Discovery of "Quartz Bridge" in Kuqa Foreland Thrust Belt and Its Geological Significance
-
摘要: 在薄片和岩心等资料的基础上,利用扫描电镜、流体包裹体和离子探针微区原位同位素分析技术,在库车前陆冲断带克深‒大北地区白垩系砂岩储层裂缝中首次发现了“石英桥”. 石英桥是裂缝内高度局部化的孤立石英次生加大堆积体,离散分布于裂缝面,呈“桥”状跨越裂缝壁. 石英桥内部发育多个近平行于裂缝壁的流体包裹体组,其均一温度范围(150~176 ℃)与石英骨架颗粒中流体包裹体均一温度范围(90~120 ℃)差异较大. 此外,石英桥的氧同位素组成(平均δ18OVSMOW为17‰~21‰)与石英骨架颗粒和次生加大的氧同位素组成(平均δ18OVSMOW为8‰~17‰)亦差异较大. 克深‒大北地区石英桥主要发育在平行褶皱轴裂缝中,其形成可能与深埋高温环境下褶皱变形过程中的伸展作用以及古近系蒸发岩流体(富集18O)的运移有关. 石英桥是一个兼具前沿性和实用性的研究领域,对于恢复裂缝张‒闭历史和保存裂缝物性有重要的意义.Abstract: Based on thin section and core data, quartz bridges in natural fractures of Cretaceous sandstones of the Keshen-Dabei area in the Kuqa foreland thrust belt were discovered by SEM, fluid inclusions and ion microprobe in-situ isotope. Quartz bridge is highly localized overgrowth accumulations that span fracture walls and is scattered on the fracture surface. Fluid inclusion assemblages sub-parallel to the fracture walls were observed in the quartz bridge. Their homogenization temperature range (150-176 ℃) is different from that of the fluid inclusions in quartz grains (90-120 ℃). Besides, the scope of δ18OVSMOWvalues (17‰-21‰) does not overlap with that of quartz grain and quartz secondary enlargement (8‰-17‰). In the Cretaceous sandstone of the Keshen and Dabei area, quartz bridges are widespread in the hinge-parallel fractures. The formation of quartz bridge may be related to the extension during folding in the high-temperature at great depth and the migration of 18O-enriched water of Paleogene evaporates. The research of the quartz bridge is a frontier and practical field, which has great significance for reconstructing fracture opening history and preserving fracture physical properties.
-
Key words:
- structural diagenesis /
- sandstone reservoir /
- natural fracture /
- cement /
- quartz bridge /
- petroleum geology
-
图 2 库车前陆冲断带地层柱状图(据Guo et al., 2016)
Fig. 2. Lithostratigraphic column of the Kuqa foreland thrust belt (after Guo et al., 2016)
图 4 裂缝中石英胶结物发育模式(a)及石英晶轴图示(b)
a. 灰色石英颗粒中箭头指示晶轴,相对于石英桥,石英衬边沉淀速率更慢,导致无法跨越裂缝壁;①为微裂缝被石英完全胶结,②为贴壁式薄层石英衬边,③为跨越裂缝壁的石英桥. b. 据Lander et al.(2008);他形面(0001)c轴石英生长速度最快,他形面(1000)α轴、棱锥面、棱柱面生长速度依次等比例降低
Fig. 4. Quartz precipitation in fractures (a) and illustrations of crystallographic axis for quartz (b)
表 1 裂缝石英桥和石英衬边流体包裹体温度分析
Table 1. Temperature information from quartz bridges and rinds
井号 宿主矿物 胶结物产状 FIA中包裹体数量 均一温度(℃) 冰点温度(℃) KS2-2-8(6 722.95 m) 石英 衬边 163.6 167.5 衬边 172.8 ‒14.7 168.1 ‒14.0 桥 2 155.0~156.9 ‒10.9~‒10.7 3 157.7~159.4 3 160.2~163.8 ‒11.3~10.8 2 164.5~165.9 桥 5 172.1~175.5 ‒12.2~10.6 2 170.8~172.5 桥 5 150.9~156.7 ‒9.5~‒9.4 2 161.5~163.2 ‒10.6~‒9.4 4 163.7~166.1 2 172.8~174.8 2 171.1~175.0 桥 2 150.6~154.2 2 153.1~156.5 ‒12.7~‒10.0 2 157.3~161.4 ‒12.8~‒12.6 3 162.9~164.4 4 164.2~166.9 ‒12.5~11.1 2 166.7~168.5 3 168.0~171.8 4 171.1~175.6 ‒14.6~‒12.7 -
[1] Akse, S. P., Middelburg, J. J., King, H. E., et al., 2020. Rapid Post⁃Mortem Oxygen Isotope Exchange in Biogenic Silica. Geochimica et Cosmochimica Acta, 284: 61-74. https://doi.org/10.1016/j.gca.2020.06.007 [2] Aplin, A. C., Warren, E. A., 1994. Oxygen Isotopic Indications of the Mechanisms of Silica Transport and Quartz Cementation in Deeply Buried Sandstones. Geology, 22(9): 847-850. https://doi.org/10.1130/0091⁃7613(1994)0220847: oiiotm>2.3.co;2 doi: 10.1130/0091⁃7613(1994)0220847:oiiotm>2.3.co;2 [3] Becker, S. P., Eichhubl, P., Laubach, S. E., et al., 2010. A 48 M. y. History of Fracture Opening, Temperature, and Fluid Pressure: Cretaceous Travis Peak Formation, East Texas Basin. Geological Society of America Bulletin, 122(7-8): 1081-1093. https://doi.org/10.1130/b30067. [4] Bjørlykke, K., 1993. Fluid Flow in Sedimentary Basins. Sedimentary Geology, 86(1-2): 137-158. https://doi.org/10.1016/0037⁃0738(93)90137⁃T [5] Chi, G. X., Lu, H. Z., 2008. Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept. Acta Petrologica Sinica, 24(9): 1945-1953 (in Chinese with English abstract). [6] De Graaf, S., Nooitgedacht, C. W., Le Goff, J., et al., 2019. Fluid⁃Flow Evolution in the Albanide Fold⁃Thrust Belt: Insights from Hydrogen and Oxygen Isotope Ratios of Fluid Inclusions. AAPG Bulletin, 103(10): 2421-2445. https://doi.org/10.1306/02151918034 [7] Evans, M. A., Bebout, G. E., Brown, C. H., 2012. Changing Fluid Conditions during Folding: An Example from the Central Appalachians. Tectonophysics, 576-577: 99-115. https://doi.org/10.1016/j.tecto.2012.03.002 [8] Evans, M. A., Fischer, M. P., 2012. On the Distribution of Fluids in Folds: A Review of Controlling Factors and Processes. Journal of Structural Geology, 44: 2-24. https://doi.org/10.1016/j.jsg.2012.08.003 [9] Guo, X. W., Liu, K. Y., Jia, C. Z., et al., 2016. Hydrocarbon Accumulation Processes in the Dabei Tight⁃Gas Reservoirs, Kuqa Subbasin, Tarim Basin, Northwest China. AAPG Bulletin, 100(10): 1501-1521. https://doi.org/10.1306/04151614016 [10] Hooker, J. N., Larson, T. E., Eakin, A., et al., 2015. Fracturing and Fluid Flow in a Sub⁃Décollement Sandstone; or, a Leak in the Basement. Journal of the Geological Society, 172(4): 428-442. https://doi.org/10.1144/jgs2014⁃128 [11] Hou, G. T., Sun, S., Zheng, C. F., et al., 2019. Subsalt Structural Styles of Keshen Section in Kelasu Tectonic Belt. Xinjiang Petroleum Geology, 40(1): 21-26 (in Chinese with English abstract). [12] Lander, R. H., Larese, R. E., Bonnell, L. M., 2008. Toward More Accurate Quartz Cement Models: The Importance of Euhedral versus Noneuhedral Growth Rates. AAPG Bulletin, 92(11): 1537-1563. https://doi.org/10.1306/07160808037 [13] Lander, R. H., Laubach, S. E., 2015. Insights into Rates of Fracture Growth and Sealing from a Model for Quartz Cementation in Fractured Sandstones. Geological Society of America Bulletin, 127(3-4): 516-538. https://doi.org/10.1130/b31092.1 [14] Laubach, S. E., Fall, A., Copley, L. K., et al., 2016. Fracture Porosity Creation and Persistence in a Basement⁃ Involved Laramide Fold, Upper Cretaceous Frontier Formation, Green River Basin, USA. Geological Magazine, 153(5-6): 887-910. https://doi.org/10.1017/S0016756816000157 [15] Laubach, S. E., Lander, R. H., Bonnell, L. M., et al., 2004a. Opening Histories of Fractures in Sandstone. Geological Society, London, Special Publications, 231(1): 1-9. https://doi.org/10.1144/gsl.sp.2004.231.01.01 [16] Laubach, S. E., Reed, R. M., Olson, J. E., et al., 2004b. Coevolution of Crack⁃Seal Texture and Fracture Porosity in Sedimentary Rocks: Cathodoluminescence Observations of Regional Fractures. Journal of Structural Geology, 26(5): 967-982. https://doi.org/10.1016/j.jsg.2003.08.019 [17] Laubach, S. E., Olson, J. E., Gale, J. F. W., 2004c. Are Open Fractures Necessarily Aligned with Maximum Horizontal Stress? Earth and Planetary Science Letters, 222(1): 191-195. https://doi.org/10.1016/j.epsl.2004.02.019 [18] Laubach, S. E., Lander, R. H., Criscenti, L. J., et al., 2019. The Role of Chemistry in Fracture Pattern Development and Opportunities to Advance Interpretations of Geological Materials. Reviews of Geophysics, 57(3): 1065-1111. https://doi.org/10.1029/2019RG000671 [19] Laubach, S. E., Ward, M. E., 2006. Diagenesis in Porosity Evolution of Opening⁃Mode Fractures, Middle Triassic to Lower Jurassic La Boca Formation, NE Mexico. Tectonophysics, 419(1-4): 75-97. https://doi.org/10.1016/j.tecto.2006.03.020 [20] Li, L., Tang, H. M., Wang, X., et al., 2017. Diagenetic Evolution of Cretaceous Ultra⁃Deep Reservoir in Keshen Belt, Kelasu Thrust Belt, Kuqa Depression. Xinjiang Petroleum Geology, 38(1): 7-14 (in Chinese with English abstract). [21] Li, Z., 2016. Research Frontiers of Fluid⁃Rock Interaction and Oil⁃Gas Formation in Deep⁃Buried Basins. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 807-816, 805 (in Chinese with English abstract). [22] Li, Z., Luo, W., Zeng, B. Y., et al., 2018. Fluid⁃Rock Interactions and Reservoir Formation Driven by Multiscale Structural Deformation in Basin Evolution. Earth Science, 43(10): 3498-3510 (in Chinese with English abstract). [23] Lü, X. X., Jin, Z. J., Zhou, X. Y., et al., 2000. Oil and Gas Accumulation Related to Evaporite Rocks in Kuqa Depression of Tarim Basin. Petroleum Exploration and Development, 27(4): 20-21, 109 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2000.04.004 [24] Ma, B. B., Cao, Y. C., Eriksson, K. A., et al., 2019. Carbonate Cementation Patterns, Potential Mass Transfer, and Implications for Reservoir Heterogeneity in Eocene Tight⁃Oil Sandstones, Dongying Depression, Bohai Bay Basin, China: Evidence from Petrology, Geochemistry, and Numerical Modeling. AAPG Bulletin, 103(12): 3035-3067. https://doi.org/10.1306/04101917330 [25] McBride, E. F., 1989. Quartz Cement in Sandstones: A Review. Earth⁃Science Reviews, 26(1-3): 69-112. https://doi.org/10.1016/0012⁃8252(89)90019⁃6 [26] Olson, J. E., Laubach, S. E., Lander, R. H., 2009. Natural Fracture Characterization in Tight Gas Sandstones: Integrating Mechanics and Diagenesis. AAPG Bulletin, 93(11): 1535-1549. https://doi.org/10.1306/08110909100 [27] Qi, J. F., Lei, G. L., Li, M. G., et al., 2009. Analysis of Structure Model and Formation Mechanism of Kelasu Structure Zone, Kuqa Depression. Geotectonica et Metallogenia, 33(1): 49-56 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.01.007 [28] Shi, W. Z., Chen, H. H., He, S., 2007. Quantitative Evaluation on Contribution of Structural Compression to Overpressure and Analysis on Origin of Overpressure in Kuqa Depression. Acta Petrolei Sinica, 28(6): 59-65 (in Chinese with English abstract). [29] Tan, H. B., 2005. Geochemical Research on Ancient Salt Rock and Prospect of Sylvite Deposit Formation in Western Tarim Basin (Dissertation). Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining (in Chinese with English abstract). [30] Tang, L. J., Jia, C. Z., Jin, Z. J., et al., 2003. Salt⁃Related Structural Characteristics and Hydrocarbon Accumulation in the Middle Segment of the Kuqa Foreland Fold Belt in the Northern Tarim Basin, NW China. Geological Review, 49(5): 501-506 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2003.05.007 [31] Vandeginste, V., Swennen, R., Allaeys, M., et al., 2012. Challenges of Structural Diagenesis in Foreland Fold⁃and⁃Thrust Belts: A Case Study on Paleofluid Flow in the Canadian Rocky Mountains West of Calgary. Marine and Petroleum Geology, 35(1): 235-251. https://doi.org/10.1016/j.marpetgeo.2012.02.014 [32] Wang, X., Jia, C. Z., Yang, S. F., et al., 2002. The Time of Deformation on the Kuqa Fold⁃and⁃Thrust Belt in the Southern Tianshan-Based on the Kuqa River Area. Acta Geologica Sinica, 76(1): 55-63 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2002.01.008 [33] Wang, Z. M., Xie, H. W., Li, Y., et al., 2013. Exploration and Discovery of Large and Deep Subsalt Gas Fields in Kuqa Foreland Thrust Belt. China Petroleum Exploration, 18(3): 1-11 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2013.03.001 [34] Wu, S. J., Fan, C. W., Zhao, Z. J., et al., 2019. Origin of Carbonate Cement in Reservoirs of Ledong Area, Yinggehai Basin and Its Geological Significance. Earth Science, 44(8): 2686-2694 (in Chinese with English abstract). [35] Yu, Y. X., Tang, L. J., Yang, W. J., et al., 2014. Salt Structures and Hydrocarbon Accumulations in the Tarim Basin, Northwest China. AAPG Bulletin, 98(1): 135-159. https://doi.org/10.1306/05301311156 [36] Yuan, T., Yi, H. S., Lan, Y. F., et al., 2017. A Review of Research on the Source of Quartz Cements in Sandstone Reservoirs. Acta Mineralogica Sinica, 37(S1): 168-176 (in Chinese with English abstract). [37] Zeng, L. B., Zhu, R. K., Gao, Z. Y., et al., 2016. Structural Diagenesis and Its Petroleum Geological Significance. Petroleum Science Bulletin, 1(2): 191-197 (in Chinese with English abstract). [38] Zhang, R. H., Zhang, H. L., Shou, J. F., et al., 2008. Geological Analysis on Reservoir Mechanism of the Lower Cretaceous Bashijiqike Formation in Dabei Area of the Kuqa Depression. Chinese Journal of Geology (Scientia Geologica Sinica), 43(3): 507-517 (in Chinese with English abstract). [39] Zheng, M., Li, J. Z., Wu, X. Z., et al., 2019. Potential of Oil and Natural Gas Resources of Main Hydrocarbon⁃Bearing Basins and Key Exploration Fields in China. Earth Science, 44(3): 833-847 (in Chinese with English abstract). [40] 池国祥, 卢焕章, 2008. 流体包裹体组合对测温数据有效性的制约及数据表达方法. 岩石学报, 24(9): 1945-1953. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200809001.htm [41] 侯贵廷, 孙帅, 郑淳方, 等, 2019. 克拉苏构造带克深区段盐下构造样式. 新疆石油地质, 40(1): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201901004.htm [42] 李玲, 唐洪明, 王茜, 等, 2017. 克拉苏冲断带克深区带白垩系超深储集层成岩演化. 新疆石油地质, 38(1): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201701003.htm [43] 李忠, 2016. 盆地深层流体‒岩石作用与油气形成研究前沿. 矿物岩石地球化学通报, 35(5): 807-816, 805. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201605003.htm [44] 李忠, 罗威, 曾冰艳, 等, 2018. 盆地多尺度构造驱动的流体‒岩石作用及成储效应. 地球科学, 43(10): 3498-3510. doi: 10.3799/dqkx.2018.323 [45] 吕修祥, 金之钧, 周新源, 等, 2000. 塔里木盆地库车坳陷与膏盐岩相关的油气聚集. 石油勘探与开发, 27(4): 20-21, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200004005.htm [46] 漆家福, 雷刚林, 李明刚, 等, 2009. 库车坳陷克拉苏构造带的结构模型及其形成机制. 大地构造与成矿学, 33(1): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200901008.htm [47] 石万忠, 陈红汉, 何生, 2007. 库车坳陷构造挤压增压的定量评价及超压成因分析. 石油学报, 28(6): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200706011.htm [48] 谭红兵, 2005. 塔里木盆地西部古盐岩地球化学与成钾预测研究(博士学位论文). 西宁: 中国科学院盐湖研究所. [49] 汤良杰, 贾承造, 金之钧, 等, 2003. 塔里木盆地库车前陆褶皱带中段盐相关构造特征与油气聚集. 地质论评, 49(5): 501-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200305007.htm [50] 汪新, 贾承造, 杨树锋, 等, 2002. 南天山库车冲断褶皱带构造变形时间: 以库车河地区为例. 地质学报, 76(1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200201010.htm [51] 王招明, 谢会文, 李勇, 等, 2013. 库车前陆冲断带深层盐下大气田的勘探和发现. 中国石油勘探, 18(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201303002.htm [52] 吴仕玖, 范彩伟, 招湛杰, 等, 2019. 莺歌海盆地乐东区碳酸盐胶结物成因及地质意义. 地球科学, 44(8): 2686-2694. doi: 10.3799/dqkx.2019.154 [53] 袁桃, 伊海生, 兰叶芳, 等, 2017. 砂岩储层石英胶结物的SiO2来源研究综述. 矿物学报, 37(S1): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2017Z1021.htm [54] 曾联波, 朱如凯, 高志勇, 等, 2016. 构造成岩作用及其油气地质意义. 石油科学通报, 1(2): 191-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201602002.htm [55] 张荣虎, 张惠良, 寿建峰, 等, 2008. 库车坳陷大北地区下白垩统巴什基奇克组储层成因地质分析. 地质科学, 43(3): 507-517. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200803007.htm [56] 郑民, 李建忠, 吴晓智, 等, 2019. 我国主要含油气盆地油气资源潜力及未来重点勘探领域. 地球科学, 44(3): 833-847. doi: 10.3799/dqkx.2019.957