Decoupled Evolution of Surface and Thermocline Water Temperatures in Middle Okinawa Trough during Last Deglaciation
-
摘要: 解读末次冰消期全球水文气候演变过程对于理解气候系统对内外强迫的响应具有重要意义. 以冲绳海槽中部OKI02岩心为材料,通过浮游有孔虫Globigerinodes ruber和Pulleniatina obliquiloculata壳体Mg/Ca比值分别重建了19 ka BP以来海槽中部表层和温跃层海水温度(SST和TWT),结合浮游有孔虫群落组成变化重点恢复了末次冰消期(~18~11.7 ka BP)上层水体温度变化的特征和过程. 结果显示SST在LGM显著偏低,末次冰消期表现为显著的千年尺度变化,清楚地记录了HS1、B/A、YD等快速气候波动事件. 19 ka BP以来重建的TWT整体呈明显的上升趋势,但波动频繁而剧烈,末次冰消期相对较低,未显示显著的千年尺度变化. 对比北半球高纬和热带太平洋的记录发现,末次冰消期冲绳海槽中部SST开始上升的时间基本与前者相当,但明显滞后于热带西太平洋;冰消期其变化模式明显区别于热带西太平洋持续稳定的升温过程,而更类似于北半球高纬区的变化. 与SST明显不同,海槽区温跃层的升温(~18 ka BP)明显早于北半球高纬变暖,却接近于热带西太平洋海表温度开始上升的时间;且TWT的上升和波动方式也更接近于热带太平洋海温的变化模式. 对末次冰消期SST和TWT差异化演变的分析表明,AMOC对中低纬大气环流的影响可能通过东亚冬季风强度的变化控制了海槽区SST的演变,而热带太平洋ENSO过程则可能通过黑潮强度的变化决定了区域TWT的演化. 末次冰消期冲绳海槽中部SST和TWT演化存在明显的脱耦现象,显示了其与高、低纬海洋和气候变化之间的密切联系.Abstract: Deciphering the evolution of global hydroclimate during the last deglaciation is of great significance for understanding the response of the climate system to the internal and external forces. Based on planktonic foraminiferal Globigerinodes ruber and Pulleniatina obliquiloculata shell Mg/Ca ratio obtained from core OKI02, we reconstructed a 19 000-year record of Sea Surface Temperature (SST) and Thermocline Water Temperature (TWT) to unveil the characteristics and process of upper water temperature in the Middle Okinawa Trough during the last deglaciation. The results imply that the SST was significantly low (about 23.7 ℃ on average) during the Last Glacial Maximum (LGM, about 19-18 ka BP), and was of obvious millennial-scale variation features during the last deglaciation. Heinrich Stadial 1(HS1), Bølling-Allerød (B/A) and Younger Dryas (YD) events could be identified obviously in the record of SST.TWT shows a rising trend, with frequent and strong fluctuation since 19 ka BP. TWT is relatively low (about 20.3 ℃ on average) during the last deglaciation, without apparent significant millennial-scale changes. During the last deglaciation, the beginning time of SST rising in the Okinawa Trough was consistent with the SST record in high latitudes of the northern hemisphere, while lagged significantly behind SST record of the tropical western Pacific. Meanwhile, the SST change pattern in the Okinawa Trough was different from the continuous and stable warming process of the tropical western Pacific, but more similar to the climate change of the northern hemisphere high latitudes. In contrast, the warming time of TWT was earlier than that happened in the northern high latitudes but close to the tropical western Pacific. Moreover, the rising and fluctuating mode of TWT was different from the former and was more similar to the variation pattern of the tropical Pacific. The differentiated evolution of SST and TWT demonstrates that the influence of Atlantic Meridional Overturning Circulation (AMOC) on the atmospheric circulation may control the SST in the trough area through the changes of the East Asian winter monsoon. However, the tropical Pacific ENSO process probably plays an important role in the evolution of the regional TWT through the changes of the Kuroshio during the last deglaciation. The trend of the decoupling change in SST and TWT in the middle of the Okinawa Trough implies its intimate connection with high and low latitude oceans and climate change.
-
图 1 冲绳海槽中部OKI02和相关岩心站位以及西北太平洋表层环流模式
底图据NOAA(https://maps.ngdc.noaa.gov/viewers/wcs-client/)绘制,表层环流模式据Gallagher et al.(2015)改编. KC(Kuroshio Current). 黑潮;KE(Kuroshio Extension). 黑潮延伸体;MC(Mindanao Current). 棉兰老流;NEC(North Equatorial Current). 北赤道流;SEC(South Equatorial Current). 南赤道流;TWC(Tsushima Warm Current). 对马暖流
Fig. 1. The locations of OKI02 and related cores and surface circulation systems of the Northwest Pacific Ocean
图 3 冲绳海槽中部OKI02岩心SST、TWT与冲绳海槽、热带西太平洋、北大西洋及格陵兰冰心记录的对比
a.热带西太平洋MD98-2181、MD06-3067及MD06-3054岩心G. ruber壳体Mg/Ca-SST记录(Stott et al., 2002;陈双喜,2011;Bolliet et al., 2011);b.OKI02及冲绳海槽A7、MD012404、OKT-3岩心G. ruber壳体Mg/Ca-SST记录(Sun et al., 2005;Chen et al., 2010;Zhao et al., 2015);c.OKI02岩心P. obliquiloculata壳体Mg/Ca-TWT记录;d.热带西太平洋GeoB17419-1、MD06-3067及MD06-3054岩心P. obliquiloculata壳体Mg/Ca-TWT记录(陈双喜,2011;Bolliet et al., 2011;Hollstein et al., 2018);e.北大西洋SU8118岩心$ {\mathrm{U}}_{37}^{k\text{'}} $SST记录(Bard et al., 2000);f.格陵兰冰心氧同位素记录(NGICP Members,2004)
Fig. 3. Comparison of core OKI02 SST and TWT with the records of Okinawa Trough, tropical western Pacific, the North Atlantic, and Greenland ice core
图 4 冲绳海槽中部OKI02岩心SST与东亚冬季风、AMOC强度、北大西洋高纬SST及格陵兰冰心δ18O记录的对比
a. OKI02 SST;b.中国黄土平均粒径(Sun et al., 2012),粗实线为平滑趋势;c.湖光岩玛珥湖Ti含量变化(Yancheva et al., 2007);d.北大西洋GGC-5岩心231Pa/230Th(McManus et al., 2004);e. 北大西洋SU8118岩心SST(Bard et al., 2000);f.格陵兰冰心氧同位素(NGICP Members,2004)
Fig. 4. Comparison of core OKI02 SST with the records of East Asian winter monsoon, AMOC strength, North Atlantic high latitude SST, and Greenland ice core δ18O
图 5 冲绳海槽中部OKI02岩心记录与赤道东、西太平洋SST梯度、St.19和MD01-2421岩心SST梯度及格陵兰冰心δ18O对比
a. OKI02岩心P. obliquiloculata-TWT记录;b. OKI02岩心P. obliquiloculata百分含量变化;c.OKI02岩心浮游有孔虫混合层种/温跃层种百分含量变化的比值,红线为趋势线;d.热带西太平洋和东太平洋海表温度差(Koutavas and Joanides, 2012);e.St.19和MD01-2421岩心SST差(Yamamoto,2009),粗实线表示5点滑动平均;f.格陵兰冰心氧同位素记录(NGICP Members,2004)
Fig. 5. Comparison of core OKI02 records with the SST gradient of equatorial eastern and western Pacific, the SST gradient of St.19 and MD01-2421 cores, and the δ18O of Greenland ice core
表 1 冲绳海槽中部OKI02岩心的AMS14C年龄和日历年龄
Table 1. AMS14C and calendar ages of OKI02 in the Middle Okinawa Trough
测试编号 层位(cm) AMS14C年龄(a BP) 日历年龄(a BP) 2σ年龄范围(a BP) 来源 Beta-373510 0~2 100.6±0.3 pMc Zheng et al., 2014 Beta-337538 52~54 3 150±30 2 709 2 498~2 874 Beta-373511 104~106 4 920±30 4 935 4 754~5 196 Beta-373512 134~136 5 830±30 5 974 5 782~6 171 Beta-337539 162~164 7 200±40 7 433 7 265~7 580 Beta-373513 188~190 8 300±30 8 541 8 367~8 753 Beta-373514 212~214 9 230±40 9 709 9 502~9 954 Beta-337540 248~250 10 560±40 11 546 11 286~11 803 Beta-571959 286~288 12 670±40 14 038 13 791~14 293 本文 Beta-571960 336~338 13 220±40 14 976 14 697~15 235 本文 Beta-337541 372~374 14 290±50 16 367 16 093~16 650 Zheng et al., 2014 Beta-571961 410~412 14 480±50 16 616 16 336~16 901 本文 Beta-571962 454~456 15 280±50 17 596 17 310~17 889 本文 Beta-337542 488~490 16 530±60 18 967 18 722~19 240 Zheng et al., 2014 -
[1] Andres, M., Jan, S., Sanford, T., et al., 2015. Mean Structure and Variability of the Kuroshio from Northeastern Taiwan to Southwestern Japan. Oceanography, 28(4): 84-95. https://doi.org/10.5670/oceanog.2015.84 [2] Bard, E., Rostek, F., Sonzogni, C., 1997. Interhemispheric Synchrony of the Last Deglaciation Inferred from Alkenone Palaeothermometry. Nature, 385(6618): 707-710. https://doi.org/10.1038/385707a0 [3] Bard, E., Rostek, F., Turon, J. L., et al., 2000. Hydrological Impact of Heinrich Events in the Subtropical Northeast Atlantic. Science, 289(5483): 1321-1324. https://doi.org/10.1126/science.289.5483.1321 [4] Barker, S., Greaves, M., Elderfield, H., 2003. A Study of Cleaning Procedures Used for Foraminiferal Mg/Ca Paleothermometry. Geochemistry, Geophysics, Geosystems, 4(9): 1-20. https://doi.org/10.1029/2003GC000559 [5] Bolliet, T., Holbourn, A., Kuhnt, W., et al., 2011. Mindanao Dome Variability over the Last 160 kyr: Episodic Glacial Cooling of the West Pacific Warm Pool. Paleoceanography, 26: PA1208. https://doi.org/10.1029/2010PA001966 [6] Bond, G., Broecker, W., Johnsen, S., et al., 1993. Correlations between Climate Records from North Atlantic Sediments and Greenland Ice. Nature, 365(6442): 143-147. https://doi.org/10.1038/365143a0 [7] Chang, F. M., Li, T. G., Zhuang, L. H., et al., 2008. A Holocene Paleotemperature Record Based on Radiolaria from the Northern Okinawa Trough (East China Sea). Quaternary International, 183(1): 115-122. https://doi.org/10.1016/j.quaint.2006.12.007 [8] Chen, M. T., Lin, X. P., Chang, Y. P., et al., 2010. Dynamic Millennial-Scale Climate Changes in the Northwestern Pacific over the Past 40 000 Years. Geophysical Research Letters, 37(23): L23603. https://doi.org/10.1029/2010GL045202 [9] Chen, S. X., 2011. High-Resolution Paleoceanographic Records on the Bifurcation of the North Equatorial Current in the Northwestern Pacific since 37 ka BP (Dissertation). Institute of Oceanology, Chinese Academy of Sciences, Qingdao (in Chinese with English abstract). [10] Dansgaard, W., Johnsen, S. J., Clausen, H. B., et al., 1993. Evidence for General Instability of Past Climate from a 250-kyr Ice-Core Record. Nature, 364(6434): 218-220. https://doi.org/10.1038/364218a0 [11] Denton, G. H., Alley, R. B., Comer, G. C., et al., 2005. The Role of Seasonality in Abrupt Climate Change. Quaternary Science Reviews, 24(10-11): 1159-1182. https://doi.org/10.1016/j.quascirev.2004.12.002 [12] Gallagher, S. J., Kitamura, A., Iryu, Y., et al., 2015. The Pliocene to Recent History of the Kuroshio and Tsushima Currents: A Multi-Proxy Approach. Progress in Earth and Planetary Science, 2: 17. https://doi.org/10.1186/s40645-015-0045-6 [13] Hastings, D. W., Kienast, M., Steinke, S., et al., 2001. A Comparison of Three Independent Paleotemperature Estimates from a High Resolution Record of Deglacial SST Records in the Tropical South China Sea. In: AGU Fall Meeting. American Geophysical Union, San Francisco. [14] Haug, G. H., Hughen, K. A., Sigman, D. M., et al., 2001. Southward Migration of the Intertropical Convergence Zone through the Holocene. Science, 293(5533): 1304-1308. https://doi.org/10.1126/science.1059725 [15] He, F., Shakun, J. D., Clark, P. U., et al., 2013. Northern Hemisphere Forcing of Southern Hemisphere Climate during the Last Deglaciation. Nature, 494(7435): 81-85. https://doi.org/10.1038/nature11822 [16] Hollstein, M., Mohtadi, M., Rosenthal, Y., et al., 2017. Stable Oxygen Isotopes and Mg/Ca in Planktic Foraminifera from Modern Surface Sediments of the Western Pacific Warm Pool: Implications for Thermocline Reconstructions. Paleoceanography, 32(11): 1174-1194. https://doi.org/10.1002/2017PA003122 [17] Hollstein, M., Mohtadi, M., Rosenthal, Y., et al., 2018. Variations in Western Pacific Warm Pool Surface and Thermocline Conditions over the Past 110 000 Years: Forcing Mechanisms and Implications for the Glacial Walker Circulation. Quaternary Science Reviews, 201: 429-445. https://doi.org/10.1016/j.quascirev.2018.10.030 [18] Hu, D. X., Wu, L. X., Cai, W. J., et al., 2015. Pacific Western Boundary Currents and Their Roles in Climate. Nature, 522(7556): 299-308. https://doi.org/10.1038/nature14504 [19] Jackson, M. S., Kelly, M. A., Russell, J. M., et al., 2019. High-Latitude Warming Initiated the Onset of the Last Deglaciation in the Tropics. Science Advances, 5(12): eaaw2610. https://doi.org/10.1126/sciadv.aaw2610 [20] Jian, Z. M., Wang, Y., Dang, H. W., et al., 2020. Half-Precessional Cycle of Thermocline Temperature in the Western Equatorial Pacific and Its Bihemispheric Dynamics. Proceedings of the National Academy of Sciences of the United States of America, 117(13): 7044-7051. https://doi.org/10.1073/pnas.1915510117 [21] Koutavas, A., Joanides, S., 2012. El Niño-Southern Oscillation Extrema in the Holocene and Last Glacial Maximum. Paleoceanography, 27(4): PA4208. https://doi.org/10.1029/2012PA002378 [22] Lea, D. W., Pak, D. K., Belanger, C. L., et al., 2006. Paleoclimate History of Galápagos Surface Waters over the Last 135 000 yr. Quaternary Science Reviews, 25(11-12): 1152-1167. https://doi.org/10.1016/j.quascirev.2005.11.010 [23] Lee, H. J., Chao, S. Y., 2003. A Climatological Description of Circulation in and around the East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6-7): 1065-1084. https://doi.org/10.1016/S0967-0645(03)00010-9 [24] Li, T. G., Liu, Z. X., Hall, M. A., et al., 2001. Heinrich Event Imprints in the Okinawa Trough: Evidence from Oxygen Isotope and Planktonic Foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 176(1-4): 133-146. https://doi.org/10.1016/S0031-0182(01)00332-7 [25] McManus, J. F., Francois, R., Gherardi, J. M., et al., 2004. Collapse and Rapid Resumption of Atlantic Meridional Circulation Linked to Deglacial Climate Changes. Nature, 428(6985): 834-837. https://doi.org/10.1038/nature02494 [26] NGICP Members, 2004. High Resolution Climate Record of the Northern Hemisphere Reaching into the Last Glacial Interglacial Period. Nature, 431: 147-151. https://doi.org/10.1038/nature02805 [27] Oka, E., Kawabe, M., 1998. Characteristics of Variations of Water Properties and Density Structure around the Kuroshio in the East China Sea. Journal of Oceanography, 54(6): 605-617. https://doi.org/10.1007/BF02823281 [28] Pan, A. J., Wan, X. F., Guo, X. G., et al., 2013. Responses of the Zhe-Min Coastal Current adjacent to Pingtan Island to the Wintertime Monsoon Relaxation in 2006 and Its Mechanism. Science China Earth Sciences, 56(3): 386-396. https://doi.org/10.1007/s11430-012-4429-9 [29] Qin, Z. K., Sun, Z. B., 2006. Influence of Abnormal East Asian Winter Monsoon on the Northwestern Pacific Sea Temperature. Chinese Journal of Atmospheric Sciences, 30(2): 257-267 (in Chinese with English abstract). [30] Qu, T., Kim, Y. Y., Yaremchuk, M., et al., 2004. Can Luzon Strait Transport Play a Role in Conveying the Impact of ENSO into the South China Sea? Journal of Climate, 17: 3644-3657. https://doi.org/10.1175/1520-0442(2004)017<3644:clstpa>2.0.co;2 doi: 10.1175/1520-0442(2004)017<3644:clstpa>2.0.co;2 [31] Schmidt, M. W., Spero, H. J., 2011. Meridional Shifts in the Marine ITCZ and the Tropical Hydrologic Cycle over the Last Three Glacial Cycles. Paleoceanography, 26: PA1206. https://doi.org/10.1029/2010PA001976 [32] Stott, L., Poulsen, C., Lund, S., et al., 2002. Super ENSO and Global Climate Oscillations at Millennial Time Scales. Science, 297(5579): 222-226. https://doi.org/10.1126/science.1071627 [33] Sun, Y. B., Clemens, S. C., Morrill, C., et al., 2012. Influence of Atlantic Meridional Overturning Circulation on the East Asian Winter Monsoon. Nature Geoscience, 5(1): 46-49. https://doi.org/10.1038/ngeo1326 [34] Sun, Y. B., Oppo, D. W., Xiang, R., et al., 2005. Last Deglaciation in the Okinawa Trough: Subtropical Northwest Pacific Link to Northern Hemisphere and Tropical Climate. Paleoceanography, 20(4): PA4005. https://doi.org/10.1029/2004PA001061 [35] Tian, C. J., Cai, G. Q., Li, M. K., et al., 2021. Paleoclimatic and Paleoenvironmental Changes Recorded by Elemental Geochemistry in the Northwestern South China Sea since the Past ~55 ka. Earth Science, 46(3): 975-985 (in Chinese with English abstract). [36] Visser, K., Thunell, R., Stott, L., 2003. Magnitude and Timing of Temperature Change in the Indo-Pacific Warm Pool during Deglaciation. Nature, 421(6919): 152-155. https://doi.org/10.1038/nature01297 [37] Wang, R., Liu, Z. F., 2020. Stable Isotope Evidence for Recent Global Warming Hiatus. Journal of Earth Science, 31(2): 419-424. https://doi.org/10.1007/s12583-019-1239-4 [38] Wang, Y. J., Cheng, H., Edwards, R. L., et al., 2001. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science, 294(5550): 2345-2348. https://doi.org/10.1126/science.1064618 [39] Yamamoto, M., 2009. Response of Mid-Latitude North Pacific Surface Temperatures to Orbital Forcing and Linkage to the East Asian Summer Monsoon and Tropical Ocean-Atmosphere Interactions. Journal of Quaternary Science, 24(8): 836-847. https://doi.org/10.1002/jqs.1255 [40] Yancheva, G., Nowaczyk, N. R., Mingram, J., et al., 2007. Influence of the Intertropical Convergence Zone on the East Asian Monsoon. Nature, 445(7123): 74-77. https://doi.org/10.1038/nature05431 [41] Yoneda, M., Uno, H., Shibata, Y., et al., 2007. Radiocarbon Marine Reservoir Ages in the Western Pacific Estimated by Pre-Bomb Molluscan Shells. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 259(1): 432-437. https://doi.org/10.1016/j.nimb.2007.01.184 [42] Zhan, Q., Wang, Z. H., Zhao, B. C., et al., 2020. Sedimentary Evolution and Coastal Currents Variations of the Yangtze River Mouth (East China Sea) since Last Deglaciation. Earth Science, 45(7): 2697-2708 (in Chinese with English abstract). [43] Zhao, J. T., Li, J., Cai, F., et al., 2015. Sea Surface Temperature Variation during the Last Deglaciation in the Southern Okinawa Trough: Modulation of High Latitude Teleconnections and the Kuroshio Current. Progress in Oceanography, 138: 238-248. https://doi.org/10.1016/j.pocean.2015.06.008 [44] Zhao, M. X., Huang, C. Y., Wei, K. Y., 2005. A 28 000 Year U37k' Sea-Surface Temperature Record of ODP Site 1202B, the Southern Okinawa Trough. Terrestrial, Atmospheric & Oceanic Sciences, 16(1): 45-56. https://doi.org/10.3319/tao.2005.16.1.45(ot) [45] Zhao, S., Chang, F. M., Li, T. G., et al., 2018. Seasonal and Inter-Annual Anomalies of Sea Surface Temperature Offshore Northeastern Taiwan and Its Implication to Historical Climate Reconstructions. Earth Science, 43(3): 851-861 (in Chinese with English abstract). [46] Zheng, X. F., Li, A. C., Wan, S. M., et al., 2014. ITCZ and ENSO Pacing on East Asian Winter Monsoon Variation during the Holocene: Sedimentological Evidence from the Okinawa Trough. Journal of Geophysical Research: Oceans, 119(7): 4410-4429. https://doi.org/10.1002/2013JC009603 [47] 陈双喜, 2011. 西北太平洋北赤道流分叉处37 ka BP以来的高分辨率古海洋记录(博士学位论文). 青岛: 中国科学院研究生院(海洋研究所). [48] 秦正坤, 孙照渤, 2006. 冬季风异常对西北太平洋海温影响的区域性特征. 大气科学, 30(2): 257-267. doi: 10.3878/j.issn.1006-9895.2006.02.08 [49] 田成静, 蔡观强, 李明坤, 等, 2021. 南海西北部过去~55 ka以来元素地球化学记录的古气候环境演变. 地球科学, 46(3): 975-985. doi: 10.3799/dqkx.2020.276 [50] 战庆, 王张华, 赵宝成, 等, 2020. 末次冰消期以来长江口沉积环境演化及沿岸流变化. 地球科学, 45(7): 2697-2708. doi: 10.3799/dqkx.2020.073 [51] 赵松, 常凤鸣, 李铁刚, 等, 2018. 台湾东北部海域海表温度季节与年际异常及其对历史气候重建的启示. 地球科学, 43(3): 851-861. doi: 10.3799/dqkx.2018.908