• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新疆北部VMS矿床地质特征及成矿规律

    杨富全 耿新霞 武峰 张志欣 成曦晖 张振龙 李宁

    杨富全, 耿新霞, 武峰, 张志欣, 成曦晖, 张振龙, 李宁, 2022. 新疆北部VMS矿床地质特征及成矿规律. 地球科学, 47(9): 3147-3173. doi: 10.3799/dqkx.2021.118
    引用本文: 杨富全, 耿新霞, 武峰, 张志欣, 成曦晖, 张振龙, 李宁, 2022. 新疆北部VMS矿床地质特征及成矿规律. 地球科学, 47(9): 3147-3173. doi: 10.3799/dqkx.2021.118
    Yang Fuquan, Geng Xinxia, Wu Feng, Zhang Zhixin, Cheng Xihui, Zhang Zhenlong, Li Ning, 2022. VMS Deposits in the Northern Xinjiang: Geological Characteristics and Metallogeny. Earth Science, 47(9): 3147-3173. doi: 10.3799/dqkx.2021.118
    Citation: Yang Fuquan, Geng Xinxia, Wu Feng, Zhang Zhixin, Cheng Xihui, Zhang Zhenlong, Li Ning, 2022. VMS Deposits in the Northern Xinjiang: Geological Characteristics and Metallogeny. Earth Science, 47(9): 3147-3173. doi: 10.3799/dqkx.2021.118

    新疆北部VMS矿床地质特征及成矿规律

    doi: 10.3799/dqkx.2021.118
    基金项目: 

    国家重点研发计划项目 2017YFC0601201

    国家自然科学基金面上项目 42072100

    详细信息
      作者简介:

      杨富全(1968—),男,研究员,博士生导师,主要从事矿床地质和成矿规律研究.ORCID:0000⁃0003⁃1455⁃1471.E⁃mail:fuquanyang@163.com

    • 中图分类号: P611

    VMS Deposits in the Northern Xinjiang: Geological Characteristics and Metallogeny

    • 摘要: VMS矿床是中亚造山带的重要矿床类型,在新疆中亚造山带(即新疆北部)主要分布于阿尔泰和东天山的阿舍勒、克兰、麦兹和卡拉塔格矿集区.含矿层位主要有下‒中志留统红柳峡组、上志留统‒下泥盆统康布铁堡组下亚组和上亚组、下‒中泥盆统阿舍勒组和下石炭统小热泉子组海相火山沉积岩系.矿区发育喷流岩,如含铁碧玉岩、重晶石、硅质岩、铁锰质大理岩、黄铁矿层、绿泥石岩.VMS成矿系统中发育多种矿化类型,“双层结构”(层状或透镜状矿体和补给通道相脉状矿体)是其中之一,还有与火山热液有关的脉状矿化、与次火山热液有关的脉状和浸染状矿化.VMS矿床形成于3个成矿期,即早‒中志留世(428~438 Ma)、早‒中泥盆世(379~413 Ma)和早石炭世(332~359 Ma).硫来自下伏火山岩、海水硫酸盐无机还原作用和硫酸盐细菌还原作用.成矿流体以中低温(300~120 ℃)低盐度(2%~10% NaCleq)为特色,成矿流体为深循环海水混合不同比例的岩浆水.VMS成矿系统中由于受火山机构、岩相、矿化类型、矿化部位、成矿流体来源、物理化学条件等因素影响,造成了成矿元素组合复杂.

       

    • 图  1  新疆阿尔泰区域地质及主要VMS矿床分布略图

      图据Yang et al.2018a);VMS矿床名称:1.萨尔朔克金多金属矿;2.阿舍勒铜锌矿;3.大东沟铅锌矿;4.乌拉斯钩多金属矿;5.铁木尔特铅锌铜多金属矿;6.塔拉特铅锌铁矿;7.哈克哈仁铅锌矿;8.铁列克萨依铅锌矿;9.可可塔勒铅锌矿;10.萨吾斯铅锌矿

      Fig.  1.  Simplified regional geological map of the Altay mountains, Xinjiang, showing the locations of important VMS deposits

      图  2  东天山区域地质矿产略图

      图a据Sengör et al.1993)、Xiao et al.2004)修改;图b据Chen et al.2012)修改;图c据王京彬等(2006)、Deng et al.2018)修改

      Fig.  2.  Simplified regional geological and minerals map of the East Tianshan, Xinjiang

      图  3  卡拉塔格矿集区地质和铜多金属矿分布略图

      图据Deng et al.2020)和相关文献

      Fig.  3.  Regional geology and distribution of Cu-dominant deposits in the Kalatag ore dense district

      图  4  阿舍勒铜锌矿区地质略图

      图据Yang et al.2018b)及相关文献和Niu et al.2020)修改

      Fig.  4.  Geological sketch map of the Ashele Cu-Zn deposit

      图  5  阿舍勒铜锌矿Ⅰ和Ⅱ号矿化带9勘探线剖面

      图据新疆哈巴河阿舍勒铜业股份有限公司,2019,阿舍勒铜矿深边部补充勘查年度报告修改

      Fig.  5.  Cross-section of No.9 prospecting line of the Ⅰ and Ⅱ mineralized zones in the Ashele Cu-Zn deposit

      图  6  黄滩金铜锌矿区地质略图

      图据新疆西拓矿业有限公司,2019,新疆哈密市黄滩金铜锌矿详查报告修改

      Fig.  6.  Geological sketch map of the Huangtan Au-Cu-Zn deposit

      图  7  黄滩金铜锌矿勘探线剖面

      图据新疆西拓矿业有限公司,2019,新疆哈密市黄滩金铜锌矿详查报告修改

      Fig.  7.  Cross-section of the Huangtan Au-Cu-Zn deposit

      图  8  小热泉子铜锌矿Ⅰ和Ⅲ矿段地质略图

      图据吐鲁番工企矿冶有限责任公司,2016,新疆吐鲁番小热泉子铜矿资源储量核实报告

      Fig.  8.  Geological sketch map of the No. Ⅰ and Ⅲ mining districts in the Xiaorequanzi Cu-Zn deposit

      图  9  小热泉子铜锌矿Ⅲ矿段A⁃A’勘探线剖面

      图据吐鲁番工企矿冶有限责任公司,2016,新疆吐鲁番小热泉子铜矿资源储量核实报告

      Fig.  9.  A⁃A' prospecting line of the No. Ⅲ mining district in the Xiaorequanzi Cu-Zn deposit

      图  10  新疆北部VMS矿床年龄直方图

      Fig.  10.  Age histograms for the VMS deposits in the North Xinjiang

      图  11  新疆北部主要VMS矿床δD-δ18OH2O图解

      阿舍勒据Yang et al.2018b)和本文;萨尔朔克据杨富全等(2015)和本文;铁木尔特据耿新霞等(2010);大东沟据刘敏等(2008);萨吾斯据Liu et al.2012);小热泉子据刘申态等(2011)及相关文献;黄滩据Zhang et al.(2022);红海‒黄土坡据Yang et al.2018d)、Cheng et al.2020

      Fig.  11.  δD-δ18Ofluid diagram of the VMS deposits in the North Xinjiang

      图  12  新疆北部VMS矿床黄铁矿中流体40Ar/36Ar-3He/4He关系

      ASW据Burnard et al.1999);TAG据Zeng et al.2001);Wetar据Herrington et al.2011);阿舍勒铜锌矿据张志欣等(2014);萨尔朔克金多金属矿据Yang et al.2018e);黄土坡矿段据柴凤梅等(2017);乌拉斯沟多金属矿据Yang et al.2021a);黄滩金铜锌矿和小热泉子铜锌矿为本文数据

      Fig.  12.  40Ar/36Ar-3He/4He diagram of the VMS deposits in the North Xinjiang

      图  13  新疆北部VMS矿床硫同位素对比

      铁木尔特据耿新霞等(2010)和Yu et al.2019);乌拉斯沟据卢琦园等(2018)和Yang et al.2021a);大东沟据刘敏等(2008);塔拉特据本报告;苏普特据申茂德未刊资料;可可塔勒据王京彬等(1998)、Wan et al.(2010b)、Yu et al.(2020);阿舍勒据陈毓川等(1996)、王登红(1996)、Wan et al.,2010a、Yang et al.2018b)和本文;萨尔朔克据杨富全等(2015)和本文;红海‒黄土坡据毛启贵等(2015)和Cheng et al.2020);小热泉子据刘申态等(2011)和本文;黄滩据Zhang et al.(2022

      Fig.  13.  Sulfur isotope correlation map of VMS deposits in northern Xinjiang

      图  14  新疆北部VMS矿床δ18OSMOW13CPDB图解

      底图据刘家军等(2004)及相关文献;可可塔勒据王京彬等(1998);大东沟据刘敏等(2008);萨吾斯据刘秀金等(2011);乌拉斯沟据Yang et al.2021a

      Fig.  14.  δ18OSMOW versus δ13CPDB diagram of the VMS deposits in North Xinjiang

      表  1  新疆北部主要VMS型矿床地质特征

      Table  1.   Geological characteristics of main VMS deposits in northern Xinjiang

      矿床名称 矿种 成矿带 容矿岩系 侵入岩 矿体规模 矿体形态 矿石构造 金属矿物 非金属矿物 矿石品位 围岩蚀变 规模 资料来源
      阿舍勒 Cu,Zn 阿尔泰南缘 阿舍勒组玄武岩、英安岩、流纹质凝灰岩 闪长岩、英安斑岩 矿化蚀变带14条,主矿体长900 m,枢纽倾伏长1 520 m,距地表埋深25~ 1 500 m,厚5~120 m 层状 (致密)块状、条带状、条纹状、斑杂状、稠密浸染状、浸染状、细脉状、网脉状 黄铁矿、黄铜矿、闪锌矿,次为方铅矿、锌砷黝铜矿、黝铜矿 石英、绢(白)云母、绿泥石、重晶石、方解石、白云石、长石 Cu 2.46%,Zn 2.93%,Pb 0.41%,Ag 18.37 g/t,Au 0.36 g/t,S 22.66% 硅化、黄铁绢英岩化、绿泥石化、绢云母化、碳酸盐化、青磐岩化 大型 陈毓川等,1996; 本文
      萨尔朔克 Au, Cu, Zn, Pb 阿尔泰南缘 阿舍勒组凝灰岩 流纹斑岩、辉绿岩脉 蚀变带长247~500 m,宽50~220 m.矿体长91~490 m,厚0.69~81.00 m,最大垂深470 m 脉状、透镜状、不规则状 条带状、条纹状、块状、浸染状、细脉状、网脉状 黄铜矿、黄铁矿、方铅矿、闪锌矿、自然金,少量磁黄铁矿 石英、斜长石、绢云母、绿泥石、白云母、方解石、次闪石 平均Au 1.24~14.5 g/t,Cu 0.37%~2.2%,Zn 0.91%~11.19%,Pb 0.21%~2.12% 硅化、绢云母化、黄铁矿化、绿泥石化、绿帘石化 中型 杨富全等,2015及相关文献
      铁木尔特 Pb, Zn,Cu,Fe 阿尔泰南缘 康布铁堡组上亚组第二岩性段大理岩、绿泥石英片岩、变钙质砂岩、层状矽卡岩 石英钠长斑岩脉、基性岩脉 矿体30个,长50~600 m,厚0.6~32.6 m,延深50~ 834 m 似层状、透镜状,与地层整合 致密块状、块状、浸染状、条带状、条纹状、细脉-浸染状、角砾状 方铅矿、闪锌矿、黄铜矿、磁黄铁矿、黄铁矿、磁铁矿、辉铜矿、辉铋矿、自然铋、毒砂 方解石、石英、长石、绿泥石、阳起石、透闪石、石榴石、角闪石、绿帘石、重晶石、萤石 平均Pb 0.16%~7.29%,Zn 0.49%~8.13%,Cu 0.12%~1.53%,Au 0.03~1.60 g/t,Ag 0.28~88.18 g/t,TFe 21.12%~33.97% 矽卡岩化、硅化 中型 Yang et al., 2021b及相关文献
      塔拉特矿 Pb, Zn, Fe 阿尔泰南缘 康布铁堡组下亚组第二岩性段黑云母变粒岩、变晶屑凝灰岩、变火山角砾岩、大理岩和黑云母片岩 斜闪煌斑岩脉、辉绿岩脉 9个矿体,最大矿体长920 m,厚度0.41~10.88 m 层状、似层状、透镜状、脉状,与地层整合 致密块状、块状、细脉状、网脉状、条带状、纹层状、(稠密)浸染状、角砾状 (胶状)黄铁矿、(铁)闪锌矿、方铅矿、磁铁矿、赤铁矿,少量黄铜矿、磁黄铁矿、毒砂和微量辉钼矿 黑云母、角闪石、透辉石、石英、白云母、方解石、石榴石、绿帘石、绿泥石、阳起石 平均Pb 1.92%,Zn 2.19%,TFe 7.01%~14.74% 矽卡岩化(石榴石、绿帘石、阳起石、透闪石、绿泥石、黑云母)、硅化和碳酸盐化 中型 新疆维吾尔自治区有色地质勘查局七0六队, 2012, 新疆阿勒泰市塔拉特铁铅锌矿A2、A3、A4异常普查报告
      大东沟 Pb,Zn 阿尔泰南缘 康布铁堡组上亚组第二岩性段变钙质砂岩、大理岩 未发现侵入岩 23个矿体,规模较大的3个矿体长300~600 m,厚0.34~9.75 m 似层状、透镜状 纹层状、块状、浸染状、条带状、细脉浸染状 主要为方铅矿、闪锌矿、黄铁矿、黄铜矿,少量磁铁矿、毒砂、磁黄铁矿 石英、长石、绢云母、黑云母、白云母、绿泥石、角闪石和方解石 Pb+Zn品位为1.43%~8.97%,局部Au 6.59 g/t 绢云母化、碳酸盐化、矽卡岩化、硅化、叶腊石化、高岭土化、黄铁矿化 中型 刘敏等,2008Yang et al., 2021b及相关文献
      乌拉斯沟 Zn,Cu,Fe 阿尔泰南缘 康布铁堡组上亚组第二岩性段绿泥石英片岩、变晶屑凝灰岩、大理岩、变钙质砂岩和变凝灰质砂岩 未发现侵入岩 16条主要矿体,长50~500 m,厚2.78~ 12.79 m,延深超过385 m 层状、透镜状 致密块状、块状、条带状、条纹状、浸染状、稠密浸染状、细脉状、网脉状、团块状 主要为磁铁矿、黄铁矿、闪锌矿、黄铜矿,少量方铅矿、磁黄铁矿 石英、方解石、绢云母、白云母、绿泥石、辉石、角闪石、透闪石、阳起石、绿帘石 平均品位Cu 0.12%~1.13 %,Zn 0.77%~2.10%,TFe 11.32%~23.26%,Au 0.12~0.37 g/t,Ag 1.69~4.45 g/t 硅化、绿泥石化、绿帘石化、阳起石化、绢云母化、方解石化、黄铁矿化 中型 Yang et al., 2021a及相关文献
      可可塔勒 Pb,Zn 阿尔泰南缘 康布铁堡组上亚组变质粉砂岩、凝灰岩和热水沉积岩 次火山岩(花岗斑岩、石英斑岩);花岗岩 11条主要矿体,长100~ 1 700 m,厚3.6~39.0 m,延深200~690 m 层状、似层状 块状、稠密浸染状、条带状、条纹状、稀疏浸染状、细脉状、网脉状 黄铁矿、磁黄铁矿、方铅矿、闪锌矿,次为毒砂、黄铜矿、硫锑矿、黝铜矿、斑铜矿、白铁矿 石英、长石、白云母、方解石、透辉石、铁铝榴石、黑云母、角闪石、绿帘石 Pb 1.51%,Zn 3.16% 钠化、钾化、绿泥石化、阳起石化、黑云母化、硅化 大型 王京彬等,1998
      铁列克萨依 Pb,Zn 阿尔泰南缘 康布铁堡组上亚组变钙质砂岩、变凝灰岩、变质流纹岩 未发现侵入岩 6条矿体,长200~620 m, 厚0.61~ 6.90 m 层状、似层状 条带状、条纹状、浸染状 黄铁矿、磁黄铁矿、方铅矿、闪锌矿 石英、方解石 平均品位Pb+Zn 1.02%~4.58% 硅化 中型 申茂徳未刊资料
      萨吾斯 Pb,Zn 阿尔泰南缘 康布尔堡组上亚组变质凝灰岩,变质钙质砂岩、变质流纹岩 流纹斑岩 2个矿化带,长1 200~ 2 600 m.矿体17个,厚1.2~15.32 m,延深70~400 m 脉状、透镜状、似层状 条带状、细脉状、浸染状 磁铁矿、黄铁矿、磁黄铁矿、闪锌矿、方铅矿、黄铜矿、毒砂 石榴石、石英、方解石、透闪石、黑云母、白云母 平均品位Pb+Zn 2.95%~3.99% 碳酸盐化、绢云母化、钠长石化、矽卡岩化 中型 刘国仁等,2010
      阿克哈仁 Pb,Zn 阿尔泰南缘 康布铁堡组上亚组火山角砾岩、流纹岩、大理岩 流纹斑岩 15个矿体,长数十米至数百米,宽1~10 m 似层状、透镜状,板柱状 细脉状、浸染状 方铅矿,少量黄铁矿、闪锌矿 萤石、重晶石、石英、方解石 Pb 2.89%,Zn 0.13% 钾化、硅化、钠化 小型 王京彬等,1998
      大桥 Pb,Zn,Fe 阿尔泰南缘 康布铁堡组上亚组凝灰岩、变质流纹岩、大理岩 花岗斑岩脉 主要矿体5条,矿体长60~100 m,宽6~32 m 似层状、透镜状 块状、细脉状、浸染状 方铅矿、闪锌矿、磁铁矿 石英、长石、黑云母 Pb 0.16%,Zn 0.11%~5.33%,Cu 0.16%~0.65%,TFe 22.15% 钾化、硅化、绢云母化、绿泥石化、绿帘石化 小型 王京彬等,1998
      红海-黄土坡 Cu,Zn 卡拉塔格-小热泉子 下-中志留统红柳峡组凝灰岩、角砾凝灰岩 闪长玢岩、花岗闪长岩 2个蚀变带.主矿体长1 100 m,厚度0.75~ 52.74 m,平均15.53 m 似层状、透镜状、脉状 致密块状、块状、稠密浸染状、浸染状、条带状、条纹状、角砾状、细脉状、网脉状、团块状 黄铁矿、黄铜矿和闪锌矿,少量方铅矿、磁铁矿、银金矿、碲银矿、黝铜矿、砷黝铜矿、磁黄铁矿 石英、绢云母、白云母、绿泥石、重晶石,少量方解石、斜长石、绿帘石、阳起石 Cu 0.20%~22.02%,平均品位1.16%,Zn 0.50%~43.26%,平均品位1.68% 硅化、绢云母化、黄铁矿化、绿泥石化 中型 Deng et al., 2018;本文
      黄滩 Au,Cu,Zn 卡拉塔格-小热泉子 下-中志留统红柳峡组凝灰岩、火山角砾岩、安山岩、沉凝灰岩 石英闪长岩 黄滩矿段矿体34个,长50~400 m,厚0.82~ 40.81 m,埋深20~420 m 似层状、透镜状、脉状 条带状、条纹状、致密块状、块状、稠密浸染状、浸染状、细脉状、网脉状 黄铁矿、黄铜矿、闪锌矿,少量方铅矿、磁黄铁矿、毒砂、硫锑铅矿、黝铜矿、自然金、银金矿、针碲金银矿 重晶石、石英、绢云母,少量碳酸盐、斜长石、绿泥石、白云母、角闪石 平均Au 1.13~4.07g/t,Cu 0.12%~1.72%,Zn 0.12%~4.49%,Ag 1.29~47.85 g/t 硅化、黄铁矿化、绢云母化、青磐岩化 中型 新疆西拓矿业有限公司, 2019, 新疆哈密市黄滩金铜锌矿详查报告
      小热泉子 Cu,Zn 卡拉塔格-小热泉子 下石炭统小热泉子组凝灰岩、安山岩、英安岩、凝灰质砂岩 英安斑岩、流纹斑岩、钠长斑岩 3个矿段,88条矿体,长50~500 m,厚1.66~32.52 m 似层状、透镜状 条带状、条纹状、块状、浸染状、细脉状、网脉状 黄铁矿、黄铜矿、闪锌矿、方铅矿、磁黄铁矿、黝铜矿 石英、绢云母、绿泥石、重晶石、长石、方解石 平均Cu 0.52%~ 1. 61%,Zn 0.44%~1.92%,Au 0.31~4.86 g/t 绿泥石化、硅化、黄铁矿化 中型 吐鲁番工企矿冶有限责任公司, 2016, 新疆吐鲁番小热泉子铜矿资源储量核实报告
      下载: 导出CSV

      表  2  新疆北部VMS型矿床年代学数据

      Table  2.   Summary of geochronological data for VMS deposits in North Xinjiang

      矿床名称 岩石或矿石 测试方法 年龄(Ma) 资料来源
      阿舍勒铜锌矿Ⅰ号矿化带 凝灰岩 锆石LA-ICP-MS U-Pb法 387.0 ± 4.2 Yang et al., 2014
      玄武岩 锆石LA-ICP-MS U-Pb法 388.0 ± 3.3 Yang et al., 2014
      层状矿体矿石 黄铁矿Re-Os法 389.1±9.9 笔者未刊资料
      脉状矿体矿石 黄铁矿、黄铜矿Re-Os法 395.6±8.4 笔者未刊资料
      阿舍勒铜锌矿Ⅱ号矿化带 流纹岩 锆石LA-ICP-MS U-Pb 394.1±3.1 Yang et al., 2018a
      阿舍勒铜锌矿Ⅴ号矿化带 英安斑岩 锆石LA-ICP-MS U-Pb 379.4±0.8 Yang et al., 2014
      萨尔朔克金多金属矿 流纹斑岩 锆石LA-ICP-MS U-Pb 382.8±1.7 Yang et al., 2014
      流纹斑岩 锆石LA-ICP-MS U-Pb 386.2±1.5 沈雪华等,2016
      流纹斑岩 锆石LA-ICP-MS U-Pb 384.0±1.2 Gao et al., 2020
      凝灰岩中脉状矿石 黄铜矿Re-Os法 388±17 杨成栋未刊资料
      凝灰岩中脉状矿石 闪锌矿Rb-Sr法 387±21 杨成栋未刊资料
      流纹斑岩中脉状矿石 黄铜矿Re-Os法 385.9±9.1 杨成栋未刊资料
      流纹斑岩中脉状矿石 黄铜矿Re-Os法 383±11 Gao et al., 2020
      大东沟铅锌矿 变质流纹岩 锆石LA-ICP-MS U-Pb法 400.7±1.6 耿新霞等,2012
      变质流纹岩 锆石LA-ICP-MS U-Pb法 388.9±3.2 耿新霞等,2012
      变质流纹岩 锆石LA-ICP-MS U-Pb法 396.7 ± 1.4 单强等,2012
      变质凝灰岩 锆石LA-ICP-MS U-Pb法 397.1±4.5 Zheng et al., 2015
      变质凝灰岩 锆石LA-ICP-MS U-Pb法 391.1±4.2 Zheng et al., 2015
      矿石 闪锌矿和黄铁矿Rb-Sr法 392±4 Yang et al., 2021b
      铁木尔特多金属矿 变质流纹岩 锆石SHRIMP U-Pb法 402.0±6.6 单强等,2011
      变质凝灰岩 锆石LA-ICP-MS U-Pb法 405±5 郑义等,2013
      变质凝灰岩 锆石LA-ICP-MS U-Pb法 396±5 郑义等,2013
      矿石 闪锌矿和黄铁矿Rb-Sr法 394.2±3.7 Yang et al., 2021b
      乌拉斯沟多金属矿 变质凝灰岩 锆石LA-ICP-MS U-Pb法 397.9±2.8 Yang et al., 2021a
      矿石 闪锌矿和黄铁矿Rb-Sr法 391.3±2.7 Yang et al., 2021b
      塔拉特铅锌铁矿 变质流纹岩 锆石SHRIMP U-Pb法 408.7±5.3 Chai et al., 2009
      变质流纹岩 锆石SHRIMP U-Pb法 412.6±3.5 Chai et al., 2009
      浅粒岩 锆石LA-ICP-MS U-Pb法 405.5±0.7 Yang et al., 2018a
      可可塔勒铅锌矿 变质流纹岩 锆石LA-ICP-MS U-Pb法 410.5±1.3 Yang et al., 2018c
      变质英安岩 锆石LA-ICP-MS U-Pb法 394.8±1.9 Yang et al., 2018c
      变质流纹岩 锆石LA-ICP-MS U-Pb法 400.8±8.4 单强等,2011
      矿石 闪锌矿Rb-Sr法 398.2±3.3 Yang et al., 2018c
      铁列克萨依铅锌矿 变质流纹岩 锆石LA-ICP-MS U-Pb法 400.4±2.1 柴凤梅等,2012
      萨吾斯铅锌矿 变质流纹岩 锆石SIMS U-Pb法 401.0±2.7 刘伟等,2014
      变质流纹岩 锆石LA-ICP-MS U-Pb法 386.0±2.3 Yang et al., 2018a
      红海-黄土坡铜锌矿 含角砾凝灰岩 锆石LA-ICP-MS U-Pb法 423.3±2.9 Cheng et al., 2020
      酸性火山熔岩 锆石SIMS U-Pb法 416.3±5.9 毛启贵等,2010
      凝灰岩 锆石U-Pb法 440.4±2.9 Deng et al., 2016
      英安岩 锆石LA-ICP-MS U-Pb法 440.1±1.2 Chai et al., 2019
      安山岩 锆石LA-ICP-MS U-Pb法 439.7±0.9 Chai et al., 2019
      凝灰岩 锆石LA-ICP-MS U-Pb法 442.0±1.1 Chai et al., 2019
      层状矿体矿石 黄铁矿Re-Os法 427.9 ±5.5 Yang et al., 2018d
      层状矿体矿石 黄铜矿Re-Os法 429.5±10.0 Cheng et al., 2020
      层状矿体矿石 黄铜矿Re-Os法 434.2±3.9 Deng et al., 2016
      层状矿体矿石 黄铁矿Re-Os法 436.1±2.3 Mao et al., 2019
      矿石 硫化物Rb-Sr法 432.2 ±3.1 Yang et al., 2018d
      黄铁绢云岩 绢云母Ar-Ar法 438.8 ±3.0 Deng et al., 2018
      黄铁绢云岩 绢云母K-Ar法 424±7 毛启贵等,2010
      红石铜矿 流纹斑岩 锆石SHRIMP U-Pb法 439±7 龙灵利等,2017
      矿石 黄铜矿Re-Os法 431.8±2.7 Deng et al., 2016
      黄铁绢云岩 绢云母Ar-Ar法 446.4±4.6 Deng et al., 2018
      黄铁绢云岩 绢云母Ar-Ar法 441.5±3.2 Deng et al., 2018
      黄滩金铜锌矿 英安岩 锆石LA-ICP-MS U-Pb法 434.3±3.1 笔者未刊资料
      凝灰岩 锆石LA-ICP-MS U-Pb法 438.2±5.7 Sun et al., 2020
      层状矿体矿石 黄铜矿Re-Os法 430±15 Zhang et al., 2022
      脉状矿体矿石 黄铁矿Re-Os法 436.5±4.2 耿新霞等,2022
      脉状矿体矿石 黄铁矿Re-Os法 437.9±6.6 Sun et al., 2020
      小热泉子铜锌矿 凝灰质砂岩 锆石LA-ICP-MS U-Pb法 357.3 ± 2.4 Mao et al., 2020
      凝灰岩 锆石LA-ICP-MS U-Pb法 354.5±3.9 张志欣未刊资料
      凝灰质砂岩 锆石LA-ICP-MS U-Pb法 352.5±4.4 张志欣未刊资料
      英安斑岩 锆石LA-ICP-MS U-Pb法 341.9±3.1 张志欣未刊资料
      钠长斑岩 锆石LA-ICP-MS U-Pb法 331.6±6.6 张志欣未刊资料
      英安岩 锆石LA-ICP-MS U-Pb法 359.5 ± 3.4 Mao et al., 2020
      矿化花岗斑岩 锆石LA-ICP-MS U-Pb法 354.7 ± 3.2 Mao et al., 2020
      矿石 黄铜矿Re-Os法 354 ± 11 Mao et al., 2020
      矿石 硫化物Rb-Sr法 358.6±2.8 张志欣未刊资料
      矿石 黄铜矿Re-Os法 355.3±5.7 张志欣未刊资料
      下载: 导出CSV
    • [1] Burnard, P. G., Hu, R. Z., Turner, G., et al., 1999. Mantle, Crustal and Atmospheric Noble Gases in Ailaoshan Gold Deposits, Yunnan Province, China. Geochimica et Cosmochimica Acta, 63(10): 1595-1604. https://doi.org/10.1016/S0016⁃7037(99)00108⁃8
      [2] Chai, F. M., Mao, J. W., Dong, L. H., et al., 2009. Geochronology of Metarhyolites from the Kangbutiebao Formation in the Kelang Basin, Altay Mountains, Xinjiang: Implications for the Tectonic Evolution and Metallogeny. Gondwana Research, 16(2): 189-200 doi: 10.1016/j.gr.2009.03.002
      [3] Chai, F. M., Xu, Q. F., Wang, W., et al., 2017. Helium and Argon Isotope Characteristics of Ore⁃Forming Fluids for the Huangtupo Copper⁃Zinc Deposit, Eastern Tianshan. Chinese Journal of Geology, 52(4): 1263-1281 (in Chinese with English abstract).
      [4] Chai, F. M., Yang, F. Q., Liu, F., et al., 2012. Geochronology and Genesis of the Meta⁃Felsic Volcanic Rocks in the Kangbutiebao Formation from the Maizi Basin at the Southern Margin of the Altay, Xinjiang. Chinese Journal of Geology, 47(1): 221-239 (in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2012.01.019
      [5] Chai, F. M., Zhang, Z. C., Li, W. H., et al., 2019. The Early Paleozoic Huangtupo VMS Cu⁃Zn Deposit in Kalatag, Eastern Tianshan: Implications from Geochemistry and Zircon U⁃Pb Geochronology of Volcanic Host Rocks. Lithos, 342-343: 97-113. https://doi.org/10.1016/j.lithos.2019.05.026
      [6] Chen, Y. C., Ye, Q. T., Feng, J., et al., 1996. The Ore⁃Forming Conditions and Mineralization Predictions in Ashele Copper⁃Zinc Belt. Geological Publishing House, Beijing (in Chinese).
      [7] Chen, Y. J., Pirajno, F., Wu, G., et al., 2012. Epithermal Deposits in North Xinjiang, NW China. International Journal of Earth Sciences, 101(4): 889-917. https://doi.org/10.1007/s00531⁃011⁃0689⁃4
      [8] Cheng, X. H., Yang, F. Q., Zhang, R., et al., 2020. Metallogenesis and Fluid Evolution of the Huangtupo Cu⁃Zn Deposit, East Tianshan, Xinjiang, NW China: Constraints from Ore Geology, Fluid Inclusion Geochemistry, H⁃O⁃S Isotopes, and U⁃Pb Zircon, Re⁃Os Chalcopyrite Geochronology. Ore Geology Reviews, 121: 103469. https://doi.org/10.1016/j.oregeorev.2020.103469
      [9] Daukeev, S. Z., Uzhkenov, B. S., Bespaev, K. A., et al., 2004. Atlas of Mineral Deposit Models of the Republic of Kazakhstan. Printing House: Center for Geoinformation of the Military Forces of the Republic of Kazakhstan. Almaty.
      [10] Deng, X. H., Wang, J. B., Pirajno, F., et al., 2016. Re⁃Os Dating of Chalcopyrite from Selected Mineral Deposits in the Kalatag District in the Eastern Tianshan Orogen, China. Ore Geology Reviews, 77: 72-81. https://doi.org/10.1016/j.oregeorev.2016.01.014
      [11] Deng, X. H., Wang, J. B., Pirajno, F., et al., 2020. A Review of Cu⁃Dominant Mineral Systems in the Kalatag District, East Tianshan, China. Ore Geology Reviews, 117: 103284. https://doi.org/10.1016/j.oregeorev.2019.103284
      [12] Deng, X. H., Wang, J. B., Santosh, M., et al., 2018. New 40Ar/39Ar Ages from the Kalatag District in the Eastern Tianshan, NW China: Constraints on the Timing of Cu Mineralization and Stratigraphy. Ore Geology Reviews, 100: 250-262. https://doi.org/10.1016/j.oregeorev.2016.08.006
      [13] Faure, G., 1986. Principles of Isotope Geology (2nd Edition). John Wiley and Sons, New York.
      [14] Gao, J., Zhu, M. T., Wang, X. S., et al., 2019. Large⁃Scale Porphyry⁃Type Mineralization in the Central Asian Metallogenic Domain: Tectonic Background, Fluid Feature and Metallogenic Deep Dynamic Mechanism. Acta Geologica Sinica, 93(1): 24-71 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.01.004
      [15] Gao, L. L., Chen, C., Wang, K. Y., et al., 2020. Tectonic Setting and Geochronology of the Sarsuk Au Polymetallic Deposit in Xinjiang, NW China: Constraints from Pyrite Re⁃Os, Zircon U⁃Pb Dating and Hf Isotopes. Ore Geology Reviews, 124: 103641. https://doi.org/10.1016/j.oregeorev.2020.103641
      [16] Geng, X. X., Yang, F. Q., Chai, F. M., et al., 2012. LA⁃ICP⁃MS U⁃Pb Dating of Volcanic Rocks from Dadonggou Ore District on Southern Margin of Altay in Xinjiang and Its Geological Implications. Mineral Deposits, 31(5): 1119-1131 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.05.014
      [17] Geng, X. X., Yang, F. Q., Yang, J. M., et al., 2010. Stable Isotope Characteristics of Tiemurte Pb⁃Zn Deposit in Altay, Xinjiang. Mineral Deposits, 29(6): 1088-1100 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2010.06.011
      [18] Geng, X. X., Zhang, Z. X., Zhang, Z. L., et al., 2022. Ore⁃Forming Age of the Huangtan Au⁃Cu⁃Zn Deposit in the East Tianshan, Xinjiang⁃Muscovite 40Ar⁃39Ar Age and Pyrite Re⁃Os Age. Geotectonica et Metallogenia, Online (in Chinese with English abstract). https://doi.org/10.16539/j.ddgzyckx.2022.03.020
      [19] Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2006. Major Types, Characteristics and Geodynamic Mechanism of Upper Paleozoic Copper Deposits in Northern Xinjiang, Northwestern China. Ore Geology Reviews, 28(3): 308-328. https://doi.org/10.1016/j.oregeorev.2005.04.002
      [20] Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2014. Mid⁃Late Paleozoic Metallogenesis and Evolution of the Chinese Altai and East Junggar Orogenic Belt, NW China, Central Asia. Journal of Geosciences, 59(3): 255-274. https://doi.org/10.3190/jgeosci.173
      [21] He, G. Q., Zhu, Y. F., 2006. Comparative Study of the Geology and Mineral Resources in Xinjiang, China, and Its Adjacent Regions. Geology in China, 33(3): 451-460 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.03.001
      [22] Herrington, R. J., Scotney, P. M., Roberts, S., et al., 2011. Temporal Association of Arc⁃Continent Collision, Progressive Magma Contamination in Arc Volcanism and Formation of Gold⁃Rich Massive Sulphide Deposits on Wetar Island (Banda Arc). Gondwana Research, 19(3): 583-593. https://doi.org/10.1016/j.gr.2010.10.011
      [23] Keller, J., Hoefs, J., 1995. Stable Isotope Characteristics of Recent Natrocarbonaties from Oldoinyo Lengai. In: Bell, K., Keller, J., eds., Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonaties. Springer, Berlin.
      [24] Li, D. F., Fu, Y., Sun, X. M., 2018. Onset and Duration of Zn⁃Pb Mineralization in the Talate Pb⁃Zn (⁃Fe) Skarn Deposit, NW China: Constraints from Spessartine U⁃Pb Dating. Gondwana Research, 63: 117-128. https://doi.org/10.1016/j.gr.2018.05.013
      [25] Li, J. Y., He, G. Q., Xu, X., et al., 2006. Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation. Acta Geologica Sinica, 80(1): 148-168 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.01.017
      [26] Liu, G. R., Dong, L. H., Shang, H. J., et al., 2010. Prospecting Model of Comprehensive Information of Sawusi Pb⁃Zn Deposit in Altai, Xinjiang. Geoscience, 24(1): 59-68 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2010.01.008
      [27] Liu, J. J., He, M. Q., Li, Z. M., et al., 2004. Oxygen and Carbon Isotopic Geochemistry of Baiyangping Silver⁃Copper Polymetallic Ore Concentration Area in Lanping Basin of Yunnan Province and Its Significance. Mineral Deposits, 23(1): 1-10 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2004.01.001
      [28] Liu, M., Zhang, Z. H., Wang, Y. Q., et al., 2008. Geology and Stable Isotope Geochemistry of the Dadonggou Pb⁃Zn Ore Deposit, Altay, Xinjiang, NW China. Acta Geologica Sinica, 82(11): 1504-1513 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2008.11.005
      [29] Liu, S. T., Lü, X. B., Cao, X. F., et al., 2011. Isotopic Geochemistry of the Xiaorequanzi Copper (Zinc) Deposit in Xinjiang and Its Significance. Geology and Exploration, 47(4): 624-632 (in Chinese with English abstract).
      [30] Liu, W., Liu, L. J., Liu, X. J., 2014. 40Ar/39Ar Geochronology of Ore⁃Controlling Grunerite Skarn from the Sawusi Pb⁃Zn Deposit, Maizi Basin of the Southern Chinese Altay Mountains. Acta Petrologica Sinica, 30(6): 1535-1544 (in Chinese with English abstract).
      [31] Liu, X. J., Liu, W., Liu, L. J., 2012. The Generation of a Stratiform Skarn and Volcanic Exhalative Pb⁃Zn Deposit (Sawusi) in the Southern Chinese Altay Mountains: The Constraints from Petrography, Mineral Assemblage and Chemistry. Gondwana Research, 22(2): 597-614. https://doi.org/10.1016/j.gr.2012.01.001
      [32] Liu, X. J., Liu, W., Liu, L. J., et al., 2011. Genesis of the Sawusi Lead⁃Zinc Deposit in the Eastern Maizi Volcanic⁃Sedimentary Basin, Southern Altay Mountains. Acta Petrologica Sinica, 27(6): 1810-1828 (in Chinese with English abstract).
      [33] Lobanov, K., Yakubchuk, A., Creaser, R. A., 2014. Besshi⁃Type VMS Deposits of the Rudny Altai (Central Asia). Economic Geology, 109(5): 1403-1430. https://doi.org/10.2113/econgeo.109.5.1403
      [34] Long, L. L., Wang, J. B., Wang, Y. W., et al., 2017. Zircon U⁃Pb Geochronological, Geochemical Characteristics and Potential Mineralization Significance of the Rhyolite in Kalatage Copper Polymetallic Ore Cluster Area, Eastern Tianshan. Acta Petrologica Sinica, 33(2): 367-384 (in Chinese with English abstract).
      [35] Lu, Q. Y., Zheng, Y., Wang, C. M., et al., 2018. S⁃Pb⁃Sr⁃Nd⁃C⁃H⁃O Isotopic Geochemistry of the Wulasigou Cu Deposit in the South Altay: Constraints for the Fluid and Metal Sources. Earth Science, 43(9): 3141-3153 (in Chinese with English abstract).
      [36] Luo, T., Chen, J. P., Liao, Q. A., et al., 2020. A Back⁃Arc Basin in Eastern Tianshan, Central Asia: Evidence from Geochronology and Geochemistry of Carboniferous Basalts. Earth Science, 45(1): 194-210 (in Chinese with English abstract).
      [37] Lü, X. Q., Mao, Q. G., Guo, N. X., et al., 2020. Re⁃Os Isotopic Dating of Pyrrhotite from Yueyawan Cu⁃Ni Sulfide Deposit in Kalatage Area of East Tianshan Mountain and Its Geological Significance. Earth Science, 45(9): 3475-3486 (in Chinese with English abstract).
      [38] Mao, Q. G., Fang, T. H., Wang, J. B., et al., 2010. Geochronology Studies of the Early Paleozoic Honghai Massive Sulfide Deposits and Its Geological Significance in Kalatage Area, Eastern Tianshan Mountain. Acta Petrologica Sinica, 26(10): 3017-3026 (in Chinese with English abstract).
      [39] Mao, Q. G., Wang, J. B., Fang, T. H., et al., 2015. Lead and Sulfur Isotope Studies of Sulfides from Honghai VMS⁃Type Deposit in Kalatage Ore Belt of Eastern Tianshan Mountains. Mineral Deposits, 34(4): 730-744 (in Chinese with English abstract).
      [40] Mao, Q. G., Wang, J. B., Xiao, W. J., et al., 2019. Mineralization of an Intra⁃Oceanic Arc in an Accretionary Orogen: Insights from the Early Silurian Honghai Volcanogenic Massive Sulfide Cu⁃Zn Deposit and Associated Adakites of the Eastern Tianshan (NW China). GSA Bulletin, 131(5-6): 803-830. https://doi.org/10.1130/b31986.1
      [41] Mao, Q. G., Wang, J. B., Yu, M. J., et al., 2020. Re⁃Os and U⁃Pb Geochronology for the Xiaorequanzi VMS Deposit in the Eastern Tianshan, NW China: Constraints on the Timing of Mineralization and Stratigraphy. Ore Geology Reviews, 122: 103473. https://doi.org/10.1016/j.oregeorev.2020.103473
      [42] Mao, Q. G., Yu, M. J., Xiao, W. J., et al., 2018. Skarn⁃Mineralized Porphyry Adakites in the Harlik Arc at Kalatage, E. Tianshan (NW China): Slab Melting in the Devonian⁃Early Carboniferous in the Southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 365-378. https://doi.org/10.1016/j.jseaes.2017.03.021
      [43] Mercier⁃Langevin, P., Hannington, M. D., Dubé, B., et al., 2011. The Gold Content of Volcanogenic Massive Sulfide Deposits. Mineralium Deposita, 46(5-6): 509-539. https://doi.org/10.1007/s00126⁃010⁃0300⁃0
      [44] Niu, H. C., Yu, X. Y., Xu, J. F., et al., 2006. Late Paleozoic Volcanism and Associated Metallogenesis in the Altay Area, Xinjiang, China. Geological Publishing House, Beijing (in Chinese).
      [45] Niu, L., Hong, T., Xu, X. W., et al., 2020. A Revised Stratigraphic and Tectonic Framework for the Ashele Volcanogenic Massive Sulfide Deposit in the Southern Chinese Altay: Evidence from Stratigraphic Relationships and Zircon Geochronology. Ore Geology Reviews, 127: 103814. https://doi.org/10.1016/j.oregeorev.2020.103814
      [46] Sengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364 (22): 299-307. https://doi.org/10.1038/364299a0
      [47] Shan, Q., Zeng, Q. S., Li, N. B., et al., 2012. Zircon U⁃Pb Ages and Geochemistry of the Potassic and Sodic Rhyolites of the Kangbutiebao Formation in the Southern Margin of Altay, Xinjiang. Acta Petrologica Sinica, 28(7): 2132-2144 (in Chinese with English abstract).
      [48] Shan, Q., Zeng, Q. S., Luo, Y., et al., 2011. SHRIMP U⁃Pb Ages and Petrology Studies on the Potassic and Podic Rhyolites in Altai, North Xinjiang. Acta Petrologica Sinica, 27(12): 3653-3665 (in Chinese with English abstract).
      [49] Shen, P., Pan, H. D., Shen, Y. C., et al., 2015. Main Deposit Styles and Associated Tectonics of the West Junggar Region, NW China. Geoscience Frontiers, 6(2): 175-190. https://doi.org/10.1016/j.gsf.2014.05.001
      [50] Shen, X. H., Yao, C. Y., Fan, X. K., et al., 2016. Zircon U⁃Pb Age and Hf Isotope Compositions of the Wall Rocks in the Sarshuoke Gold⁃Copper Polymetallic Deposit in Altay, Xinjiang: Implications for the Ore⁃Forming Conditions. Geological Bulletin of China, 35(1): 167-174 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2016.01.015
      [51] Sun, B. K., Ruan, B. X., Lü, X. B., et al., 2020. Geochronology and Geochemistry of the Igneous Rocks and Ore⁃Forming Age in the Huangtan Au⁃Cu Deposit in the Kalatag District, Eastern Tianshan, NW China: Implications for Petrogenesis, Geodynamic Setting, and Mineralization. Lithos, 368-369: 105594. https://doi.org/10.1016/j.lithos.2020.105594
      [52] Sun, Y., Wang, J. B., Li, Y. C., et al., 2018. Recognition of Late Ordovician Yudai Porphyry Cu (Au, Mo) Mineralization in the Kalatag District, Eastern Tianshan Terrane, NW China: Constraints from Geology, Geochronology, and Petrology. Ore Geology Reviews, 100: 220-236. https://doi.org/10.1016/j.oregeorev.2017.07.011
      [53] Wan, B., Zhang, L. C., Xiang, P., 2010a. The Ashele VMS⁃Type Cu⁃Zn Deposit in Xinjiang, NW China Formed in a Rifted Arc Setting. Resource Geology, 60(2): 150-164. https://doi.org/10.1111/j.1751⁃3928.2010.00122.x
      [54] Wan, B., Zhang, L. C., Xiao, W. J., 2010b. Geological and Geochemical Characteristics and Ore Genesis of the Keketale VMS Pb⁃Zn Deposit, Southern Altai Metallogenic Belt, NW China. Ore Geology Reviews, 37(2): 114-126. https://doi.org/10.1016/j.oregeorev.2010.01.002
      [55] Wang, D. H., 1996. Sulfur and Lead Isotopic Geochemistry of the Ashele Volcanogenic Massive Sulfide Deposit, Xinjiang, China. Geochimica, 25(6): 582-590 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1996.06.008
      [56] Wang, J. B., Qin, K. Z., Wu, Z. L., et al., 1998. Volcanic Exhalative Sedimentary Lead⁃Zinc Deposits in the South Margin of Altay Mountains, Xinjiang. Geological Publishing House, Beijing (in Chinese).
      [57] Wang, J. B., Wang, Y. W., He, Z. J., 2006. Ore Deposits as a Guide to the Tectonic Evolution in the East Tianshan Mountains, NW China. Geology in China, 33(3): 461-469 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.03.002
      [58] Xiao, W. J., Windley, B. F., Badarch, G., et al., 2004. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. Journal of the Geological Society, 161: 339-342. https://doi.org/10.1144/0016⁃764903⁃165
      [59] Xiao, W. J., Sun, M., Santosh, M., 2015. Continental Reconstruction and Metallogeny of the Circum⁃Junggar Areas and Termination of the Southern Central Asian Orogenic Belt. Geoscience Frontiers, 6(2): 137-140. https://doi.org/10.1016/j.gsf.2014.11.003
      [60] Yakubchuk, A. S., Shatov, V. V., Kirwin, D., et al., 2005. Gold and Base Metal Metallogeny of the Central Asian Orogenic Supercollage. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., et al., eds., One Hundredth Anniversary Volume. Society of Economic Geologists, Littleton. https://doi.org/10.5382/av100.31
      [61] Yang, C. D., Chai, F. M., Yang, F. Q., et al., 2018d. Genesis of the Huangtupo Cu⁃Zn Deposit, Eastern Tianshan, NW China: Constraints from Geology, Rb⁃Sr and Re⁃Os Geochronology, Fluid Inclusions, and H⁃O⁃S⁃Pb Isotopes. Ore Geology Reviews, 101: 725-739. https://doi.org/10.1016/j.oregeorev.2018.08.021
      [62] Yang, C. D., Geng, X. X., Yang, F. Q., et al., 2018e. Metallogeny of the Sarsuk Polymetallic Au Deposit in the Ashele Basin, Altay Orogenic Belt, Xinjiang, NW China: Constraints from Mineralogy, Fluid Inclusions, and He⁃Ar Isotopes. Ore Geology Reviews, 100: 77-98. https://doi.org/10.1016/j.oregeorev.2016.10.026
      [63] Yang, C. D., Yang, F. Q., Chai, F. M., et al., 2018c. Timing of Formation of the Keketale Pb⁃Zn Deposit, Xinjiang, Northwest China, Central Asian Orogenic Belt: Implications for the Metallogeny of the South Altay Orogenic Belt. Geological Journal, 53(3): 899-913. https://doi.org/10.1002/gj.2933
      [64] Yang, C. D., Yang, F. Q., Geng, X. X., et al., 2017. Geochemistry and Sr⁃Nd⁃Hf Isotopes of Middle Devonian Igneous Rocks of the Sarsuk Polymetallic Au Deposit: Implications for Understanding the Tectonic Evolution of the South Altay Orogenic Belt, Northwest China. International Geology Review, 59(4): 448-469. https://doi.org/10.1080/00206814.2016.1227943
      [65] Yang, C. D., Zhang, B., Yang, F. Q., et al., 2021a. Zircon U⁃Pb Age, Fluid Inclusion, and H⁃C⁃O⁃He⁃Ar⁃S Isotopic Compositions as an Index to the VMS⁃Type Mineralization: A Case Study from the Wulasigou Polymetallic Deposit, Altay Orogenic Belt, Northwest China. Journal of Geochemical Exploration, 222: 106720. https://doi.org/10.1016/j.gexplo.2020.106720
      [66] Yang, F. Q., Geng, X. X., Wang, R., et al., 2018a. A Synthesis of Mineralization Styles and Geodynamic Settings of the Paleozoic and Mesozoic Metallic Ore Deposits in the Altay Mountains, NW China. Journal of Asian Earth Sciences, 159: 233-258. https://doi.org/10.1016/j.jseaes.2017.05.020
      [67] Yang, F. Q., Li, Q., Yang, C. D., et al., 2018b. A Combined Fluid Inclusion and S⁃H⁃O⁃He⁃Ar Isotope Study of the Devonian Ashele VMS⁃Type Copper⁃Zinc Deposit in the Altay Orogenic Belt, Northwest China. Journal of Asian Earth Sciences, 161: 139-163. https://doi.org/10.1016/j.jseaes.2018.05.012
      [68] Yang, F. Q., Liu, F., Li, Q., 2015. Geological Characteristics and Metallogenesis of the Saershuoke Polymetallic Deposit in Altay, Xinjiang. Acta Petrologica Sinica, 31(8): 2366-2382 (in Chinese with English abstract).
      [69] Yang, F. Q., Liu, F., Li, Q., et al., 2014. In Situ LA⁃MC⁃ICP⁃MS U⁃Pb Geochronology of Igneous Rocks in the Ashele Basin, Altay Orogenic Belt, Northwest China: Constraints on the Timing of Polymetallic Copper Mineralization. Journal of Asian Earth Sciences, 79: 477-496. https://doi.org/10.1016/j.jseaes.2013.10.022
      [70] Yang, F. Q., Mao, J. W., Zheng, J. M., et al., 2006. Geology and Metallogenic Model of the Altay Large Metallogenic Belt in Kazakhstan. Acta Geologica Sinica, 80(7): 963-983 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.07.004
      [71] Yang, F. Q., Zhang, B., Yang, C. D., et al., 2021b. Geology and Geochronology of the Volcanogenic Massive Sulphide Polymetallic Deposits in Altay Orogenic Belt, Xinjiang, Northwest China: Examples from the Kelan Basin. International Geology Review, 63(10): 1199-1214. https://doi.org/10.1080/00206814.2020.1756001
      [72] Yu, M. J., Wang, Y. W., Wang, J. B., et al., 2019. The Mineralization of the Kalatage Arc, Eastern Tianshan, NW China: Insights from the Geochronology of the Meiling Cu⁃Zn(⁃Au) Deposit. Ore Geology Reviews, 107: 72-86. https://doi.org/10.1016/j.oregeorev.2018.12.009
      [73] Yu, P. P., Zheng, Y., 2019. Pb⁃Zn⁃Cu Accumulation from Seafloor Sedimentation to Metamorphism: Constraints from Ore Textures Coupled with Elemental and Isotopic Geochemistry of the Tiemurt in Chinese Altay Orogen, NW China. Gondwana Research, 72: 65-82. https://doi.org/10.1016/j.gr.2019.02.007
      [74] Yu, P. P., Zheng, Y., Wang, C. M., 2020. Trace Elemental and Sulfur⁃Lead Isotopic Variations in Metamorphosed Volcanogenic Massive Sulfide (VMS) Mineralization Systems: An Example from the Keketale Pb⁃Zn(⁃Ag) Deposit, NW China. Ore Geology Reviews, 125: 103685. https://doi.org/10.1016/j.oregeorev.2020.103685
      [75] Yuan, L. L., Liu, F., 2017. Sulfide Re⁃Os Age and Rb⁃Sr Age of Talate Pb⁃Zn⁃Fe Polymetallic Deposit in Southern Altay and Their Geological Significance. Mineral Deposits, 36(6): 1333-1351 (in Chinese with English abstract).
      [76] Zeng, Z. G., Qin, Y. S., Zhai, S. K., 2001. He, Ne and Ar Isotope Compositions of Fluid Inclusions in Hydrothermal Sulfides from the TAG Hydrothermal Field Mid⁃Atlantic Ridge. Science China: Earth Sciences, 44(3): 221-228. https://doi.org/10.1007/BF02882256
      [77] Zhang, Z. L., Geng, X. X., Zhang, Z. X., et al., 2022. Metallogenesis of the Huangtan Au⁃Cu⁃Zn Deposit in East Tianshan, NW China: Constraints from Isotopes (H, O, He, Ar, and S) and Re⁃Os Geochronology. International Journal of Earth Sciences, Online. https://doi.org/10.1007/s00531⁃021⁃02134⁃5
      [78] Zhang, Z. X., Yang, F. Q., Liu, F., et al., 2014. Helium and Argon Isotopes Tracing for Sources of Ore⁃Forming Fluid in the Ashele Volcanogenic⁃Host Massive Sulfide Copper⁃Zinc Deposit, Chinese Altay. Geological Review, 60(1): 222-230 (in Chinese with English abstract).
      [79] Zheng, Y., Zhang, L., Guo, Z. L., 2013. Zircon LA⁃ICP⁃MS U⁃Pb and Biotite 40Ar/39Ar Geochronology of the Tiemuert Pb⁃Zn⁃Cu Deposit, Xinjiang: Implications for Ore Genesis. Acta Petrologica Sinica, 29(1): 191-204 (in Chinese with English abstract).
      [80] Zheng, Y., Zhang, L., Li, D. F., et al., 2015. Genesis of the Dadonggou Pb⁃Zn Deposit in Kelan Basin, Altay, NW China: Constraints from Zircon U⁃Pb and Biotite 40Ar/39Ar Geochronological Data. Ore Geology Reviews, 64: 128-139. https://doi.org/10.1016/j.oregeorev.2014.07.002
      [81] 柴凤梅, 许强奋, 王雯, 等, 2017. 东天山黄土坡铜锌矿床成矿流体的氩‒氩同位素示踪. 地质科学, 52(4): 1263-1281.
      [82] 柴凤梅, 杨富全, 刘锋, 等, 2012. 阿尔泰南缘麦兹盆地康布铁堡组变质酸性火山岩年龄及岩石成因. 地质科学, 47(1): 221-239. doi: 10.3969/j.issn.0563-5020.2012.01.019
      [83] 陈毓川, 叶庆同, 冯京, 等, 1996. 阿舍勒铜锌成矿带成矿条件和成矿预测. 北京: 地质出版社.
      [84] 高俊, 朱明田, 王信水, 等, 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制. 地质学报, 93(1): 24-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201901004.htm
      [85] 耿新霞, 杨富全, 柴凤梅, 等, 2012. 新疆阿尔泰南缘大东沟铅锌矿区火山岩LA⁃ICP⁃MS锆石U⁃Pb定年及地质意义. 矿床地质, 31(5): 1119-1131. doi: 10.3969/j.issn.0258-7106.2012.05.014
      [86] 耿新霞, 杨富全, 杨建民, 等, 2010. 新疆阿尔泰铁木尔特铅锌矿床稳定同位素组成特征. 矿床地质, 29(6): 1088-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201006010.htm
      [87] 耿新霞, 张志欣, 张振龙, 等, 2022. 新疆东天山黄滩金铜锌矿成矿时代——来自白云母40Ar⁃39Ar年龄和黄铁矿Re⁃Os年龄约束. 大地构造与成矿, 在线出版. https://doi.org/10.16539/j.ddgzyckx.2022.03.020
      [88] 何国琦, 朱永峰, 2006. 中国新疆及其邻区地质矿产对比研究. 中国地质, 33(3): 451-460. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603000.htm
      [89] 李锦轶, 何国琦, 徐新, 等, 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨. 地质学报, 80(1): 148-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601020.htm
      [90] 刘国仁, 董连慧, 尚海军, 等, 2010. 新疆阿尔泰萨吾斯铅锌矿综合信息找矿模式. 现代地质, 24(1): 59-68. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201001009.htm
      [91] 刘家军, 何明勤, 李志明, 等, 2004. 云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义. 矿床地质, 23(1): 1-10 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200401000.htm
      [92] 刘敏, 张作衡, 王永强, 等, 2008. 新疆阿尔泰大东沟铅锌矿床地质特征及稳定同位素地球化学研究. 地质学报, 82(11): 1504-1513.
      [93] 刘申态, 吕新彪, 曹晓峰, 等, 2011. 新疆小热泉子铜(锌)矿床同位素地球化学研究及其意义. 地质与勘探, 47(4): 624-632. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201104010.htm
      [94] 刘伟, 刘丽娟, 刘秀金, 2014. 阿尔泰南缘麦兹盆地萨吾斯铅锌矿床控矿铁闪石矽卡岩的40Ar/39Ar年代学研究. 岩石学报, 30(6): 1535-1544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406002.htm
      [95] 刘秀金, 刘伟, 刘丽娟, 等, 2011. 阿尔泰南缘麦兹火山‒沉积盆地东部萨吾斯铅锌矿床成因探讨. 岩石学报, 27(6): 1810-1828. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106020.htm
      [96] 龙灵利, 王京彬, 王玉往, 等, 2017. 东天山卡拉塔格铜多金属矿集区黄铁矿化(次)流纹岩年代学、地球化学特征及其对成矿的潜在意义. 岩石学报, 33(2): 367-384. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702005.htm
      [97] 卢琦园, 郑义, 王成明, 等, 2018. 阿尔泰南缘乌拉斯沟铜矿床S⁃Pb⁃Sr⁃Nd⁃C⁃H⁃O同位素特征及其对成矿物质和流体来源限定. 地球科学, 43(9): 3141-3153. doi: 10.3799/dqkx.2018.135
      [98] 罗婷, 陈继平, 廖群安, 等, 2020. 东天山觉罗塔格构造带石炭纪弧后盆地: 来自基性火山岩的证据. 地球科学, 45(1): 194-210. doi: 10.3799/dqkx.2018.325
      [99] 吕晓强, 毛启贵, 郭娜欣, 等, 2020. 东天山卡拉塔格地区月牙湾铜镍硫化物矿床磁黄铁矿Re⁃Os同位素测定及其地质意义. 地球科学, 45(9): 3475-3486. doi: 10.3799/dqkx.2019.228
      [100] 毛启贵, 方同辉, 王京彬, 等, 2010. 东天山卡拉塔格早古生代红海块状硫化物矿床精确定年及其地质意义. 岩石学报, 26(10): 3017-3026. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010013.htm
      [101] 毛启贵, 王京彬, 方同辉, 等, 2015. 东天山卡拉塔格矿带红海VMS型矿床S、Pb同位素地球化学研究. 矿床地质, 34(4): 730-744. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201504005.htm
      [102] 牛贺才, 于学元, 许继峰, 等, 2006. 中国新疆阿尔泰晚古生代火山作用及成矿. 北京: 地质出版社.
      [103] 单强, 曾乔松, 李宁波, 等, 2012. 新疆阿尔泰南缘康布铁堡组钾‒钠质流纹岩锆石U⁃Pb年龄和地球化学. 岩石学报, 28(7): 2132-2144. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207016.htm
      [104] 单强, 曾乔松, 罗勇, 等, 2011. 新疆阿尔泰康布铁堡组钾质和钠质流纹岩的成因及同位素年代学研究. 岩石学报, 27(12): 3653-3665. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201112013.htm
      [105] 沈雪华, 姚春彦, 樊献科, 等, 2016. 新疆萨尔朔克铜金多金属矿床成矿围岩锆石年龄、Hf同位素及其成矿背景. 地质通报, 35(1): 167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201601015.htm
      [106] 王登红, 1996. 新疆阿舍勒火山岩型块状硫化物铜矿硫、铅同位素地球化学. 地球化学, 25(6): 582-590. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX606.007.htm
      [107] 王京彬, 秦克章, 吴志亮, 等, 1998. 阿尔泰山南缘火山喷流沉积型铅锌矿床. 北京: 地质出版社.
      [108] 王京彬, 王玉往, 何志军, 2006. 东天山大地构造演化的成矿示踪. 中国地质, 33(3): 461-469. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603001.htm
      [109] 杨富全, 刘锋, 李强, 2015. 新疆阿尔泰萨尔朔克多金属矿地质特征及成矿作用. 岩石学报, 31(8): 2366-2382. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201508017.htm
      [110] 杨富全, 毛景文, 郑建民, 等, 2006. 哈萨克斯坦阿尔泰巨型成矿带的地质特征和成矿模型. 地质学报, 80(7): 963-983. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200607003.htm
      [111] 袁玲玲, 刘锋, 2017. 阿尔泰南缘塔拉特铅锌铁多金属矿床硫化物Re⁃Os和Rb⁃Sr年龄及其地质意义. 矿床地质, 36(6): 1333-1351. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201706005.htm
      [112] 张志欣, 杨富全, 刘锋, 等, 2014. 新疆阿尔泰阿舍勒VHMS型铜锌矿床成矿流体的氦: 氩同位素示踪. 地质论评, 60(1): 222-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201401023.htm
      [113] 郑义, 张莉, 郭正林, 2013. 新疆铁木尔特铅锌铜矿床锆石U⁃Pb和黑云母40Ar/39Ar年代学及其矿床成因意义. 岩石学报, 29(1): 191-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201301016.htm
    • 加载中
    图(14) / 表(2)
    计量
    • 文章访问数:  265
    • HTML全文浏览量:  91
    • PDF下载量:  71
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-08-09
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回