Cobalt Geochemical Anomalies Characteristics and Genesis in China and Metallogenic Prospecting Areas Prediction
-
摘要: 近年来钴资源的战略地位急剧提升,钴资源勘查也日益受到重视. 但钴的成矿作用特殊,极低密度地球化学填图能否为钴资源勘查提供可靠依据有待研究.对全国基准计划获得的深层汇水域沉积物钴地化异常开展研究,建立矿床与异常空间位置指数,定量评价矿床与异常相对位置关系. 发现钴异常的形成主要受(超)基性岩控制,少数与矿化作用有关,个别钴异常与泥质岩和次生富集等因素有关. 中国与欧洲(FOREGS计划)结果均表明,风化型、热液型、岩浆型钴矿床与钴异常空间对应关系依次减弱. 在此基础上,结合中国钴成矿地质背景,在华南钴成矿带、华北克拉通北缘东段等圈定了若干钴成矿远景区.Abstract: In recent years, the strategic position of cobalt resources has risen sharply, and cobalt resource exploration has also received increasing attention. However, the mineralization of cobalt is special, and whether extremely low⁃density geochemical mapping can provide a reliable basis for cobalt resource exploration remains to be studied.This paper conducts research on the geochemical anomalies of cobalt in deep catchment sediments obtained by the China Geochemical Baselines project, and finds that cobalt anomalies are mainly controlled by ultrabasic/basic rocks, and a few are related to mineralization. Lesser cobalt anomalies are related to argillaceous rock sand secondary enrichment. Establishing a spatial correlative index between deposits and anomalies, and quantitatively evaluating the relative spatial relationship between deposits and anomalies.Both China and Europe (FOREGS project) show that the spatial correspondence relationship of anomalies with weathered, hydrothermal, and magmatic type of cobalt deposits gradually weakened. Based on the above understanding, combined with the metallogenic background of China's cobalt, several cobalt metallogenic prospecting areas have been delineated in the South China and the eastern section of the northern margin of the North China Craton cobalt metallogenic belt.
-
Key words:
- cobalt geochemical anomalies /
- ultrabasic/basic rocks /
- cobalt deposits /
- anomaly genesis /
- geochemistry
-
图 1 中国基性、超基性岩和钴矿床分布
据中国地质调查局(2004);底图审图号:GS(2016)2893号
Fig. 1. Distribution of basic/ultra⁃basic rocks and cobalt deposits in China
图 2 中国基准值计划汇水域沉积物深层钴地球化学异常图
钴成矿带: Ⅰ准格尔北缘-北山; Ⅱ华北克拉通北缘; Ⅲ华北克拉通北缘东段; Ⅳ昆仑-秦岭; Ⅴ长江中下游; Ⅵ扬子西南缘; Ⅶ华南(丰成友等, 2004);底图审图号:GS(2016)2893号
Fig. 2. Geochemical anomaly map of cobalt of deep sediments from CGB project
表 1 中国钴矿床基本信息(据赵俊兴等, 2019)
Table 1. Basic information of China's cobalt deposits(quote from Zhao et al., 2019)
类型 传统类型 序号 名称 经度(°E) 纬度(°N) 规模 储量(万吨) 品位
(10-6)赋存状态 位置指数R 岩浆型 岩浆铜镍硫化物型 1 甘肃金川Ni-Cu-Co矿 102.22 38.50 大型 9.80 190 伴生 4 2 青海夏日哈木Ni-Cu(-Co)矿 93.70 36.46 大型 4.03 130 伴生 4 3 四川攀枝花地区V-Ti-Fe(-Co)矿 101.29 26.94 大型 - - 伴生 2 4 新疆图拉尔根Ni-Cu-Co矿 95.87 42.62 中型 0.51 300 共生 4 5 四川杨柳坪PGE-Ni-(Co) 101.91 30.71 中型 0.80 170 伴生 4 6 新疆黄山Ni-Cu-Co矿 94.59 42.26 中型 2.60 - 伴生 4 7 新疆黄山东Ni-Cu-Co矿 94.73 42.27 中型 1.40 - 伴生 4 8 新疆坡十Cu-Ni(Co) 91.38 40.46 中型 0.85 170 伴生 4 9 新疆坡一Cu-Ni(Co) 91.50 40.48 中型 0.76 160 伴生 4 10 新疆罗东Cu-Ni(Co) 91.27 40.52 中型 0.33 伴生 4 11 笔架山Cu-Ni(Co) 92.03 40.90 中型 - 160 伴生 4 12 红石山Cu-Ni(Co) 92.15 40.97 中型 - 伴生 4 13 旋涡岭Cu-Ni(Co) 92.35 41.01 中型 - 伴生 4 14 吉林红旗岭Ni-Cu-Co矿 126.84 43.23 中型 0.31 500 伴生 4 15 陕西煎茶岭Ni(-Co)矿 106.90 33.73 中型 0.79 410 伴生 4 16 云南白马寨Ni-Cu(-PGE-Co)矿 102.77 22.76 中型 0.21 1 660 伴生 2 17 新疆磁海Fe(Co)矿 92.52 41.63 中型 - 928 伴生 4 18 新疆白石泉Ni-Cu-(Co) 94.80 42.00 小型 - 440 伴生 4 19 鸡东县五星Cu-Co-Ni矿床 131.33 45.13 小型 0.15 - 共生 4 热液型 变质沉积岩型 20 吉林大横路Cu-Co矿 126.53 41.71 大型 2.06 440 共生 2 21 山西中条山铜矿峪Cu-Co矿 111.67 35.36 大型 2.35 200 伴生 3 22 山西中条山篦子沟Cu-Co矿 111.58 35.26 中型 0.53 240 伴生 3 23 杉松岗Co-Cu矿 126.72 41.81 中型 0.68 - 共生 2 24 山西中条山胡家峪Cu-Co矿 111.60 35.21 小型 0.48 357.5 共生 3 沉积岩赋矿层控型 25 江西五宝山Co-Pb-Zn矿 114.90 28.17 中型 0.24 2 040 独立 4 26 四川轿顶山Mn-Co矿 102.86 29.41 中型 0.55 1 300 共生 3 27 辽宁小女寨Cu-Co矿 123.00 40.87 中型 0.33 - 共生 3 28 辽宁海龙川Cu-Co床 122.83 40.52 中型 0.30 - 共生 3 29 辽宁尖山子Cu-Co矿 123.53 40.40 中型 0.26 - 共生 3 30 辽宁营口周家Cu-Co矿 122.72 40.52 中型 0.2 380 共生 3 31 云南永平厂街Cu-Co矿 99.57 25.26 中型 0.29 740 共生 2 火山岩块状硫化物型 32 青海德尔尼Cu-Co-Zn矿 100.13 34.39 大型 3.08 850 共生 4 脉状或热液交代型 33 青海驼路沟Co(Au)矿 94.66 35.67 中型 1.90 600 独立 4 34 湖南普乐-横洞Co矿 113.73 28.43 中型 1.24 360 独立 3 35 湖南井冲Co-Cu矿 113.69 28.35 中型 0.37 270 共生 3 36 云南大红山Fe-Cu-Co矿 101.70 24.52 中型 0.27 - 伴生 3 37 广东河源铁岗Co矿 115.27 23.76 小型 0.14 1420 独立 4 38 云南兰坪白秧坪Cu-Co矿 99.25 26.72 小型 0.15 3 400 共生 4 39 青海督冷沟Cu-Co矿 98.17 35.62 小型 - 230~13 000 共生 4 铁氧化物铜金型 40 四川拉拉Cu-Co-Au矿 101.95 26.52 大型 1.74 220 伴生 2 41 海南石碌Fe-Co-Cu矿 109.05 19.23 中型 1.25 3 080 伴生 4 矽卡岩型 42 山东莱芜张家洼Fe(Co)矿 117.66 36.27 大型 1.6 150 伴生 2 43 湖北大冶大广山Fe-Cu(-Co)矿 113.99 30.85 中型 0.42 200 伴生 2 44 安徽安庆Cu-Fe(-Co)矿 116.92 30.62 中型 0.60 - 伴生 3 45 安徽铜陵药园山Cu-Fe(-Co)矿 118.02 30.86 中型 0.44 - 伴生 3 46 河北武安玉石洼Fe(Co)矿 114.20 36.78 中型 0.28 150 伴生 3 47 河北武安中关Fe(Co)矿 114.26 36.90 中型 0.95 180 伴生 3 48 山东莱芜顾家台Fe(Co)矿 117.58 36.23 中型 0.50 160 伴生 2 49 山东莱芜西尚庄Fe(Co)矿 117.54 36.18 中型 0.66 150 伴生 2 50 山东淄博金岭北金召Fe(Co)矿 118.18 36.88 中型 0.41 193 伴生 3 51 山东淄博金岭侯家庄Fe(Co)矿 118.13 36.89 中型 0.21 113 伴生 3 52 青海肯德克可Co-Bi-Au矿 91.46 36.75 小型 - 380 共生 4 53 西藏普桑果Cu-Pb-Zn-Co-Ni矿 88.59 30.92 小型 - 200 共生 4 黑色页岩赋矿型 54 广西金秀罗丹Cu-Co矿 109.91 23.99 小型 - 1 500 独立 4 风化型 风化型 55 海南文昌蓬莱钴土矿 110.38 19.47 中型 0.89 350 共生 2 56 青海元石山Ni-Fe(-Co)矿 102.00 36.66 中型 0.55 385 伴生 3 57 云南元江-墨江Ni-Co矿 101.29 23.27 中型 1.45 - 伴生 4 58 玉龙斑岩Cu-Mo(-Co)矿 96.79 31.61 中型 - - 伴生 2 表 2 中国钴矿床参数统计
Table 2. Parameter statistics table of China's cobalt deposits
类型1 类型2 数量 合计储量(万t) 平均储量(万t) 平均品位g(t) 位置指数R 位置指数R(欧洲FOREGS) 岩浆型 岩浆铜镍硫化物型 19 22.5 1.73 435 3.8 3.6 热液型 变质沉积岩型 5 6.1 1.22 309 2.6 3.1 沉积岩赋矿层控型 7 2.2 0.31 1 115 3.0 4.0 黑色页岩赋矿型 1 1 500 4.0 4.0 火山岩块状硫化物型 1 3.1 3.08 850 4.0 1.3 脉状或热液交代型 7 4.1 0.68 1 210 3.6 铁氧化物铜金型 2 3.0 1.50 1 650 3.0 4.0 矽卡岩型 12 6.1 0.61 188 2.8 风化型 风化型 4 2.9 0.96 368 2.8 2.5 总计 58 49.9 1.06 615 3.3 3.3 表 3 中国钴地球化学省及异常特征统计表
Table 3. Statistic table of China's cobalt geochemical provinces and characteristic
地球化学省编号 位置 异常编号 异常面积(km2) 地表出露岩石 钴矿床 其他矿床 已知钴成矿带 1 扬子西南缘 (1) 42 0739 石炭纪-三叠纪玄武岩 岩浆型2处
热液型5处
风化型1处铁、铜、金、银、铅、锌 扬子西南缘 2 藏北 (2) 9 855 晚古生代-中生代碎屑沉积岩 风化型1处 — (3) 39 378 怒江-班公湖蛇绿岩带 铜、矿 3 藏南 (4) 5 682 蛇绿岩 — (5) 10 856 辉长岩脉、辉绿玢岩脉 (6) 12 009 白垩纪超基性岩体 铬 4 东天山 (7) 20 078 辉绿玢岩 准葛尔北缘-北天山 5 北天山 (8) 1 388 蛇绿岩 — (9) 1 280 蛇绿岩 6 祁连山 (10) 1 351 基性、超基性岩 岩浆型1处
风化型1处— (11) 301 基性、超基性岩 金 (12) 3 118 基性火山岩 铁 (13) 4 526 基性、超基性岩 铜 7 东秦岭 (14) 5 221 元古代碧口群含变质中、基性火山岩 岩浆型1处 金 昆仑-秦岭 (15) 44 256 元古代-早古生代变质基性火山岩 铁、钛、锰、金、银铅锌、锡 (16) 10 297 古生代辉长岩、纯橄岩、橄榄岩岩体 钛矿、锑等 8 湖南 (17) 98 893 侏罗纪基性岩脉, 碳酸盐岩, 泥质岩 热液型3处 铁矿、钨锡矿、锑、锰、锌 华南 9 长江中下游 (18) 19 695 第四系沉积物 热液型1处 铁矿、铜矿 长江中下游 (19) 5 524 第四系沉积物 铜矿、铁矿 10 珠三角 (20) 12 708 珠江三角洲沉积物 铅锌 华南 11 桂北 (21) 4 836 中元古代四堡期次基性、超基性岩体 锡、银、锌、镉 华南 (22) 1 795 中元古代四堡期次基性、超基性岩体 (23) 2 526 少量海西期辉绿岩 锰 (24) 3 756 碳酸盐岩和泥质沉积岩 锰 12 晋冀鲁 (25) 11 549 古生代沉积岩, 太古代变质岩, 花岗岩 热液型5处 铜、铁 华北克拉通中段 (26) 2 367 古生代沉积岩, 太古代变质岩, 花岗岩 热液型1处 铜、铁 13 胶东 (27) 1 584 白垩系基性火山岩 — 14 晋冀蒙 (28) 4 614 太古代片麻岩(夹磁铁石英岩) 铁 华北克拉通中段 (29) 2 506 太古代中、基性麻粒岩和片麻岩 15 辽中南 (30) 1 135 元古代变质基性侵入岩 热液型3处 铁 华北克拉通北缘东段 (31) 1 187 太古代变质岩(含磁铁石英岩) 铁 16 吉林东部 (32) 12 396 新生代玄武岩 热液型2处 金、锑、铁 华北克拉通北缘东段 (33) 10 107 新生代玄武岩 铁 17 大兴安岭 (34) 3 606 白垩纪玄武岩 — (35) 1 634 白垩纪玄武岩 (36) 556 白垩纪玄武岩 (37) 2 510 白垩纪玄武岩 金、银、铜、铅锌、钼 -
[1] Berger, V. I., Singer, D. A., Bliss, J. D., et al., 2011. Ni⁃Co Laterite Deposits of the World⁃Database and Grade and Tonnage Models. U. S. Geological Survey, Virginia, 1-3. [2] Birke, M., Rauch, U., Stummeyer, J., 2015. How Robust are Geochemical Patterns? a Comparison of Low and High Sample Density Geochemical Mapping in Germany. Journal of Geochemical Exploration, 154(6): 105-128. https://doi.org/10.1016/j.gexplo.2014.12.005 [3] Bölviken, B., Kullerud, G., Loucks, R. R., 1990. Geochemical and Metallogenic Provinces: A Discussion Initiated by Results from Geochemical Mapping Across Northern Fennoscandia. Journal of Geochemical Exploration, 39(1/2): 49-90. https://doi.org/10.1016/0375⁃6742(90)90069⁃m [4] Bölviken, B., Stokke, P. R., Feder, J., et al., 1992. The Fractal Nature of Geochemical Landscapes. Journal of Geochemical Exploration, 43(2): 91-109. https://doi.org/10.1016/0375⁃6742(92)90001⁃o [5] Caritat, P. D., 2018. Continental⁃Scale Geochemical Surveys and Mineral Prospectivity: Comparison of a Trivariate and a Multivariate Approach. Journal of Geochemical Exploration, 188: 87-94. https://doi.org/10.1016/j.gexplo.2018.01.014 [6] Chao, T. T., Theobald, P. K., 1976. The Significance of Secondary Iron and Manganese Oxides in Geochemical Exploration. Economic Geology, 71(8): 1560-1569. https://doi.org/10.2113/gsecongeo.71.8.1560 [7] China Geological Survey, 2004. Geological Map of the People's Republic of China (1︰2 500 000). Sino Maps Press, Beijing(in Chinese). [8] Darnley, A. G., Bjorklund, A., Bolviken, B., et al., 1995. A Global Geochemical Database for Environmental and Resource Management: Final Report of IGCP Project 259. United NationsEducational, Scientific and CultureOrganization, Paris, 37-45. [9] Latunussa, C. E., Georgitzikis, K., Matos, C. T., et al. . 2020. Study on the Review of the List of Critical Raw Materials⁃Critical Raw Materials Factsheets. In: European Commission, Critical Raw Materials Factsheets. 133-156. https://doi.org/10.2873/92480 [10] Feng, C. Y., Qi, F., Zhang, D. Q., et al., 2011. China's First Independent Cobalt Deposit and its Metallogenic Mechanism: Evidence from Fluid Inclusions and Isotopic Geochemistry. Acta Geologica Sinica⁃English Edition, 85(6): 1403-1418. https://doi.org/10.1111/j.1755⁃6724.2011.00595.x [11] Feng, C. Y., Zhang, D. Q., 2002. Cobalt Mineral Resources in the World and Advance of the Research on Cobalt Deposits. Geological Review, 48(6): 627-633(in Chinese with English abstract). [12] Feng, C. Y., Zhang, D. Q., Dang, X. Y., 2004. Cobalt Resources of China and Their Exploitation and Utilization. Mineral Deposits, 23(1): 93-100(in Chinese with English abstract). [13] Fordyce, F. M., Green, P. M., Simpson, P. R., 1992. Simulation of Regional Geochemical Survey Maps at Variable Sample Density. Journal of Geochemical Exploration, 49(1/2): 161-175. https://doi.org/10.1016/0375⁃6742(93)90043⁃l [14] Gunn, G., 2013. Critical Metals Handbook. British Geological Survey, Nottingham, 123-132. https://doi.org/10. 1002/9781118755341 doi: 10.1002/9781118755341 [15] Hamilton, E. I., 1994. TheGeobiochemistryof Cobalt. Science of the Total Environment, 150(1-3): 7-39. https://doi.org/ 10. 1016/0048⁃9697(94)90126⁃0 doi: 10.1016/0048⁃9697(94)90126⁃0 [16] Hawkes, H. E., Webb, J. S., 1962. Geochemistry in Mineral Exploration. Soil Science, 95(4): 283. https://doi.org/10.1097/00010694⁃196304000⁃00016 [17] Horn, S., Gunn, A. G., Petavratzi, E., et al., 2021. Cobalt Resources in Europe and the Potential for New Discoveries. Ore Geology Reviews, 130(3): 103915. https://doi.org/10.1016/j.oregeorev.2020.103915 [18] Knox⁃Robinson, C. M., Wyborn, L. A. I., 1997. Towards a Holistic Exploration Strategy: Using Geographic Information Systems as a Tool to Enhance Exploration. Australian Journal of Earth Sciences, 44(4): 453-463. https://doi.org/10.1080/08120099708728326 [19] Liu, D. S., 2021. Comparison of Geochemical Patterns from Different Sampling Density Geochemical Mapping in Altay, Xinjiang Province, China. Journal of Geochemical Exploration, 228(6): 106761. https://doi.org/10.1016/j.gexplo.2021.106761 [20] Liu, D. S., Wang, X. Q., Zhou, J., et al., 2020. Characteristics of China's Cobalt Geochemical Baselines and Their Influence Factors. Acta Geosci Sinica, 41(6): 807-817(in Chinese with English abstract). [21] Lou, F., Ma. H. M., Liu, Y. Y., et al., 2011. Time⁃Space Distribution and Formation Mechanism of the Mesozoic Mafic Dikes in Southeast China. Earth Science Frontiers, 18(1): 15-23(in Chinese with English abstract). [22] Luo, Z. J., Xia, M. F., Huang, W. Y., 2019. The Migration and Transformation of Cobalt in Soil⁃Plant System and Its Toxicity. Asian Journal of Ecotoxicology, 14(2): 81-90(in Chinese with English abstract). [23] Ministry of Natural Resources, 2016. National Mineral Resources Planning (2016⁃2020). http://www.mnr.gov.cn/gk/ghjh/201811/t20181101_2324927.html(in Chinese). [24] Salminen, R., Batista, M., Bidovec, M., et al., 2005. FOREGS Geochemical Atlas of Europe, Part 1: Background Information, Geochemical Atlas of Europe. Geological Survey of Finland, Espoo. [25] Schulz, K. J., DeYoung, J. H., Seal, R. R., et al., 2017. Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply. https://pubs.er.usgs.gov/publication/pp1802 [26] Shi, J. F., Xiang, Y. C., 2000. The Scale Invariance of Geochemical Anomalies and Wide⁃Spaced Geochemical Mapping. Geology and Prospecting, 36(1): 68-74 (in Chinese with English abstract). [27] Tang, Z. L., 1996. The Main Mineraliazation Mechanism of Magma Sulfide Deposits in China. Acta Geologica Sinica, 70(3): 237-243(in Chinese with English abstract). [28] Tessier, A., Campbell, P. G. C., Bisson, M., 1979. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry, 51(7): 844-851. https://doi.org/10.1021/ac50043a017 [29] Wang, X. Q., Sun H. W., Chi. Q. H., et al., 2005. Reproducibility and Comparasionof Geochemical Anomalies. Geology in China, 32(1): 135-140(in Chinese with English abstract). [30] Wang, X. Q., Chi, Q. H., Zhou, J., et al., 2015. Reprint of "China Geochemical Baselines: Sampling Methodology". Journal of Geochemical Exploration, 154(1): 17-31. https://doi.org/10.1016/j.gexplo.2015.04.005 [31] Wang, J. G., 1995. Soil Chemistry of Plant Nutrition. Beijing Agricultural University Press, Beijing, 183(in Chinese). [32] Wang, Y., 2020. Genetic Classification, Distribution and Ore Genesis of Major PGE, Co and Cr Deposits in China: A Critical Review. Chinese Science Bulletin, 65(33): 3825-3838(in Chinese with English abstract). doi: 10.1360/TB-2020-0202 [33] Wang, H., Feng, C. Y., Zhang, M. Y., 2019. Characteristics and Exploration and Research Progress of Global Cobalt Deposits. Mineral Deposits, 38(4): 739-750(in Chinese with English abstract). [34] Xie, X. J., Ren, T. X., Sun, H. Z., 2012. Geochemical Atlas of China. The Geological Publishing House, Beijing (in Chinese with English abstract). [35] Yan, T. T., Wang, X. Q., Liu, D. S., et al., 2021. Continental⁃Scale Spatial Distribution of Chromium (Cr) in China and its Relationship with Ultramafic⁃Mafic Rocks and Ophiolitic Chromite Deposit. Applied Geochemistry, 126(4): 104896. https://doi.org/10.1016/j.apgeochem.2021.104896 [36] Zhang, Q., Bai, J. F., Wang Y., 2012. Analytical Scheme and Quality Monitoring System for China Geochemical Baseline. Earth Science Frontiers, 19(3): 33-42(in Chinese with English abstract). [37] Zhang, H. R., Hou, Z. Q., Yang, Z. M., et al., 2020. A New Division of Genetic Types of Cobalt Deposits: Implications for Tethyan Cobalt⁃Rich Belt. Mineral Deposits, 39(3): 501-510(in Chinese with English abstract). [38] Zhao, J. X., Li, G. M., Qin, K. Z., et al., 2019. A Review of the Types and Ore Mechanism of the Cobalt Deposits. Chinese Science Bulletin, 64(24): 2484-2500(in Chinese with English abstract). doi: 10.1360/N972019-00134 [39] Zhao, X. F., Li Z. K., Zhao S. R., et al., 2019. Early Creaceous Regional Scale Magmatic⁃Hydrothermal Metallogenic System at the Southern Margin of the North China Craton. Earth Science, 40(1): 52-68(in Chinese with English abstract). [40] Zou, S., Zou, F., Ning, J., et al., 2017. A Stand⁃Alone Co Mineral Deposit in Northeastern Hunan Province, South China: Its Timing, Origin of Ore Fluids and Metal Co, and Geodynamic Setting. Ore Geology Reviews, 92: 42-60. https://doi.org/10. 1016/j. oregeorev. 2017. 11. 008 doi: 10.1016/j.oregeorev.2017.11.008 [41] 丰成友, 张德全, 2002. 世界钻矿资源及其研究进展述评. 地质论评, 48(6): 627-633. doi: 10.3321/j.issn:0371-5736.2002.06.020 [42] 丰成友, 张德全, 党兴彦, 2004. 中国钴资源及其开发利用概况. 矿床地质, 23(1): 93-100. doi: 10.3969/j.issn.0258-7106.2004.01.011 [43] 刘东盛, 王学求, 周建, 等, 2020. 中国钴地球化学基准值特征及影响因素. 地球学报, 41(6): 807-817. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202006007.htm [44] 娄峰, 马浩明, 刘延勇, 等, 2011. 中国东南部中生代基性岩脉时空分布与形成机理. 地学前缘, 18(1): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201101004.htm [45] 罗泽娇, 夏梦帆, 黄唯怡, 2019. 钴在土壤和植物系统中的迁移转化行为及其毒性. 生态毒理学报, 14(2): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201902009.htm [46] 施俊法, 向运川, 2000. 地球化学异常标度不变性与超低密度地球化学填图. 地质与勘探, 36(1): 68-74. doi: 10.3969/j.issn.0495-5331.2000.01.022 [47] 汤中立, 1996. 中国岩浆硫化物矿床的主要成矿机制. 地质学报, 70(3): 237-243. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199603004.htm [48] 王学求, 孙宏伟, 迟清华, 等, 2005. 地球化学异常再现性与可对比性. 中国地质, 32(1): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200501018.htm [49] 王敬国, 1995. 植物营养的土壤化学. 北京: 农业大学出版社, 183. [50] 王焰, 2020. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制. 科学通报, 65(33): 3825-3838. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033015.htm [51] 王辉, 丰成友, 张明玉, 2019. 全球钴矿资源特征及勘查研究进展. 矿床地质, 38(4): 739-750. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904005.htm [52] 谢学锦, 任天祥, 孙焕振, 2012. 中国地球化学图集. 北京: 地质出版社, 43. [53] 张勤, 白金峰, 王烨, 2012. 地壳全元素配套分析方案及分析质量监控系统. 地学前缘, 19(3): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203004.htm [54] 张洪瑞, 侯增谦, 杨志明, 等, 2020. 钴矿床类型划分初探及其对特提斯钴矿带的指示意义. 矿床地质, 39(3): 501-510. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202003007.htm [55] 赵俊兴, 李光明, 秦克章, 等, 2019. 富含钴矿床研究进展与问题分析. 科学通报, 64(24): 2484-2500. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201924005.htm [56] 赵新福, 李占轲, 赵少瑞, 等, 2019. 华北克拉通南缘早白垩世区域大规模岩浆-热液成矿系统. 地球科学, 44(1): 52-68. doi: 10.3799/dqkx.2018.372 [57] 中国地质调查局, 2004. 中国人民共和国地质图(1: 2 500 000). 北京: 中国地图出版社. [58] 自然资源部, 2016. 全国矿产资源规划(2016-2020), 自然资源部. http://www.mnr.gov.cn/gk/ghjh/201811/t20181101_2324927.html