Deep Structural Characteristics of Depressional Basin with Lithium (Potash)-Rich Brines: An Example of Jitai Basin in South China
-
摘要:
中国华南吉泰盆地在白垩纪-古近纪发育大量蒸发岩,其中含富锂卤水矿床,由于盆地深部构造特征认识不清,导致富锂卤水矿勘查评价明显滞后. 基于盆地东北部泰和坳陷二维地震数据和钻孔资料,经过精细保幅处理和综合构造解释,总结了含富锂卤水矿断陷盆地的深部构造特征. 地震剖面和构造属性表明,盆地深部发育错断白垩系的NE-SW走向、NW倾向的正断层,高陂-梅岗低隆起深部存在挤压走滑性质逆断层,二者导致盆地白垩系茅店组、周田组和宏岗组微裂隙普遍发育. 基于梅岗含富锂卤水矿层位追踪和钻孔岩性录井,吉泰盆地深部隐伏正断层和白垩系裂隙是深层富锂卤水向上运移的通道,白垩系深层可能存在富锂卤水矿床.
Abstract:Massive Cretaceous-Paleogene evaporates with lithium (potash)-rich brines develop in Jitai Basin of South China, of which deep structural characteristics remain unclear so that no breakthrough progress has been made in the exploration and evaluation of brines. According to 2D seismic survey and drilling in Taihe Depression, it summarizes structural pattern and characteristics of the brine-bearing basin by means of refined relative-amplitude-preserved seismic processing and integrated interpretation. Seismic profiles and structural attributes show that one NE-SW normal fault southward sloping down to the basin basement and inner strike-slipping faults in low uplift of Gaopi-Meigang lead to more fractures yielded within Maodian, Zhoutian and Honggang formations. By the reservoir tracking to Meigang lithium-bearing brines and the lithological analysis, it is concluded that the normal fault and the fractures form migration pathways of deep brines moving upward. Meanwhile, much of lithium-rich brines can be predicted within deep Cretaceous strata.
-
-
[1] Araoka, D., Kawahata, H., Takagi, T., et al., 2014. Lithium and Strontium Isotopic Systematics in Playas in Nevada, USA: Constraints on the Origin of Lithium. Mineralium Deposita, 49(3): 371-379. https://doi.org/10.1007/s00126-013-0495-y [2] Bos, B., Spiers, C. J., 2001. Experimental Investigation into the Microstructural and Mechanical Evolution of Phyllosilicate-Bearing Fault Rock under Conditions Favouring Pressure Solution. Journal of Structural Geology, 23(8): 1187-1202. https://doi.org/10.1016/s0191-8141(00)00184-x [3] Bottomley, D. J., Chan, L. H., Katz, A., et al., 2003. Lithium Isotope Geochemistry and Origin of Canadian Shield Brines. Groundwater, 41(6): 847-856. https://doi.org/10.1111/j.1745-6584.2003.tb02426.x [4] Bu, L.Z., Nie, Z., Song, P.S., 2010. Computer Simulation of 25℃-Isothermal Evaporation Process of Li-Rich Brines of Sodium Sulfate Subtype. Acta Geologica Sinica, 84(11): 1708-1714 (in Chinese with English abstract). [5] Cai, J., 1980. A Preliminary Study on the Strata in the Early Part of the Late Cretaceous in the Liuche and Ji'an Basins, Jiangxi Province. Oil & Gas Geology, 1(3): 248-251 (in Chinese with English abstract). [6] Du, X.F., Xu, C.G., Zhu, H.T., et al., 2020. Research Advances of Mixed Siliciclastic and Carbonate Sediments in Continental Rift Basins. Earth Science, 45(10): 3509-3526 (in Chinese with English abstract). [7] Gao, F., Zheng, M.P., Nie, Z., et al., 2011. Brine Lithium Resource in the Salt Lake and Advances in Its Exploitation. Acta Geoscientica Sinica, 32(4): 483-492 (in Chinese with English abstract). [8] Godfrey, L. V., Chan, L. H., Alonso, R. N., et al., 2013. The Role of Climate in the Accumulation of Lithium-Rich Brine in the Central Andes. Applied Geochemistry, 38: 92-102. https://doi.org/10.1016/j.apgeochem.2013.09.002 [9] He, M. Y., Luo, C. G., Yang, H. J., et al., 2020. Sources and a Proposal for Comprehensive Exploitation of Lithium Brine Deposits in the Qaidam Basin on the Northern Tibetan Plateau, China: Evidence from Li Isotopes. Ore Geology Reviews, 117: 103277. https://doi.org/10.1016/j.oregeorev.2019.103277 [10] Jia, Z. B., Chen, H., Xia, Q. K., et al., 2020. Influence of the Subduction of the Pacific Plate on the Mantle Characteristics of South China: Constraints from the Temporal Geochemical Evolution of the Mesozoic Basalts in the Jitai Basin. Lithos, 352-353: 105253. https://doi.org/10.1016/j.lithos.2019.105253 [11] Keller, G., 2008. Cretaceous Climate, Volcanism, Impacts, and Biotic Effects. Cretaceous Research, 29(5-6): 754-771. https://doi.org/10.1016/j.cretres.2008.05.030 [12] Li, H.P., Zheng, M.P., Hou, X.H., et al., 2015. Control Factors and Water Chemical Characteristics of Potassium-Rich Deep Brine in Nanyishan Structure of Western Qaidam Basin. Acta Geoscientica Sinica, 36(1): 41-50 (in Chinese with English abstract). [13] Li, J.S., Ling, Z.Y., Shan, F.S., et al., 2019. Hydrogen, Oxygen and Strontium Isotopes' Indication on Origin of Lithium-Rich Salt Lakes in Eastern Kunlun Mountains. Wetland Science, 17(4): 391-398 (in Chinese with English abstract). [14] Liang, C.H., Xu, X.B., Li, Q.M., et al., 2019. Inversion and Tectonic Implications of Fault-Slip Data of NE-SW-Striking Fault Zones in Eastern Jiangnan Area. Earth Science, 44(5): 1761-1772 (in Chinese with English abstract). [15] Liao, R.J., Zhong, C.D., Xiao, X.L., 2003. Basin-Margin Types and Basin-Fill Types of Cretaceous-Neogene Terrestrial Red Basins in Jiangxi. Geological Bulletin of China, 22(9): 680-685 (in Chinese with English abstract). [16] Liu, C.L., Jiao, P.C., Chen, Y.Z., et al., 2010. Formation Mechanism of Potash-Bearing Brine in Fault Belts of Lop Nur Lake, Xinjiang. Mineral Deposits, 29(4): 602-608 (in Chinese with English abstract). [17] Liu, C.L., Yu, X.C., Zhao, Y.J., et al., 2016. A Tentative Discussion on Regional Metallogenic Background and Mineralization Mechanism of Subterranean Brines Rich in Potassium and Lithium in South China Block. Mineral Deposits, 35(6): 1119-1143 (in Chinese with English abstract). [18] Ma, L.C., Huang, H., Zhang, L.Y., et al., 2015. Characteristics of Paleogene Deep Potassium-Rich Brines in the Qianjiang Depression, Hubei Province. Acta Geologica Sinica, 89(11): 2114-2121 (in Chinese with English abstract). [19] Nishio, Y., Okamura, K., Tanimizu, M., et al., 2010. Lithium and Strontium Isotopic Systematics of Waters around Ontake Volcano, Japan: Implications for Deep-Seated Fluids and Earthquake Swarms. Earth and Planetary Science Letters, 297(3-4): 567-576. https://doi.org/10.1016/j.epsl.2010.07.008 [20] Risacher, F., Alonso, H., Salazar, C., 2003. The Origin of Brines and Salts in Chilean Salars: A Hydrochemical Review. Earth-Science Reviews, 63(3-4): 249-293. https://doi.org/10.1016/s0012-8252(03)00037-0 [21] Song, B.W., Zhang, K.X., Xu, Y.D., et al., 2020. Paleogene Tectonic-Stratigraphic Realms and Sedimentary Sequence in China. Earth Science, 45(12): 4352-4369 (in Chinese with English abstract). [22] Tale, F., Kalantariasl, A., Shabani, A., et al., 2020. Experimental and Simulation Study of Low Salinity Brine Interactions with Carbonate Rocks. Journal of Petroleum Science and Engineering, 184: 106497. https://doi.org/10.1016/j.petrol.2019.106497 [23] Wang, C.L., Huang, H., Wang, J.Y., et al., 2018. Geological Features and Metallogenic Model of K- and Li-Rich Brine Ore Field in the Jiangling Depression. Acta Geologica Sinica, 92(8): 1630-1646 (in Chinese with English abstract). [24] Wang, Q.G., Sha, Z.J., Hu, J.F., et al., 2017. Research Progress of the Lithium Material Source and Metallogenic Fluid in Lithium-Rich Salt Lakes. Journal of Salt Lake Research, 25(3): 74-80 (in Chinese with English abstract). [25] Wen, H.G., Zheng, R.C., Qing, H.R., et al., 2014. Primary Dolostone Related to the Cretaceous Lacustrine Hydrothermal Sedimentation in Qingxi Sag, Jiuquan Basin on the Northern Tibetan Plateau. Scientia Sinica Terrae, 44(4): 591-604 (in Chinese). doi: 10.1360/zd-2014-44-4-591 [26] Yu, F., Wang, D.H., Yu, Y., et al., 2019. The Distribution and Exploration Status of Domestic and Foreign Sedimentary-Type Lithium Deposits. Rock and Mineral Analysis, 38(3): 354-364 (in Chinese with English abstract). [27] Yu, J. Q., Gao, C. L., Cheng, A. Y., et al., 2013. Geomorphic, Hydroclimatic and Hydrothermal Controls on the Formation of Lithium Brine Deposits in the Qaidam Basin, Northern Tibetan Plateau, China. Ore Geology Reviews, 50: 171-183. https://doi.org/10.1016/j.oregeorev.2012.11.001 [28] Zhang, C.J., Xu, Z.Q., Ni, S.J., et al., 2012. Genesis of Potassium-Bearing Brine in Pingluoba Structure Region, Western Sichuan Depression. Advances in Earth Science, 27(10): 1054-1060 (in Chinese with English abstract). [29] Zhang, Z.L., Zhu, X.M., Zhang, R.F., et al., 2020. Sequence Framework and Sequence Filling Style in Lacustrine Rift Basin: Taking Paleogene in Baxian Sag as an Example. Earth Science, 45(11): 4218-4235 (in Chinese with English abstract). [30] Zhao, Y.J., Liu, C.L., Zhang, H., et al., 2015. The Controls of Paleotemperature on Potassium Salt Precipitation in Ancient Salt Lakes. Acta Petrologica Sinica, 31(9): 2751-2756 (in Chinese with English abstract). [31] Zhou, M.J., Hu, L., Huang, X.N., et al., 2017. Metallogenic Geological Characteristics and Prospect of Development and Utilization of Meigang Li-Bearing Brine Deposit in Taihe County, Jiangxi Province. Modern Mining, 33(11): 61-64, 82 (in Chinese with English abstract). [32] 卜令忠, 乜贞, 宋彭生, 2010. 硫酸钠亚型富锂卤水25 ℃等温蒸发过程的计算机模拟. 地质学报, 84(11): 1708-1714. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201011019.htm [33] 蔡钧, 1980. 江西留车、吉安盆地晚白垩世早期地层的探讨. 石油与天然气地质, 1(3): 248-251. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198003010.htm [34] 杜晓峰, 徐长贵, 朱红涛, 等, 2020. 陆相断陷盆地陆源碎屑与碳酸盐混合沉积研究进展. 地球科学, 45(10): 3509-3526. doi: 10.3799/dqkx.2020.251 [35] 高峰, 郑绵平, 乜贞, 等, 2011. 盐湖卤水锂资源及其开发进展. 地球学报, 32(4): 483-492. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201104021.htm [36] 李洪普, 郑绵平, 侯献华, 等, 2015. 柴达木西部南翼山构造富钾深层卤水矿的控制因素及水化学特征. 地球学报, 36(1): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201501006.htm [37] 李建森, 凌智永, 山发寿, 等, 2019. 东昆仑山南、北两侧富锂盐湖成因的氢、氧和锶同位素指示. 湿地科学, 17(4): 391-398. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201904003.htm [38] 梁承华, 徐先兵, 李启铭, 等, 2019. 江南东段地区NE-SW向断裂带断层滑移矢量反演及其大地构造意义. 地球科学, 44(5): 1761-1772. doi: 10.3799/dqkx.2018.245 [39] 廖瑞君, 衷存堤, 肖晓林, 2003. 江西白垩纪‒新近纪陆相红色盆地的盆缘类型划分与盆地充填样式. 地质通报, 22(9): 680-685. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200309007.htm [40] 刘成林, 焦鹏程, 陈永志, 等, 2010. 罗布泊断陷带内形成富钾卤水机理研究. 矿床地质, 29(4): 602-608. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201004004.htm [41] 刘成林, 余小灿, 赵艳军, 等, 2016. 华南陆块液体钾、锂资源的区域成矿背景与成矿作用初探. 矿床地质, 35(6): 1119-1143. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201606001.htm [42] 马黎春, 黄华, 张连元, 等, 2015. 湖北潜江凹陷古近系深层富钾卤水矿床特征及成因. 地质学报, 89(11): 2114-2121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201511023.htm [43] 宋博文, 张克信, 徐亚东, 等, 2020. 中国古近纪构造‒地层区划及地层格架. 地球科学, 45(12): 4352-4369. doi: 10.3799/dqkx.2020.122 [44] 王春连, 黄华, 王九一, 等, 2018. 江陵凹陷富钾锂卤水矿田地质特征及成藏模式研究. 地质学报, 92(8): 1630-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201808007.htm [45] 王求贵, 沙占江, 胡菊芳, 等, 2017. 富锂盐湖中锂的物质来源和成矿流体的研究进展. 盐湖研究, 25(3): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201703011.htm [46] 文华国, 郑荣才, Qing, H.R., 等, 2014. 青藏高原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩. 中国科学: 地球科学, 44(4): 591-604. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201404003.htm [47] 于沨, 王登红, 于扬, 等, 2019. 国内外主要沉积型锂矿分布及勘查开发现状. 岩矿测试, 38(3): 354-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201903013.htm [48] 张成江, 徐争启, 倪师军, 等, 2012. 川西坳陷平落坝构造富钾卤水成因探讨. 地球科学进展, 27(10): 1054-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201210003.htm [49] 张自力, 朱筱敏, 张锐锋, 等, 2020. 典型箕状断陷湖盆层序划分及层序结构样式: 以霸县凹陷古近系为例. 地球科学, 45(11): 4218-4235. doi: 10.3799/dqkx.2020.013 [50] 赵艳军, 刘成林, 张华, 等, 2015. 古盐湖卤水温度对钾盐沉积的控制作用探讨. 岩石学报, 31(9): 2751-2756. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201509022.htm [51] 周敏娟, 胡立, 黄小年, 等, 2017. 江西省泰和县梅岗含锂卤水矿成矿地质特征及开发利用前景. 现代矿业, 33(11): 61-64, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201711018.htm