Petrogenesis of the Syenogranite in the Xiaowulangou Area of Southern Great Xing'an Range: Constraints from Zircon LA⁃ICP⁃MS U⁃Pb Geochronology, Geochemistry and Hf Isotopes
-
摘要: 大兴安岭南段西坡发育有大量晚侏罗世-早白垩世花岗岩,深入讨论岩石成因对该地区中生代地球动力学背景及其构造演化的研究具有重要地质意义.报道了小乌兰沟正长花岗岩的锆石LA⁃ICP⁃MS U⁃Pb年龄,全岩地球化学及锆石Hf同位素数据.小乌兰沟正长花岗岩的锆石206Pb/238U加权平均年龄为139.4±0.7 Ma,属早白垩世. 样品主量元素表现为富硅、富钾的高钾钙碱性系列岩石,A/CNK值介于1.00~1.11之间,属弱过铝质. 微量元素富集Rb、Th、U等大离子亲石元素(LILE)和轻稀土元素(LREE),强烈亏损Ba、Sr、P、Ti等高场强元素(HFSE),Eu负异常明显(δEu=0.007~0.009),Zr+Nb+Ce+Y值基本小于350×10-6,含磁铁矿,未见原生白云母和碱性暗色矿物,属高分异I型花岗岩. 小乌兰沟正长花岗岩εHf(t)值介于+5.5~+8.9之间,Hf同位素模式年龄tDM2变化于700~947 Ma之间.结合区域研究,小乌兰沟正长花岗岩为上元古界变基性岩与中奥陶统变中性岩在低压、高温条件下发生部分熔融作用形成,是蒙古-鄂霍茨克洋闭合后伸展作用的产物.Abstract: TheLate Jurassic⁃Early Cretaceous granites are widely developed in the west slop of Southern Great Xing'an Range, and an in⁃depth study of the petrogenesis is of great geological significance to reveal the Mesozoic geodynamic background and tectonic evolution. In this paper, we report for the zircon LA⁃ICP⁃MS U⁃Pb age and Hf isotopic data, whole⁃rock major and trace element composition data from Xiaowulangousyeno granite. LA⁃ICP⁃MS U⁃Pb dating yields a weighted mean of 139.4±0.7 Ma, indicating that Xiaowulangousyeno granite formed in the Early Cretaceous. Geochemically, the syenogranite belongs to Si⁃K⁃rich calc⁃alkaline series, A/CNK=1.00~1.11 and are weak peraluminous. The syenogranite enriched in Rb, Th, U(LILE) and light rare earth elements(LREE), relatively depleted in Ba, Sr, P, Ti(HFSE), withobvious Eu negative anomaly(δEu=0.007~0.009). In addition, the (Zr+Nb+Ce+Y) values of syenograniteis less than 350×10⁃6. The syenogranite contains magnetite, and no primary muscovite and alkaline mafic minerals. All these features above suggest that Xiaowulangousyenogranite belongs to highly fractionated Ⅰ⁃type granite. The zircons εHf(t) values of syenogranite are +5.5~+8.9, and the two stage model ages (tDM2) range 700 Ma to 947 Ma. Combined with the reginoal geological background, we conclude that the Xiaowulangousyenograniteoriginated from the partial melting of upper Proterozoic meta⁃mafic rocks and middle Ordovician meta⁃andesite rocks under low pressure and high temperature, and the syenogranitewas the product of extension after the closure of Mongol⁃Okhotsk Ocean.
-
图 1 东北亚构造分区图(a)(据Tang et al. 2016)和中国东北显生宙花岗岩类地质略图(b) (据Li et al., 2021)
Fig. 1. (a) Tectonic subdivision of the NE Asia (modified after Tang et al., 2016), and (b)geological map of Phanerozoic granitoids in NE China (after Li et al., 2021)
图 5 小乌兰沟正长花岗岩SiO2⁃K2O图(a)(据Peccerillo et al., 1976)和A/CNK⁃A/NK图(b) (据Maniar et al., 1989)
Fig. 5. Plot of SiO2 vs. K2O(a)(after Peccerillo et al., 1976) and A/CNK vs. A/NK(b)(after Maniar et al., 1989) of syenogranite from the Xiaowulangou area
图 6 小乌兰沟正长花岗岩球粒陨石标准化稀土模式配分图(a)(标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun et al., 1989)
Fig. 6. Chondrite⁃normalized REE patterns (a) and primitive mantle normalized trace element multi⁃variation diagrams (b) for syenogranite from the Xiaowulangou area (chondrite⁃normalization and primitive mantle⁃normalization values from Boynton, 1984 and Sun et al., 1989)
图 7 小乌兰沟正长花岗岩成因类型判别图解(b, c, d据Whalen et al., 1987)
Fig. 7. Discrimination diagrams for the syenogranite from the Xiaowulangou area (b, c, d after Whalen et al., 1987)
图 9 小乌兰沟正长花岗岩基于批式熔融模型的稀土元素模拟
a. 变中性岩低压部分熔融过程(5 kbar);b. 变中性岩高压部分熔融过程(10 kbar);c. 变基性岩低压部分熔融过程(5 kbar);d. 变基性岩高压部分熔融过程(10 kbar);标准化值据Boynton(1984);初始成分为包尔汉图群变中性岩(中国地质大学地质调查研究院,2012. 锡林浩特幅、种蓄场桃林塔拉分场幅、锡林浩特炼铜厂幅、巴音胡硕分场幅区域地质调查)、锡林郭勒杂岩变基性岩(内蒙古自治区地质调查院,2018. 内蒙古自治区锡林郭勒盟锡林浩特等4幅1∶5万区域矿产地质调查)
Fig. 9. REE modelling based on batch melting model for the Xiaowulangou syenogranite
-
[1] Boynton, W.V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry, 63-114. [2] Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water⁃Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 Kb. Journal of Petrology, 32(2): 365-401. DOI: 10.1093/petrology/32.2.365 [3] Bedard, J. H., 2006. A Catalytic Delamination⁃Driven Model for Coupled Genesis of Archaean Crust and Sub⁃Continental Lithospheric Mantle. Geochimica et Cosmochimica Acta, 70(5): 1188-1214. DOI: 10.1016/j.gca.2005.11.008 [4] Clemens, J. D., Stevens, G., Farina, F., 2011. The Enigmatic Sources of I⁃Type Granites: The Peritectic Connexion. Lithos, 126(3/4): 174-181. DOI: 10.1016/j.lithos.2011.07.004 [5] Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. DOI: 10.1038/347662a0 [6] Ge, W.C., Lin, Q., Sun, D.Y., et al., 2000. Geochemical Research into Origins of Two Types of Mesozoic Rhyolites in DaXing'AnLing. Earth Science, 25(2): 172-178(in Chinese with English abstract). [7] Hou, K.J., Li, Y.H., Zhou, T.R., et al., 2007. Laser Ablation⁃MC⁃ICP⁃MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604(in Chinese with English abstract). [8] Hou, K.J., Li, Y.H., Tian, Y.R., 2009. In Situ U⁃Pb Zircon Dating Using Laser Ablation⁃Multi Ion Counting⁃ICP⁃MS. Mineral Deposits, 28(4): 481-492(in Chinese with English abstract). [9] Jiang, X.J., Peng, Y.B., Dong, X.J., et al., 2021. The Remote Role of Mongolia⁃Okhotsk Ocean: Evidences from the Origin of Rhyolite Porphyry in Yangpangou Area, the Southeast of Inner Mongolia. Earth Science, 46(9): 3057-3073 (in Chinese with English abstract). [10] Li, J.Y., Qian, Y., Tekoumc, L., et al., 2021. Petrogenesis of Jurassic Granitoids on Liaodong Peninsula, Northeast China: Constraints on the Evolution of the Mongol-Okhotsk and Pacific Tectonic Regimes. Journal of Earth Science, 32(1): 127-143. DOI: 10.1007/s12583⁃020⁃1372⁃0 [11] Li, Q., Cheng, X.Q., Chen, W., et al., 2021. Discovery of the Early⁃Middle andesite in the Erguna Massif and Its Indication of the Southward Subduction of the Mongol⁃BOkhotsk Ocean Plate. Earth Science, 46(8): 2768-2785 (in Chinese with English abstract). [12] Li, X.H., Li, Z.X., Li, W.X., et al., 2007. U⁃Pb Zircon, Geochemical and Sr⁃Nd⁃Hf Isotopic Constraints on Age and Origin of Jurassic I⁃ and A⁃Type Granites from Central Guangdong, SE China: A major Igneous Event in Response to Foundering of a Subducted Flat⁃Slab? Lithos, 96(1-2): 186-204. DOI: 10.1016/j.lithos.2006.09.018 [13] Li, Y. L., Wu, G., Zhao, S. J., et al., 2021. Large⁃Scale Late Triassic to Early Jurassic High εHf(T)⁃εNd(T) Felsic Rocks in the Ergun Massif (NE China): Implications for Southward Subduction of the Mongol⁃Okhotsk Oceanic Slab and Lateral Crustal Growth. International Journal of Earth Sciences, 110(2): 539-558. DOI: 10.1007/s00531⁃020⁃01969⁃8 [14] Liu, X., Li, X.G., Zhu, X.Y., et al., 2017. Mineralization Process of the Baiyinchagan Tin Polymetallic Deposit in Inner Mongolia Ⅱ: Chronology of Ore⁃bearing Porphyry, Geochemical Characteristics and Geological Implications of the Granite Porphyry. Mineral Exploration, 8(6): 981-996(in Chinese with English abstract). [15] Maniar, M. L., Kalonia, D. S., Simonelli, A. P., 1989. Use of Liquid Chromatography and Mass Spectroscopy to Select an Oligomer Representative of Polyester Hydrolysis Pathways. Journal of Pharmaceutical Sciences, 78(10): 858-862. DOI: 10.1002/jps.2600781016 [16] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc⁃Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. DOI: 10.1007/bf00384745 [17] Palin, R. M., White, R. W., Green, E. C. R., et al., 2016. High⁃Grade Metamorphism and Partial Melting of Basic and Intermediate Rocks. Journal of Metamorphic Geology, 34(9): 871-892. DOI: 10.1111/jmg.12212 [18] Peng, B., Li, B.L., Qin, G.Z., et al., 2019. Petrogenesis of the Quartz Diorite in the Yanhu Area of Lhasa Terrance, Tibet: Constraints from Zircon SHRIMP U⁃Pb Geochronology, Geochemistry and Sr⁃Nd⁃Pb⁃Hf Isotopes. Acta Geologica Sinica, 93(3): 606-621(in Chinese with English abstract). [19] Qin, J.S., Xiao, E., Hu, J., et al., 2008. Petrogenesis of Highly Fractionated I⁃Type Granites in the Coastal Area of Northeastern Fujian Province: Constraints from Zircon U⁃Pb Geochronology, Geochemistry and Nd⁃Hf Isotopes. Acta Petrologica Sinica, 24 (11) : 2468-2484(in Chinese with English abstract). [20] Rushmer, T., 1991. Partial Melting of Two Amphibolites: Contrasting Experimental Results under Fluid⁃Absent Conditions. Contributions to Mineralogy and Petrology, 107(1): 41-59. DOI: 10.1007/bf00311184 [21] Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8⁃32 Kbar: Implications for Continental Growth and Crust: a Mantle Recycling. Journal of Petrology, 36(4): 891-931. DOI: 10.1093/petrology/36.4.891 [22] Richards, J. P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1): 1-26. DOI: 10.1016/j.oregeorev.2011.05.006 [23] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. DOI: 10.1144/gsl.sp.1989.042.01.19 [24] Sui, Z.M., Chen, Y.J., 2011. Zircon Saturation Temperatures of Granites in Eastern Great Xing'an Range, and Its Geological Signification. Global Geology, 30(2): 162-172(in Chinese with English abstract). [25] Tang, J., Xu, W. L., Wang, F., et al., 2016. Early Mesozoic Southward Subduction History of the Mongol⁃Okhotsk Oceanic Plate: Evidence from Geochronology and Geochemistry of Early Mesozoic Intrusive Rocks in the Erguna Massif, NE China. Gondwana Research, 31(5): 218-240. DOI: 10.1016/j.gr.2014.12.010 [26] Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. DOI: 10.1016/0012⁃821x(83)90211⁃x [27] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A⁃Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. DOI: 10.1007/bf00402202 [28] Wolf, M. B., London, D., 1994. Apatite Dissolution into Peraluminous Haplogranitic Melts: An Experimental Study of Solubilities and Mechanisms. Geochimica et Cosmochimica Acta, 58(19): 4127-4145. DOI: 10.1016/0016⁃7037(94)90269⁃0 [29] Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. DOI: 10.1016/j.jseaes.2010.11.014 [30] Wang, W., Xu, W.L., Wang, F., et al., 2012. Zircon U⁃Pb Chronology and Assemblages of Mesozoic Granitoids in the Manzhouli⁃Erguna Area, NE China: Constraints on the Regional Tectonic Evolution. Geological Journal of China Universities, 18(1): 88-105(in Chinese with English abstract). [31] Wang, J.G., He, Z.H., Xu, W.L., 2013. Petrogenesis of Riebeckite Rhyolites in the Southern DaHinggan Mts: Geohronological and Geochemical Evidence. Acta Petrologica Sinica, 29(3): 853-863(in Chinese with English abstract). [32] Wang, T., Guo, L., Zhang, L., et al., 2015. Timing and Evolution of Jurassic⁃Cretaceous Granitoid Magmatisms in the Mongol⁃Okhotsk Belt and Adjacent Areas, NE Asia: Implications for Transition from Contractional Crustal Thickening to Extensional Thinning and Geodynamic Settings. Journal of Asian Earth Sciences, 97(1): 365-392. DOI: 10.1016/j.jseaes.2014.10.005 [33] Wu, G., Liu, R.L., Chen, G.Z., et al., 2021. Mineralization of the Weilasituo Rare Metal⁃Tin⁃Polymetallic Ore Deposit in Inner Mongolia: Insights from Fractional Crystallization of Granitic Magmas. Acta Petrologica Sinica, 37(3) : 637-664(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.01 [34] Xu, B., Chen, B., Shao, J.A., 1996. Sm⁃Nd and Rb⁃Sr Isotopic Geochronology of the Xilin Gol. Complex, Inner Mongolia. Chinese Science Bulletin, 41(2): 153-155(in Chinese). doi: 10.1360/csb1996-41-2-153 [35] Xu, W. L., Pei, F. P., Wang, F., et al., 2013. Spatial⁃Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 74(25): 167-193. DOI: 10.1016/j.jseaes.2013.04.003 [36] Xu, W.L., Wang, F., Pei, F.P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore⁃Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2) : 339-353(in Chinese with English abstract). [37] Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an⁃Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646(in Chinese with English abstract). [38] Xiao, W.J., Windley, B.F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo⁃Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Aceretion. Annual Review of Earth and Planetary Sciences, 43(1): 477-507. DOI: 10.1146/annurev⁃earth⁃060614⁃105254 [39] Xue, X.G., Zhou, C.H., Zhang, X, B., et al., 2018. Zircon U⁃Pb Dating and Geochemical Characteristics of Volcanic Rocks in the Meiletu Formation of Eastern Xilin Gol League, Inner Mongolia and Their Geological Implications. Geology and Exploration, 54(5): 0957-0967(in Chinese with English abstract). [40] Zhang, J. H., Ge, W. C., Wu, F. Y., et al., 2008. Large⁃Scale Early Cretaceous Volcanic Events in the Northern Great Xing'an Range, Northeastern China. Lithos, 102(1/2): 138-157. DOI: 10.1016/j.lithos.2007.08.011 [41] Zhang, T.F., Guo, S., Xin, H.T., et al., 2019. Petrogenesis and Magmatic Evolution of Highly Fractionated Granite and Their Constraints on Sn⁃(Li⁃Rb⁃Nb⁃Ta) Mineralization in the Weilasituo Deposit, Inner Mongolia, Southern Great Xing'an Range, China. Earth Science, 44(1): 248-267(in Chinese with English abstract). [42] 葛文春, 林强, 孙德有, 等, 2000. 大兴安岭中生代两类流纹岩成因的地球化学研究. 地球科学, 25(2): 172-178. http://www.earth-science.net/article/id/920 [43] 侯可军, 李延河, 邹天人, 等, 2007. LA⁃MC⁃ICP⁃MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [44] 侯可军, 李延河, 田有荣, 2009. LA⁃MC⁃ICP⁃MS锆石微区原位U⁃Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010 [45] 蒋孝君, 彭云彪, 董晓杰, 等, 2021. 蒙古-鄂霍次克洋的远程作用: 来自内蒙古东南部羊盘沟地区流纹斑岩成因的证据. 地球科学, 46(9): 3057-3073. doi: 10.3799/dqkx.2020.335 [46] 刘新, 李学刚, 祝新友, 等, 2017. 内蒙古白音查干锡多金属矿床成矿作用研究Ⅱ: 成矿花岗斑岩年代学、地球化学特征及地质意义. 矿产勘查, 8(6): 981-996. doi: 10.3969/j.issn.1674-7801.2017.06.008 [47] 李强, 程学芹, 陈伟, 等, 2021. 额尔古纳地块早-中三叠世安山岩的发现及其对蒙古-鄂霍茨克洋南向俯冲的指示. 地球科学, 46(8): 2768-2785. doi: 10.3799/dqkx.2020.319 [48] 彭勃, 李宝龙, 秦广洲, 等, 2019. 西藏拉萨地块盐湖石英闪长岩成因: 锆石SHRIMP U⁃Pb年代学、地球化学及Sr⁃Nd⁃Pb⁃Hf同位素的制约. 地质学报, 93(3): 606-621. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201903007.htm [49] 邱检生, 肖娥, 胡建, 等, 2008. 福建北东沿海高分异Ⅰ型花岗岩的成因: 锆石U⁃Pb年代学、地球化学和Nd⁃Hf同位素制约. 岩石学报, 24(11): 2468-2484. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm [50] 随振民, 陈跃军, 2011. 大兴安岭东部花岗岩类锆石饱和温度及其地质意义. 世界地质, 30(2): 162-172. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201102002.htm [51] 武广, 刘瑞麟, 陈公正, 等, 2021. 内蒙古维拉斯托稀有金属-锡多金属矿床的成矿作用: 来自花岗质岩浆结晶分异的启示. 岩石学报, 37(3): 637-664. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103001.htm [52] 王伟, 许文良, 王枫, 等, 2012. 满洲里-额尔古纳地区中生代花岗岩的锆石U⁃Pb年代学与岩石组合: 对区域构造演化的制约. 高校地质学报, 18(1): 88-105. doi: 10.3969/j.issn.1006-7493.2012.01.008 [53] 王建国, 和钟铧, 许文良, 2013. 大兴安岭南部钠闪石流纹岩的岩石成因: 年代学和地球化学证据. 岩石学报, 29(3): 853-863. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303010.htm [54] 徐备, 陈斌, 邵济安, 1996. 内蒙古锡林郭勒杂岩Sm⁃Nd, Rb⁃Sr同位素年代研究. 科学通报, 41(2): 153-155. doi: 10.3321/j.issn:0023-074X.1996.02.016 [55] 许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm [56] 许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036 [57] 薛晓刚, 周长红, 张学斌, 等, 2018. 内蒙古锡林郭勒盟东部梅勒图组火山岩锆石U⁃Pb年龄、地球化学特征及其地质意义. 地质与勘探, 54(5): 957-967. doi: 10.3969/j.issn.0495-5331.2018.05.007 [58] 张天福, 郭硕, 辛后田, 等, 2019. 大兴安岭南段维拉斯托高分异花岗岩体的成因与演化及其对Sn⁃(Li⁃Rb⁃Nb⁃Ta)多金属成矿作用的制约. 地球科学, 44(1): 248-267. doi: 10.3799/dqkx.2018.246 -
dqkxzx-47-8-2889-附表.docx