• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    渤海沉积物中放射性核素分布及其对沉积环境变化的响应

    杜金秋 王震 林武辉 路波 高会 王宇宁 姚子伟 关道明

    杜金秋, 王震, 林武辉, 路波, 高会, 王宇宁, 姚子伟, 关道明, 2021. 渤海沉积物中放射性核素分布及其对沉积环境变化的响应. 地球科学, 46(12): 4503-4516. doi: 10.3799/dqkx.2021.120
    引用本文: 杜金秋, 王震, 林武辉, 路波, 高会, 王宇宁, 姚子伟, 关道明, 2021. 渤海沉积物中放射性核素分布及其对沉积环境变化的响应. 地球科学, 46(12): 4503-4516. doi: 10.3799/dqkx.2021.120
    Du Jinqiu, Wang Zhen, Lin Wuhui, Lu Bo, Gao Hui, Wang Yuning, Yao Ziwei, Guan Daoming, 2021. Distribution of Radionuclides in Sediments of Bohai Sea and Their Response to Changes in Sedimentary Environment. Earth Science, 46(12): 4503-4516. doi: 10.3799/dqkx.2021.120
    Citation: Du Jinqiu, Wang Zhen, Lin Wuhui, Lu Bo, Gao Hui, Wang Yuning, Yao Ziwei, Guan Daoming, 2021. Distribution of Radionuclides in Sediments of Bohai Sea and Their Response to Changes in Sedimentary Environment. Earth Science, 46(12): 4503-4516. doi: 10.3799/dqkx.2021.120

    渤海沉积物中放射性核素分布及其对沉积环境变化的响应

    doi: 10.3799/dqkx.2021.120
    基金项目: 

    国家自然科学基金 41807383

    河口海岸学国家重点实验室开放基金 SKLEC-KF201712

    国家海洋局海洋沉积与环境地质重点实验室开放基金 MASEG201709

    详细信息
      作者简介:

      杜金秋(1984-), 女, 工程师, 博士, 从事同位素海洋学与同位素地球化学研究.ORCID: 0000-0002-8630-4341.E-mail: jinqiu609@163.com

      通讯作者:

      姚子伟, E-mail: zwyao@nmemc.org.cn

    • 中图分类号: P595

    Distribution of Radionuclides in Sediments of Bohai Sea and Their Response to Changes in Sedimentary Environment

    • 摘要: 为了探讨近百年来,人类活动背景下近海沉积物中放射性核素的沉积记录及其对物质输入与埋藏等沉积环境变化的响应,利用γ能谱法对渤海表层和柱状沉积物中的放射性核素238U、226Ra、232Th、210Pb、40K和137Cs进行分析.结果显示,渤海沉积物中放射性核素水平和垂直分布特征明显,铀衰变系核素238U、226Ra和210Pb不平衡,232Th和210Pb受沉积物粒度和有机碳影响显著,238U与226Ra、232Th、40K存在显著相关性.226Ra/238U、232Th/238U和40K/238U比值时空差异显著,渤海沉积物陆源输入影响由西南向东北方向延伸,受河流影响,渤海北部和南部的沉积物输入不稳定,近几十年波动显著.利用210Pbex137Cs法的测年结果计算获得的渤海近百年来沉积速率在中国近海沉积速率研究背景值范围内;空间上,渤海北部、中部和南部沉积速率处于同一水平,其中北部偏高;时间上,近百年来渤海沉积速率随时间波动,整体上呈现增加趋势,尤其是1980年之后,人类活动影响下渤海沉积速率增加幅度显著,与沉积物输入的波动变化相对应.

       

    • 图  1  研究区域及样品站位分布

      Fig.  1.  Sampling sites and study area

      图  2  渤海沉积物中放射性核素水平分布(Bq·kg-1)

      Fig.  2.  Horizontal distribution of radionuclides in the sediments of the Bohai Sea (Bq·kg-1)

      图  3  渤海沉积物中放射性核素垂直分布

      Fig.  3.  Vertical distribution of radionuclides in the sediments of the Bohai Sea

      图  4  渤海沉积物中226Ra/238U、232Th/238U和40K/238U比值,以及TOC和GS的水平分布

      Fig.  4.  Horizontal distributions of 226Ra/238U, 232Th/238U and 40K/238U ratios, as while as TOC and GS in the sediments of the Bohai Sea

      图  5  渤海沉积物中226Ra/238U、232Th/238U和40K/238U比值,以及TOC和GS的垂直分布

      Fig.  5.  Vertical distributions of 226Ra/238U、232Th/238U and 40K/238U ratios, as while as TOC and GS in the sediments of the Bohai Sea

      图  6  沉积物中210Pbex137Cs垂直分布及其年代学

      Fig.  6.  Vertical distribution of 210Pbex, 137Cs and the chronologies of the sediments

      图  7  研究区域沉积速率随时间的变化

      Fig.  7.  Variation of MAR with time in study area

      表  1  渤海沉积物中放射性核素含量(Bq·kg-1)

      Table  1.   Contents of radionuclides in the sediments of the Bohai Sea(Bq·kg-1)

      类型 238U 226Ra 232Th 210Pb 40K 137Cs
      表层样 范围 23.77~59.39 17.56~35.98 30.38~59.18 41.34~116.46 571~839 0.69~4.50
      平均值 37.64 25.06 42.22 71.89 690 1.84
      变异系数 25.29% 19.27% 19.83% 31.58% 10.49% 47.83%
      柱状样 范围 22.33~38.16 22.23~35.85 26.75~49.51 38.70~111.51 612~784 0.97~4.05
      平均值 27.93 28.18 37.79 79.40 678 1.76
      变异系数 16.08% 11.82% 18.63% 21.00% 7.16% 39.78%
      下载: 导出CSV

      表  2  中国近海沉积物中放射性核素含量(Bq·kg-1)

      Table  2.   Contents of radionuclides in coastal sediments of China(Bq·kg-1)

      研究区域 238U 226Ra 232Tha 210Pb 40K 137Cs 参考文献
      田湾海域 40.0 25.2 46.7 50.9 899 2.0 左书华等,2019
      大亚湾海域 60.3 38.2 52.1 - 619 0.9 梁贵渊等,2019
      阳江海域 82.4 35.5 57.1 121.7 621 2.2 吴梅桂等,2018
      胶州湾海域 39.0 26.5 40.3 61.0 688 3.3 刘广山等,2008
      厦门海域 51.9 26.5 75.0 72.0 658 3.2 李冬梅等,2009
      大连海域 34.9 19.3 - 72.4 746 2.4 杜金秋等,2017
      深圳近海 - 26.5 - 43.2 364 1.8 丁敏霞等,2017
      北部湾 24.7 22.2 34.4 - 253 - 林武辉等,2020
      黄茅海/广海湾 77.4 36.6 58.1 123.8 571 1.5 赵峰等,2015
      长江口 32.8 26.5 40.9 - 628 - Wang et al., 2017
      中国土壤 39.5 36.5 54.6 - 580 - 曹龙生等,2012
      渤海 20.8~59.4 17.6~36.0 26.8~59.2 38.7~116.5 571~839 0.7~4.5 本研究
      注:部分报道中的232Th数据由其子体228Ra获得.
      下载: 导出CSV

      表  3  渤海沉积物中放射性核素、TOC、GS之间的Pearson相关系数

      Table  3.   Pearson correlation among radionuclides, TOC and GS in the sediments of the Bohai Sea

      类型 226Ra 232Th 210Pb 40K 137Cs TOC GS
      表层样 238U 0.930** 0.690** 0.412* 0.495* 0.637** 0.055 -0.261
      226Ra 0.681** 0.368 0.369 0.522** 0.015 -0.173
      232Th 0.506** 0.369 0.414* 0.542** -0.549**
      210Pb 0.462* 0.515** 0.657** -0.670**
      40K 0.682** 0.185 -0.231
      137Cs 0.135 -0.197
      TOC -0.916**
      柱状样 238U -0.680* -0.302* -0.237* -0.223 -0.054 -0.551** -0.726**
      226Ra 0.695** 0.325** 0.436** 0.412** 0.706** 0.886**
      232Th 0.399** 0.568** 0.331** 0.346** 0.588**
      210Pb 0.300* 0.012 0.112 0.321**
      40K 0.511** -0.007 0.547**
      137Cs 0.030 0.331**
      TOC 0.535**
      注:**在0.01水平(双侧)上显著相关;*在0.05水平(双侧)上显著相关.
      下载: 导出CSV

      表  4  中国近海沉积速率

      Table  4.   Sedimentation rate in coastal seas of China

      研究海域 研究方法 沉积速率(cm·a-1) 资料来源
      渤海 210Pbex 0.15~0.41 李凤业和史玉兰,1995
      北黄海 210Pbex 0.07~0.45 齐君等,2004
      南黄海 210Pbex 0.40~1.00 李凤业等,2002
      东海 210Pbex; 137Cs 0.57~5.70 夏小明等,1999
      渤海湾 210Pbex; 137Cs 0.30~3.17 王福和王宏,2011
      胶州湾 210Pbex; 137Cs 0.64~1.74 刘广山等,2008
      大亚湾 210Pbex 0.44 曲宝晓等,2018
      北部湾 210Pbex 0.20~1.00 许冬等,2012
      厦门近海 210Pbex 0.07~13.20 李冬梅等,2009
      大连近海 210Pbex; 137Cs 0.43~0.48 杜金秋等,2017
      长江口 210Pbex 1.36~4.11 张瑞等,2009
      下载: 导出CSV

      表  5  研究区域近百年来沉积速率

      Table  5.   Sedimentation rates of study areas in last 100 years

      研究区域 210Pbex⁃SR范围(cm·a-1) 210Pbex⁃SR平均值(cm·a-1) 137Cs⁃SR (cm·a-1) 210Pbex⁃MAR范围(kg·m-2·a-1) 210Pbex⁃MAR平均值(kg·m-2·a-1)
      渤海北部 0.08~0.73 0.35 0.38 1.46~13.16 6.34
      渤海中部 0.12~0.58 0.31 0.38 1.84~10.04 5.53
      渤海南部 0.16~0.46 0.30 0.32 2.83~6.94 4.82
      中国近海a 0.07~7.25 - - -
      注:a.数据来自文献(见表 2).
      下载: 导出CSV
    • [1] Baskaran, M., Swarzenski, P.W., 2007. Seasonal Variations on the Residence Times and Partitioning of Short-Lived Radionuclides (234Th, 7Be and 210Pb) and Depositional Fluxes of 7Be and 210Pb in Tampa Bay, Florida. Marine Chemistry, 104(1-2): 27-42. https://doi.org/10.1016/j.marchem.2006.06.012
      [2] Callaway, J.C., Borgnis, E.L., Turner, R.E., et al., 2012. Carbon Sequestration and Sediment Accretion in San Francisco Bay Tidal Wetlands. Estuaries and Coasts, 35(5): 1163-1181. https://doi.org/10.1007/s12237-012-9508-9
      [3] Cao, L.S., Yang, Y.X., Zhang, Y., et al., 2012. Distribution Pattern of Radionuclides in the Soil of Mainland China. Journal of East China Institute of Technology (Natural Science Edition), 35(2): 167-172(in Chinese with English abstract).
      [4] Ding, M.X., Liu, G.Q., Su, L.L., et al., 2017. Radionuclides in Seawater and Sediments from Near-Shore Area of Shenzhen. Journal of Nuclear and Radiochemistry, 39(6): 442-446(in Chinese with English abstract).
      [5] Du, J.Q., Guan, D.M., Yao, Z.W., et al., 2017. Distribution and Environmental Significances of Radionuclides in Sediments of Dalian Coastal Area. China Environmental Science, 37(5): 1889-1895(in Chinese with English abstract). http://www.researchgate.net/publication/319312384_Distribution_and_environmental_significances_of_radionuclides_in_sediments_of_Dalian_coastal_area
      [6] Du, J.Q., Guan, D.M., Yao, Z.W. ., et al., 2019. Records of Human-Induced Changes in Sedimentation and Carbon Sequestration in Dalian Bay, North China. Continental Shelf Research, 178: 51-58. https://doi.org/10.1016/j.csr.2019.04.004
      [7] Duan, X.Y., Li, Y.X., Yin, P., 2016. Distribution of Cu in Surface Sediments of the Bohai Sea and Its Influence Factors. Marine Geology & Quaternary Geology, 36(6): 135-141(in Chinese with English abstract).
      [8] Fuller, C.C., van Geen, A., Baskaran, M., et al., 1999. Sediment Chronology in San Francisco Bay, California, Defined by 210Pb, 234Th, 137Cs, and 239, 240Pu. Marine Chemistry, 64(1-2): 7-27. https://doi.org/10.1016/s0304-4203(98)00081-4
      [9] Gao, S., 2011. Numerical Modeling of Marine Sedimentary Processes: The Nature, Scientific Problems, and Prospect. Marine Geology & Quaternary Geology, 31(5): 1-7(in Chinese with English abstract). http://www.researchgate.net/publication/275900560_NUMERICAL_MODELING_OF_MARINE_SEDIMENTARY_PROCESSES_THE_NATURE_SCIENTIFIC_PROBLEMS_AND_PROSPECT
      [10] Gulin, S.B., Gulina, L.V., Sidorov, I.G., et al., 2014. 40K in the Black Sea: A Proxy to Estimate Biogenic Sedimentation. Journal of Environmental Radioactivity, 134: 21-26. https://doi.org/10.1016/j.jenvrad.2014.02.011
      [11] Huang, X.P., Zhang, J.P., Jiang, Z.J., 2015. Eco-Environmental Effects of Nutrients Input Caused by Human Activities on the Semi-Enclosed Bay and Its Management Strategy. Advances in Earth Science, 30(9): 961-969(in Chinese with English abstract). http://www.cqvip.com/QK/94287X/20159/666358566.html
      [12] Huh, C., Chen, W., Hsu, F., et al., 2011. Modern (< 100 Years) Sedimentation in the Taiwan Strait: Rates and Source-to-Sink Pathways Elucidated from Radionuclides and Particle Size Distribution. Continental Shelf Research, 31(1): 47-63. https://doi.org/doi.org/10.1016/j.csr.2010.11.002
      [13] Lan, X.H., Li, R.H., Mi, B.B., et al., 2016. Distribution Characteristics of Rare Earth Elements in Surface Sediment and Their Provenance Discrimination in the Eastern Bohai and Northern Yellow Seas. Earth Science, 41(3): 463-474(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.038
      [14] Lemoine, F., Poncet, S., Ünal, D., 2015. Spatial Rebalancing and Industrial Convergence in China. China Economic Review, 34: 39-63. https://doi.org/10.1016/j.chieco.2015.03.007
      [15] Li, D.M., Liu, G.S., Li, C., et al., 2009. Radionuclide Distribution in Sediments and Sedimentary Rates in Seas Surrounding Xiamen. Journal of Oceanography in Taiwan Strait, 28(3): 336-342(in Chinese with English abstract). http://www.researchgate.net/profile/Peng_Zhou45/publication/284776213_Radionuclide_distribution_in_sediments_and_sedimentary_rates_in_seas_surrounding_Xiamen/links/5acc7afaa6fdcc8bfc877c9e/Radionuclide-distribution-in-sediments-and-sedimentary-rates-in-seas-surrounding-Xiamen.pdf
      [16] Li, F.Y., Gao, S., Jia, J.J., et al., 2002. Contemporary Deposition Rates of Fine-Grained Sediment in the Bohai and Yellow Seas. Oceanologia et Limnologia Sinica, 33(4): 364-369(in Chinese with English abstract). http://www.researchgate.net/publication/285698061_Contemporary_deposition_rates_of_fine-grained_sediment_in_the_Bohai_and_Yellow_Seas
      [17] Li, F.Y., Shi, Y.L., 1995. Study of the Modern Sedimentation in the Bohai Sea. Marine Sciences, 19(2): 47-50(in Chinese with English abstract).
      [18] Liang, G.Y., Deng, F., Chen, W.L., et al., 2019. The Radioactivity of Marine Sediments Nearby Daya Bay Nuclear Power Base. Nuclear Safety, 18(5): 33-37(in Chinese with English abstract).
      [19] Lin, W.H., Feng, Y., Yu, K.F., et al., 2020. Characteristics of Radionuclides in Sediments Collected from the Beibu Gulf and Influence Factors. Acta Oceanologica Sinica, 42(2): 143-154(in Chinese with English abstract).
      [20] Liu, G.S., Li, D.M., Yi, Y., et al., 2008. Radionuclide Distribution in Sediments and Sedimentary Rates in the Jiaozhou Bay. Acta Geoscientica Sinica, 29(6): 769-777(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200806021.htm
      [21] Morford, J.L., Emerson, S., 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 63(11-12): 1735-1750. https://doi.org/10.1016/s0016-7037(99)00126-x
      [22] Pan, S.M., Zhu, D.K., Li, Y., et al., 1997. 137Cs Profile in Sediments in Estuaries and Its Application in Sedimentology. Acta Sedimentologica Sinica, 15(4): 69-73(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB704.011.htm
      [23] Qi, J., Li, F.Y., Song, J.M., et al., 2004. Sedimentation Rate and Flux of the North Yellow Sea. Marine Geology & Quaternary Geology, 24(2): 9-14(in Chinese with English abstract).
      [24] Qiao, S.Q., Shi, X.F., Wang, G.P., et al., 2010. Discussion on Grain-Size Characteristics of Seafloor Sediment and Transport Pattern in the Bohai Sea. Acta Oceanologica Sinica, 32(4): 139-147(in Chinese with English abstract).
      [25] Qu, B.X., Song, J.M., Yuan, H.M., 2018. Sediment Records and Responses for Anthropogenic Activities of Organic Matter in the Daya Bay during Recent One Hundred Years. Acta Oceanologica Sinica, 40(10): 119-130(in Chinese with English abstract).
      [26] Sanchez-Cabeza, J.A., Ruiz-Fernández, A.C., 2012. 210Pb Sediment Radiochronology: An Integrated Formulation and Classification of Dating Models. Geochimica et Cosmochimica Acta, 82: 183-200. https://doi.org/10.1016/j.gca.2010.12.024
      [27] Wang, F., Wang, H., 2011. The Division of 137Cs Vertical Profile Types on Coastal Area and Its Implication. Geological Bulletin of China, 30(7): 1099-1110(in Chinese with English abstract).
      [28] Wang, H.J., Wang, A.M., Bi, N.S., et al., 2014. Seasonal Distribution of Suspended Sediment in the Bohai Sea, China. Continental Shelf Research, 90: 17-32. https://doi.org/10.1016/j.csr.2014.03.006
      [29] Wang, J.L., Du, J.Z., Bi, Q.Q., 2017. Natural Radioactivity Assessment of Surface Sediments in the Yangtze Estuary. Marine Pollution Bulletin, 114(1): 602-608. https://doi.org/10.1016/j.marpolbul.2016.09.040
      [30] Wang, Y.H., Shen, H.T., 2002. The Study Methods of Sedimentation Rates in the Estuarine and Coastal Environments. Marine Geology & Quaternary Geology, 22(2): 118-123(in Chinese with English abstract).
      [31] Wang, Z.B., Lu, K., Wen, Z.H., et al., 2020. Grain Size Compositions and Their Influencing Factors of the Surface Sediments in Eastern China Seas. Earth Science, 45(7): 2709-2721(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.028
      [32] Webster, I.T., Hancock, G.J., Murray, A.S., 1995. Modelling the Effect of Salinity on Radium Desorption from Sediments. Geochimica et Cosmochimica Acta, 59(12): 2469-2476. https://doi.org/10.1016/0016-7037(95)00141-7
      [33] Wu, M.G., Zhou, P., Zhao, F., et al., 2018. The Concentration of γ Radionuclides in Surface Marine Sediments from Yangjiang Nuclear Power Plant and Its Adjacent Sea Area, South China Sea. Marine Environmental Science, 37(1): 43-47(in Chinese with English abstract).
      [34] Xia, X.M., Xie, Q.C., Li, Y., et al., 1999. 137Cs and 210Pb Profiles of the Seabed Cores along the East China Sea Coast and Their Implications to Sedimentary Environment. Donghai Marine Science, 17(1): 21-28(in Chinese with English abstract). http://www.researchgate.net/publication/284061603_137Cs_and_210Pb_profiles_of_the_seabed_cores_along_the_East_China_Sea_coast_and_their_implications_to_sedimentary_environment/download
      [35] Xu, D., Chu, F.Y., Yang, H.L., et al., 2012. Modern Sedimentation Rates in the Beibu Gulf. Marine Geology & Quaternary Geology, 32(6): 17-26(in Chinese with English abstract).
      [36] Yang, W.F., Chen, M., Zhang, X.X., et al., 2013. Thorium Isotopes (228Th, 230Th, 232Th) and Applications in Reconstructing the Yangtze and Yellow River Floods. International Journal of Sediment Research, 28(4): 588-595. https://doi.org/10.1016/s1001-6279(14)60015-9
      [37] Yeager, K.M., Santschi, P.H., Schindler, K.J., et al., 2006. The Relative Importance of Terrestrial versus Marine Sediment Sources to the Nueces-Corpus Christi Estuary, Texas: An Isotopic Approach. Estuaries and Coasts, 29(3): 443-454. https://doi.org/10.1007/bf02784992
      [38] Zhang, R., Pan, S.M., Wang, Y.P., et al., 2009. Sedimentation Rates and Characteristics of Radionuclide210Pb at the Subaqueous Delta in Changjiang Estuary. Acta Sedimentologica Sinica, 27(4): 704-713(in Chinese with English abstract).
      [39] Zhao, F., Wu, M.G., Zhou, P., et al., 2015. Radionuclides in Surface Sediments from the Huangmaohai Estuary Guanghai Bay and Its Adjacent Sea Area of the South China Sea. Journal of Tropical Oceanography, 34(4): 77-82(in Chinese with English abstract).
      [40] Zuo, S.H., Han, Z.Y., Xie, H.L., et al., 2019. Radionuclide Content in Surface Sediments of Tianwan Sea Area in Lianyungang. The Administration and Technique of Environmental Monitoring, 31(6): 42-45(in Chinese with English abstract).
      [41] 曹龙生, 杨亚新, 张叶, 等, 2012. 中国大陆主要省份土壤中天然放射性核素含量分布规律研究. 东华理工大学学报(自然科学版), 35(2): 167-172. doi: 10.3969/j.issn.1674-3504.2012.02.011
      [42] 丁敏霞, 刘国卿, 苏玲玲, 等, 2017. 深圳近岸海域海水及沉积物中放射性核素水平. 核化学与放射化学, 39(6): 442-446. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201706009.htm
      [43] 杜金秋, 关道明, 姚子伟, 等, 2017. 大连近海沉积物中放射性核素分布及环境指示. 中国环境科学, 37(5): 1889-1895. doi: 10.3969/j.issn.1000-6923.2017.05.036
      [44] 段晓勇, 李艳霞, 印萍, 2016. 渤海表层沉积物中铜的分布及其影响因素. 海洋地质与第四纪地质, 36(6): 135-141. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201606020.htm
      [45] 高抒, 2011. 海洋沉积地质过程模拟: 性质与问题及前景. 海洋地质与第四纪地质, 31(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201105003.htm
      [46] 黄小平, 张景平, 江志坚, 2015. 人类活动引起的营养物质输入对海湾生态环境的影响机理与调控原理. 地球科学进展, 30(9): 961-969. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201509001.htm
      [47] 蓝先洪, 李日辉, 密蓓蓓, 等, 2016. 渤海东部和黄海北部表层沉积物稀土元素的分布特征与物源判别. 地球科学, 41(3): 463-474. doi: 10.3799/dqkx.2016.038
      [48] 李冬梅, 刘广山, 李超, 等, 2009. 环厦门海域沉积物放射性核素分布与沉积速率. 台湾海峡, 28(3): 336-342. doi: 10.3969/j.issn.1000-8160.2009.03.006
      [49] 李凤业, 高抒, 贾建军, 等, 2002. 黄、渤海泥质沉积区现代沉积速率. 海洋与湖沼, 33(4): 364-369. doi: 10.3321/j.issn:0029-814X.2002.04.004
      [50] 李凤业, 史玉兰, 1995. 渤海现代沉积的研究. 海洋科学, 19(2): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX199502020.htm
      [51] 梁贵渊, 邓飞, 陈万良, 等, 2019. 大亚湾核电基地周围海洋沉积物的放射性水平. 核安全, 18(5): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HAQY201905006.htm
      [52] 林武辉, 冯禹, 余克服, 等, 2020. 北部湾沉积物中放射性核素的分布特征与控制因素. 海洋学报, 42(2): 143-154. doi: 10.3969/j.issn.0253-4193.2020.02.015
      [53] 刘广山, 李冬梅, 易勇, 等, 2008. 胶州湾沉积物的放射性核素含量分布与沉积速率. 地球学报, 29(6): 769-777. doi: 10.3321/j.issn:1006-3021.2008.06.018
      [54] 潘少明, 朱大奎, 李炎, 等, 1997. 河口港湾沉积物中的137Cs剖面及其沉积学意义. 沉积学报, 15(4): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB704.011.htm
      [55] 齐君, 李凤业, 宋金明, 等, 2004. 北黄海沉积速率及其沉积通量. 海洋地质与第四纪地质, 24(2): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200402002.htm
      [56] 乔淑卿, 石学法, 王国庆, 等, 2010. 渤海底质沉积物粒度特征及输运趋势探讨. 海洋学报, 32(4): 139-147. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201004014.htm
      [57] 曲宝晓, 宋金明, 袁华茂, 2018. 近百年来大亚湾沉积物有机质的沉积记录及对人为活动的响应. 海洋学报, 40(10): 119-130. doi: 10.3969/j.issn.0253-4193.2018.10.012
      [58] 王福, 王宏, 2011. 海岸带地区137Cs沉积剖面类型划分及其意义. 地质通报, 30(7): 1099-1110. doi: 10.3969/j.issn.1671-2552.2011.07.012
      [59] 王永红, 沈焕庭, 2002. 河口海岸环境沉积速率研究方法. 海洋地质与第四纪地质, 22(2): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200202022.htm
      [60] 王中波, 陆凯, 温珍河, 等, 2020. 中国东部海域表层沉积物粒度组成及影响因素. 地球科学, 45(7): 2709-2721. doi: 10.3799/dqkx.2020.028
      [61] 吴梅桂, 周鹏, 赵峰, 等, 2018. 阳江核电站附近海域表层沉积物中γ放射性核素含量水平. 海洋环境科学, 37(1): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ201801008.htm
      [62] 夏小明, 谢钦春, 李炎, 等, 1999. 东海沿岸海底沉积物中的137Cs、210Pb分布及其沉积环境解释. 东海海洋, 17(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DHHY901.003.htm
      [63] 许冬, 初凤友, 杨海丽, 等, 2012. 北部湾现代沉积速率. 海洋地质与第四纪地质, 32(6): 17-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201206007.htm
      [64] 张瑞, 潘少明, 汪亚平, 等, 2009. 长江河口水下三角洲210Pb分布特征及其沉积速率. 沉积学报, 27(4): 704-713. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200904015.htm
      [65] 赵峰, 吴梅桂, 周鹏, 等, 2015. 黄茅海-广海湾及其邻近海域表层沉积物中γ放射性核素含量水平. 热带海洋学报, 34(4): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201504011.htm
      [66] 左书华, 韩志远, 谢华亮, 等, 2019. 连云港田湾海域表层沉积物中放射性核素含量水平. 环境监测管理与技术, 31(6): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJS201906010.htm
    • 加载中
    图(7) / 表(5)
    计量
    • 文章访问数:  415
    • HTML全文浏览量:  107
    • PDF下载量:  20
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-04-27
    • 刊出日期:  2021-12-15

    目录

      /

      返回文章
      返回