. Geological Journal of China Universities, 11(3): 281-290(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200503001.htm
      [52] Mo, X.X., Niu, Y.L., Dong, G.C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1-4): 49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003
      [53] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3): 135-148 (in Chinese with English abstract). https://www.researchgate.net/publication/302561161_Response_of_volcanism_to_the_India-Asia_collisionJ
      [54] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200603001.htm
      [55] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      [56] Patriat, P., Achache, J., 1984. India–Eurasia Collision Chronology has Implications for Crustal Shortening and Driving Mechanism of Plates. Nature, 311(5987): 615-621. https://doi.org/10.1038/311615a0
      [57] Pearce, J.A., Thirlwall, M.F., Ingram, G., et al., 1992. Isotopic Evidence for the Origin of Boninites and Related Rocks Drilled in the Izu-Bonin (Osagawara) Forearc, Leg 125. In: Proceedings of the Ocean Drilling Program, 125 Scientific Results. Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.125.134.1992
      [58] Pearce, J.A., Norry, M.J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/BF00375192
      [59] Polat, A., Hofmann, A.W., Rosing, M.T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3/4): 231-254. https://doi.org/10.1016/S0009-2541(01)00363-1
      [60] Pu, W., Gao., J.F., Zhao, K.D., et al., 2005. Separation Method of Rb-Sr, Sm-Nd Using DCTA and HIBA. Journal of Nanjing University (Natural Sciences), 41(4): 445-450(in Chinese with English abstract). https://www.researchgate.net/publication/284462213_Separation_method_of_Rb-Sr_Sm-Nd_using_DCTA_and_HIBA
      [61] Replumaz, A., Kárason, H., van der Hilst, R.D., et al., 2004.4-D Evolution of SE Asia's Mantle from Geological Reconstructions and Seismic Tomography. Earth and Planetary Science Letters, 221(1-4): 103-115. https://doi.org/10.1016/S0012-821X(04)00070-6
      [62] Richards, A., Argles, T., Harris, N., et al., 2005. Himalayan Architecture Constrained by Isotopic Tracers from Clastic Sediments. Earth and Planetary Science Letters, 236(3/4): 773-796. https://doi.org/10.1016/j.epsl.2005.05.034
      [63] Robinson, J.A.C., Wood, B.J., 1998. The Depth of the Spinel to Garnet Transition at the Peridotite Solidus. Earth and Planetary Science Letters, 164(1/2): 277-284. https://doi.org/10.1016/S0012-821X(98)00213-1
      [64] Rogers, R.D., Kárason, H., van der Hilst, R.D., 2002. Epeirogenic Uplift above a Detached Slab in Northern Central America. Geology, 30(11): 1031. https://doi.org/10.1130/0091-7613(2002)0301031: euaads>2.0.co;2 doi: 10.1130/0091-7613(2002)030<1031:EUAADS>2.0.CO;2
      [65] Ruan, B., Luo, B.J., Zhang, H.F., et al., 2019. Magma Mixing of the Eocene Quxu Batholith from the Gangdese Magmatic Belt, South Tibet: Evidence from Cathodoluminescence Characteristics and Composition Changes of Plagioclase. Earth Science, 44(6): 1834-1848. https://doi.org/10.3799/dqkx.2018.397
      [66] Rudnick, R.L., Gao, S., 2014. Composition of the Continental Crust. In: Rudnick, R.L., ed., Treatise on Geochemistry. Elsevier, Amsterdam.
      [67] Schildgen, T.F., Yıldırım, C., Cosentino, D., et al., 2014. Linking Slab Break-off, Hellenic Trench Retreat, and Uplift of the Central and Eastern Anatolian Plateaus. Earth-Science Reviews, 128: 147-168. https://doi.org/10.1016/j.earscirev.2013.11.006
      [68] Sevin, B., Cluzel, D., Maurizot, P., et al., 2014. A Drastic Lower Miocene Regolith Evolution Triggered by Post Obduction Slab Break-off and Uplift in New Caledonia. Tectonics, 33(9): 1787-1801. https://doi.org/10.1002/2014tc003588 doi: 10.1002/2014TC003588
      [69] Sláma, J., Košler, J., Condon, D.J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005
      [70] Smit, M.A., Hacker, B.R., Lee, J., 2014. Tibetan Garnet Records Early Eocene Initiation of Thickening in the Himalaya. Geology, 42(7): 591-594. https://doi.org/10.1130/g35524.1 doi: 10.1130/G35524.1
      [71] Song, Y., Zeng, Q.G., Liu, H.Y., et al., 2019. An Innovative Perspective for the Evolution of Bangong-Nujiang Ocean: Also Discussing the Paleo- and Neo-Tethys Conversion. Acta Petrologica Sinica, 35(3): 625-641. https://doi.org/10.18654/1000-0569/2019.03.02
      [72] van der Voo, R., Spakman, W., Bijwaard, H., 1999. Tethyan Subducted Slabs under India. Earth and Planetary Science Letters, 171(1): 7-20. https://doi.org/10.1016/S0012-821X(99)00131-4
      [73] van Hinsbergen, D.J.J., Lippert, P.C., Dupont-Nivet, G., et al., 2012. Greater India Basin Hypothesis and a Two-Stage Cenozoic Collision between India and Asia. PNAS, 109(20): 7659-7664. https://doi.org/10.1073/pnas.1117262109
      [74] van Hunen, J., Allen, M.B., 2011. Continental Collision and Slab Break-off: A Comparison of 3-D Numerical Models with Observations. Earth and Planetary Science Letters, 302(1/2): 27-37. https://doi.org/10.1016/j.epsl.2010.11.035
      [75] Wang, R., Richards, J.P., Hou, Z.Q., et al., 2015. Zircon U-Pb Age and Sr-Nd-Hf-O Isotope Geochemistry of the Paleocene-Eocene Igneous Rocks in Western Gangdese: Evidence for the Timing of Neo-Tethyan Slab Breakoff. Lithos, 224/225: 179-194. https://doi.org/10.1016/j.lithos.2015.03.003
      [76] Wang, X.H., Lang, X.H., Deng, Y.L., et al., 2018. Zircon U-Pb Geochronology, Geochemistry and Tectonic Implications of the Tangbai Porphyritic Granite Pluton in Southern Margin of Gangdese, Tibet. Geological Journal of China Universities, 24(1): 41-55(in Chinese with English abstract).
      [77] Wang, X.H., Lang, X.H., Deng, Y.L., et al., 2019. Eocene Diabase Dikes in the Tangbai Area, Southern Margin of Lhasa Terrane, Tibet: Evidence for the Slab Break-off of the Neo-Tethys Ocean. Geology in China, 46(6): 1336-1355(in Chinese with English abstract).
      [78] Wang, X.H., Lang, X.H., Tang, J.X., et al., 2019. Early-Middle Jurassic (182-170 Ma) Ruocuo Adakitic Porphyries, Southern Margin of the Lhasa Terrane, Tibet: Implications for Geodynamic Setting and Porphyry Cu-Au Mineralization. Journal of Asian Earth Sciences, 173: 336-351. https://doi.org/10.1016/j.jseaes.2019.01.042
      [79] Wang, X.H., Lang, X.H., Tang, J.X., et al., 2020. Early Carboniferous Back-Arc Rifting-Related Magmatism in Southern Tibet: Implications for the History of the Lhasa Terrane Separation from Gondwana. Tectonics, 39(10): e2020TC006237. https://doi.org/10.1029/2020tc006237
      [80] Weaver, B., Kar, A., Davidson, J., et al., 1996. Geochemical Characteristics of Volcanic Rocks from Ascension Island, South Atlantic Ocean. Geothermics, 25(4-5): 449-470. https://doi.org/10.1016/0375-6505(96)00014-4
      [81] Weis, D., Wasserburg, G.J., 1987. Rb-Sr and Sm-Nd Systematics of Cherts and Other Siliceous Deposits. Geochimica et Cosmochimica Acta, 51(4): 959-972. https://doi.org/10.1016/0016-7037(87)90108-6
      [82] Wen, D.R., Liu, D.Y., Chung, S.L., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3/4): 191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003
      [83] Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x doi: 10.1111/j.1751-908X.1995.tb00147.x
      [84] Winchester, J.A., Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      [85] Wood, D.A., Joron, J.L., Treuil, M., 1979. A Re-Appraisal of the Use of Trace Elements to Classify and Discriminate between Magma Series Erupted in Different Tectonic Settings. Earth and Planetary Science Letters, 45(2): 326-336. https://doi.org/10.1016/0012-821X(79)90133-X
      [86] Xu, R.H., Schärer, U., Allègre, C.J., 1985. Magmatism and Metamorphism in the Lhasa Block (Tibet): A Geochronological Study. The Journal of Geology, 93(1): 41-57. https://doi.org/10.1086/628918
      [87] Xu, Y.G., Lan, J.B., Yang, Q.J., et al., 2008. Eocene Break-off of the Neo-Tethyan Slab as Inferred from Intraplate-Type Mafic Dykes in the Gaoligong Orogenic Belt, Eastern Tibet. Chemical Geology, 255(3/4): 439-453. https://doi.org/10.1016/j.chemgeo.2008.07.016
      [88] Xu, Y.G., Ma, J.L., Frey, F.A., et al., 2005. Role of Lithosphere-Asthenosphere Interaction in the Genesis of Quaternary Alkali and Tholeiitic Basalts from Datong, Western North China Craton. Chemical Geology, 224(4): 247-271. https://doi.org/10.1016/j.chemgeo.2005.08.004
      [89] Yakovlev, P.V., Clark, M.K., 2014. Conservation and Redistribution of Crust during the Indo-Asian Collision. Tectonics, 33(6): 1016-1027. https://doi.org/10.1002/2013tc003469 doi: 10.1002/2013TC003469
      [90] Yang, Z.M., Lu, Y.J., Hou, Z.Q., et al., 2015. High-Mg Diorite from Qulong in Southern Tibet: Implications for the Genesis of Adakite-Like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens. Journal of Petrology, 56(2): 227-254. https://doi.org/10.1093/petrology/egu076
      [91] Yin, A., Harrison, T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [92] Yue, Y.H., Ding, L., 2006. 40Ar/39Ar Geochronology, Geochemical Characteristics and Genesis of the Linzhou Basic Dikes, Tibet. Acta Petrologica Sinica, 22(4): 855-866(in Chinese with English abstract). doi: 10.1029/2012JB009373
      [93] Zhang, L.X., Wang, Q., Zhu, D.C., et al., 2013. Mapping the Lhasa Terrane through Zircon Hf Isotopes: Constraints on the Nature of the Crust and Metallogenic Potential. Acta Petrologica Sinica, 29(11): 3681-3688(in Chinese with English abstract). https://www.researchgate.net/publication/287889673_Mapping_the_Lhasa_Terrane_through_zircon_Hf_isotopes_Constraints_on_the_nature_of_the_crust_and_metallogenic_potential
      [94] Zhang, Q.H., Willems, H., Ding, L., et al., 2012. Initial India-Asia Continental Collision and Foreland Basin Evolution in the Tethyan Himalaya of Tibet: Evidence from Stratigraphy and Paleontology. The Journal of Geology, 120(2): 175-189. https://doi.org/10.1086/663876
      [95] Zhao, J.H., Zhou, M.F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1/2): 27-47. https://doi.org/10.1016/j.precamres.2006.09.002
      [96] Zhao, Z.D., Mo, X.X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004
      [97] Zhao, Z.D., Mo, X.X., Nomade, S., et al., 2006. Post-Collisional Ultrapotassic Rocks in Lhasa Block, Tibetan Plateau: Spatial and Temporal Distribution and Its Implications. Acta Petrologica Sinica, 22(4): 787-794(in Chinese with English abstract).
      [98] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2010. Presence of Permian Extension- and Arc-Type Magmatism in Southern Tibet: Paleogeographic Implications. Geological Society of America Bulletin, 122(7/8): 979-993. https://doi.org/10.1130/b30062.1
      [99] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006. Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese: New Insights from Volcanic Rocks. Acta Petrologica Sinica, 22(3): 534-546(in Chinese with English abstract). https://www.researchgate.net/publication/279618203_Late_Jurassic-Early_Cretaceous_geodynamic_setting_in_middle-northern_Gangdese_New_insights_from_volcanic_rocks
      [100] Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008. Tempo-Spatial Variations of Mesozoic Magmatic Rocks in the Gangdise Belt, Tibet, China, with a Discussion of Geodynamic Setting-Related Issues. Geological Bulletin of China, 27(9): 1535-1550(in Chinese with English abstract).
      [101] Zhu, D.C., Wang, Q., Chung, S.L., et al., 2019. Gangdese Magmatism in Southern Tibet and India-Asia Convergence since 120 Ma. Geological Society, London, Special Publications, 483(1): 583-604. https://doi.org/10.1144/sp483.14 doi: 10.1144/SP483.14
      [102] Zhu, D.C., Wang, Q., Zhao, Z.D., et al., 2015. Magmatic Record of India-Asia Collision. Scientific Reports, 5: 14289. https://doi.org/10.1038/srep14289
      [103] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      [104] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328: 290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024
      [105] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      [106] Zhuang, G.S., Najman, Y., Guillot, S., et al., 2015. Constraints on the Collision and the Pre-Collision Tectonic Configuration between India and Asia from Detrital Geochronology, Thermochronology, and Geochemistry Studies in the Lower Indus Basin, Pakistan. Earth and Planetary Science Letters, 432: 363-373. https://doi.org/10.1016/j.epsl.2015.10.026
      [107] 董国臣, 莫宣学, 赵志丹, 等, 2008. 西藏冈底斯南带辉长岩及其所反映的壳幔作用信息. 岩石学报, 24(2): 203-210. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802004.htm
      [108] 贾黎黎, 王青, 朱弟成, 等, 2013. 重新认识西藏林周盆地基性岩石的地球动力学含义. 岩石学报, 29(11): 3671-3680. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311002.htm
      [109] 莫宣学, 董国臣, 赵志丹, 等, 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
      [110] 莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013
      [111] 潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
      [112] 濮巍, 高剑峰, 赵葵东, 等, 2005. 利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法. 南京大学学报(自然科学版), 41(4): 445-450. doi: 10.3321/j.issn:0469-5097.2005.04.017
      [113] 阮冰, 骆必继, 张宏飞, 等, 2019. 西藏冈底斯带始新世曲水岩基的岩浆混合作用: 来自斜长石阴极发光特征和成分变化的证据. 地球科学, 44(6): 1834-1848. doi: 10.3799/dqkx.2018.397
      [114] 王旭辉, 郎兴海, 邓煜霖, 等, 2018. 西藏冈底斯南缘汤白斑状花岗岩锆石U-Pb年代学、地球化学及地质意义. 高校地质学报, 24(1): 41-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201801004.htm
      [115] 王旭辉, 郎兴海, 邓煜霖, 等, 2019. 西藏拉萨地体南缘汤白地区始新世辉绿岩脉: 新特提斯洋壳断离的证据. 中国地质, 46(6): 1336-1355. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201906008.htm
      [116] 岳雅慧, 丁林, 2006. 西藏林周基性岩脉的40Ar/39Ar年代学、地球化学及其成因. 岩石学报, 22(4): 855-866. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604009.htm
      [117] 张立雪, 王青, 朱弟成, 等, 2013. 拉萨地体锆石Hf同位素填图: 对地壳性质和成矿潜力的约束. 岩石学报, 29(11): 3681-3688. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311003.htm
      [118] 赵志丹, 莫宣学, Nomade, S., 等, 2006. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义. 岩石学报, 22(4): 787-794. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604003.htm
      [119] 朱弟成, 潘桂棠, 莫宣学, 等, 2006. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境: 火山岩约束. 岩石学报, 22(3): 534-546. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603002.htm
      [120] 朱弟成, 潘桂棠, 王立全, 等, 2008. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论. 地质通报, 27(9): 1535-1550. doi: 10.3969/j.issn.1671-2552.2008.09.013
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  370
    • HTML全文浏览量:  69
    • PDF下载量:  57
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-06-20
    • 网络出版日期:  2022-04-29
    • 刊出日期:  2022-04-25

    目录

      /

      返回文章
      返回