• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高孔砂岩断层内部微观结构及渗透性变化规律物理模拟

    姜明明 付晓飞 石磊 李坚达 王皆明 靳叶军 朱华银 王海学 杜睿山 孟令东

    姜明明, 付晓飞, 石磊, 李坚达, 王皆明, 靳叶军, 朱华银, 王海学, 杜睿山, 孟令东, 2022. 高孔砂岩断层内部微观结构及渗透性变化规律物理模拟. 地球科学, 47(5): 1805-1818. doi: 10.3799/dqkx.2021.113
    引用本文: 姜明明, 付晓飞, 石磊, 李坚达, 王皆明, 靳叶军, 朱华银, 王海学, 杜睿山, 孟令东, 2022. 高孔砂岩断层内部微观结构及渗透性变化规律物理模拟. 地球科学, 47(5): 1805-1818. doi: 10.3799/dqkx.2021.113
    Jiang Mingming, Fu Xiaofei, Shi Lei, Li Jianda, Wang Jieming, Jin Yejun, Zhu Huayin, Wang Haixue, Du Ruishan, Meng Lingdong, 2022. Physical Analogue Experiment of Microstructure and Variation Law of Permeability within Faults in High-Porosity Sandstone. Earth Science, 47(5): 1805-1818. doi: 10.3799/dqkx.2021.113
    Citation: Jiang Mingming, Fu Xiaofei, Shi Lei, Li Jianda, Wang Jieming, Jin Yejun, Zhu Huayin, Wang Haixue, Du Ruishan, Meng Lingdong, 2022. Physical Analogue Experiment of Microstructure and Variation Law of Permeability within Faults in High-Porosity Sandstone. Earth Science, 47(5): 1805-1818. doi: 10.3799/dqkx.2021.113

    高孔砂岩断层内部微观结构及渗透性变化规律物理模拟

    doi: 10.3799/dqkx.2021.113
    基金项目: 

    国家自然科学基金项目 41972157

    国家自然科学基金项目 41872153

    国家自然科学基金项目 U20A2093

    黑龙江省自然科学研究团队项目 TD2019D001

    中海石油(中国)有限公司天津分公司油气攻关项目 CCL2020TJT0NST1950

    详细信息
      作者简介:

      姜明明(1997-),男,硕士研究生,主要从事断层带内部结构与封闭性方面的研究. ORCID:0000-0001-9063-4469. E-mail:jiangmingming1997@163.com

      通讯作者:

      孟令东,E-mail:lingdong.meng@hotmail.com

    • 中图分类号: P618

    Physical Analogue Experiment of Microstructure and Variation Law of Permeability within Faults in High-Porosity Sandstone

    • 摘要: 在油气勘探过程中,对于小位移断层分隔油水封闭能力的控制因素研究尚浅,野外也难以获得不同变形过程的断层带结构及其渗透性变化规律.因此,以高孔隙度纯净砂岩人造岩心为研究对象,采用自主研发的“高压~低速环形剪切装置”开展实验,实验后样品取心分别进行覆压孔渗测试、纳米CT扫描、铸体薄片分析等分析测试.以有效正应力和断层位移为实验变量开展了多组环剪实验,其研究结果表明:宏观上断层面上可观察到明显擦痕与粉末状碎裂岩,微观上确定了断层带内碎裂作用导致的颗粒粒度降低与颗粒的定向排列是孔渗降低的主要原因,断层带渗透率小于10 mD,较母岩降低2~3个数量级.随着断层有效正应力或断层滑动位移增加,断层带碎裂程度增大且粒径和孔径减小,断层带厚度增大,孔隙度和渗透率逐渐减小.这一结果可为小位移断层侧向封闭能力与油气勘探领域的研究奠定理论基础.

       

    • 图  1  环形剪切实验模型示意

      a. 实验仪器;b. 断层滑动对应环形剪切模型;c. 实验前模型;d. 实验后模型

      Fig.  1.  Model diagram of ring shear experiment

      图  2  母岩与断层带孔隙度获取示意

      a. 孔隙度截取位置;b. 孔隙度变化及分布

      Fig.  2.  Porosity acquisition schematic diagram of host rock and fault zone

      图  3  断层面宏观与微观形态

      a. 断层面宏观形态;b. 断层面微观形态

      Fig.  3.  Macroscopic and microscopic morphology of fault plane

      图  4  基于铸体薄片的数理统计图

      a. 颗粒直径统计直方图;b. 孔隙直径统计直方图

      Fig.  4.  Mathematical statistics based on casting thin sections

      图  5  颗粒直径大小、方向与孔隙的关系

      a. 铸体薄片;b. 颗粒长轴大小与方向玫瑰花图;c. 孔隙连通性模型

      Fig.  5.  The relationship between particle diameter size, direction and pores

      图  6  母岩与剪切带的孔隙度变化规律

      Fig.  6.  Variation laws of porosity between the host rock and the shear zone

      图  7  不同有效正应力下的孔隙球棍体模型

      Fig.  7.  Porous ball-and-stick model under different effective normal stresses

      图  8  不同断层位移下的孔隙球棍体模型

      Fig.  8.  Porous ball-and-stick model under different fault displacements

      图  9  不同有效正应力下的铸体薄片与颗粒直径分布图

      a. 实验最小有效正应力1 MPa下铸体薄片;b. 实验最大有效正应力3 MPa下铸体薄片

      Fig.  9.  Casting thin section and particle diameter distribution map under different effective normal stresses

      图  10  不同断层位移下的铸体薄片与颗粒直径分布图

      a.实验最小位移30.1 mm下铸体薄片;b.实验最大位移190.6 mm下铸体薄片

      Fig.  10.  Casting thin section and particle diameter distribution map under different fault displacements

      图  11  铸体薄片内的断层带颗粒面积提取流程

      a.划分边界选取断层带;b.去除背景灰度处理;c.填补空隙;d.颗粒编号与面积计算

      Fig.  11.  Extraction process of fault zone particle area in casting thin section

      图  12  不同实验条件下的断层带内颗粒面积与数量规律图

      a.断层带内颗粒小于或大于平均值颗粒的面积与总面积之比;b.断层带内颗粒小于或大于平均值颗粒的数量

      Fig.  12.  Graphs of the area and quantity of particles in the fault zone under different experimental conditions

      图  13  不同条件下的渗透率变化规律

      Fig.  13.  Variation laws of permeability under different conditions

      表  1  实验参数设定

      Table  1.   Experimental parameter settings

      实验编号 应力大小
      (MPa)
      旋转角度
      (°)
      断层位移(mm)
      1 2 30 30.1
      2 2 60 60.2
      3 2 90 90.3
      4 2 120 120.4
      5 2 150 150.5
      6 2 190 190.6
      7 1 90 90.3
      8 1.5 90 90.3
      9 2.5 90 90.3
      10 3 90 90.3
      下载: 导出CSV

      表  2  颗粒直径统计数据

      Table  2.   Statistics of particle diameter

      频数分布区间 频数 频数分布区间 频数
      0~0.05 50 0.25~0.30 21
      0.05~0.10 0 0.30~0.35 11
      0.10~0.15 3 0.35~0.40 12
      0.15~0.20 13 0.40~0.45 5
      0.20~0.25 23 0.45~0.50 3
      下载: 导出CSV

      表  3  孔隙直径统计数据

      Table  3.   Statistics of pore diameter

      频数分布区间 频数 频数分布区间 频数
      0~0.05 50 0.25~0.30 21
      0.05~0.10 0 0.30~0.35 16
      0.10~0.15 6 0.35~0.40 11
      0.15~0.20 4 0.40~0.45 6
      0.20~0.25 17 0.45~0.50 3
      注:表 2表 3中数据由作者姜明明、李坚达使用NanoMeasurer1.2在铸体薄片比例尺200 μm条件下进行测量,误差范围在0~0.005.
      下载: 导出CSV
    • [1] Anyim, K., Gan, Q., 2020. Fault Zone Exploitation in Geothermal Reservoirs: Production Optimization, Permeability Evolution and Induced Seismicity. Advances in Geo-Energy Research, 4(1): 1-12. https://doi.org/10.26804/ager.2020.01.01
      [2] Ballas, G., Fossen, H., Soliva, R., 2015. Factors Controlling Permeability of Cataclastic Deformation Bands and Faults in Porous Sandstone Reservoirs. Journal of Structural Geology, 76: 1-21. https://doi.org/10.1016/j.jsg.2015.03.013
      [3] Barla, G., Barla, M., Martinotti, M. E., 2010. Development of a New Direct Shear Testing Apparatus. Rock Mechanics and Rock Engineering, 43(1): 117-122. https://doi.org/10.1007/s00603-009-0041-5
      [4] Chen, G. H., Lu, S. F., Liu, K. Y., et al., 2020. Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls. Earth Science, 45(5): 1782-1790 (in Chinese with English abstract).
      [5] Crawford, B. R., Faulkner, D. R., Rutter, E. H., 2008. Strength, Porosity, and Permeability Development during Hydrostatic and Shear Loading of Synthetic Quartz-Clay Fault Gouge. Journal of Geophysical Research, 113(B3): B03207. https://doi.org/10.1029/2006JB004634
      [6] Cuisiat, F., Skurtveit, E., 2009. An Experimental Investigation of the Development and Permeability of Clay Smears along Faults in Uncemented Sediments. Journal of Structural Geology, 32(11): 1850-1863. https://doi.org/10.1016/j.jsg.2009.12.005
      [7] Deng, S., Zuo, L., Aydin, A., et al., 2015. Permeability Characterization of Natural Compaction Bands Using Core Flooding Experiments and Three-Dimensional Image-Based Analysis: Comparing and Contrasting the Results from Two Different Methods. AAPG Bulletin, 99(1): 27-49. https://doi.org/10.1306/07071413211
      [8] Elkhoury, J. E., Niemeijer, A., Brodsky, E. E., et al., 2011. Laboratory Observations of Permeability Enhancement by Fluid Pressure Oscillation of In Situ Fractured Rock. Journal of Geophysical Research: Solid Earth, 116(B2): B02311.
      [9] Exner, U., Grasemann, B., 2010. Deformation Bands in Gravels: Displacement Gradients and Heterogeneous Strain. Journal of the Geological Society, 167: 905-913. doi: 10.1144/0016-76492009-076
      [10] Fisher, Q. J., Casey, M., Harris, S. D., et al., 2003. Fluid-Flow Properties of Faults in Sandstone: The Importance of Temperature History. Geology, 31(11): 965-968. https://doi.org/10.1130/G19823.1
      [11] Fisher, Q. J., Haneef, J., Grattoni, C. A., et al., 2018. Permeability of Fault Rocks in Siliciclastic Reservoirs: Recent Advances. Marine and Petroleum Geology, 91: 29-42. https://doi.org/10.1016/j.marpetgeo.2017.12.019
      [12] Fisher, Q. J., Knipe, R. J., 2001. The Permeability of Faults within Siliciclastic Petroleum Reservoirs of the North Sea and Norwegian Continental Shelf. Marine and Petroleum Geology, 18(10): 1063-1081. https://doi.org/10.1016/S0264-8172(01)00042-3
      [13] Fu, R. Z., 2017. Quantitative Predict the Subseismic Faults and Study the Effect of Subseismic Faults on Injection and Production (Dissertation). Northeast Petroleum University, Daqing (in Chinese with English abstract).
      [14] Fu, X. F., Xiao, J. H., Meng, L. D., 2014. Fault Deformation Mechanisms and Internal Structure Characteristics of Fault Zone in Pure Sandstone. Journal of Jilin University (Earth Science Edition), 44(1): 25-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201401003.htm
      [15] Fu, X. F., Xu, P., Wei, C. Z., et al., 2012. Internal Structure of Normal Fault Zone and Hydrocarbon Migration and Conservation. Earth Science Frontiers, 19(6): 200-212 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201206025.htm
      [16] Fulljames, J. R., Zijerveld, L. J. J., Franssen, R. C. M. W., 1997. Fault Seal Processes: Systematic Analysis of Fault Seals over Geological and Production Time Scales. Norwegian Petroleum Society Special Publications, 7: 51-59. https://doi.org/10.1016/S0928-8937(97)80006-9
      [17] Gibson, R. G., 1998. Physical Character and Fluid-Flow Properties of Sandstone-Derived Fault Zones. Geological Society, London, Special Publications, 127(1): 83-97. https://doi.org/10.1144/gsl.sp.1998.127.01.07
      [18] Giger, S. B., Clennell, M. B., Harbers, C., et al., 2011. Design, Operation and Validation of a New Fluid-Sealed Direct Shear Apparatus Capable of Monitoring Fault-Related Fluid Flow to Large Displacements. International Journal of Rock Mechanics and Mining Sciences, 48: 1160-1172. https://doi.org/10.1016/j.ijrmms.2011.09.005
      [19] Gong, L., Wang, J., Gao, S., et al., 2021. Characterization, Controlling Factors and Evolution of Fracture Effectiveness in Shale Oil Reservoirs. Journal of Petroleum Science and Engineering, 203: 108655. https://doi.org/ 10.1016/j.petrol.2021.108655
      [20] Jia, R., Fu, X. F., Meng, L. D., et al., 2017. Transformation Mechanism of Fault and Its Associated Microstructures for Different Kinds of Reservoirs. Acta Petrolei Sinica, 38(3): 286-296 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201703005.htm
      [21] Knipe, R. J., 1992. Faulting Processes and Fault Seal. Norwegian Petroleum Society Special Publications, 1(C): 325-342.
      [22] Li, L., Liu, A. W., Qi, Z. X., et al., 2020. Pore Structure Characteristics of Shale Reservoir of the Lower Qian 4 Member in the Wangchang Anticline of the Qianjiang Sag. Earth Science, 45(2): 602-616 (in Chinese with English abstract).
      [23] Li, Y., Li, Z. D., Yu, Y. N., et al., 2009. Identifying Small Faults by Coherent Body Technique: A Case Study for Fang 231 Area of Song Fang-Tun Oilfield. Petroleum Geophysics, (2): 25-28 (in Chinese with English abstract).
      [24] Liu, Z. D., Fu, X. F., Meng, L. D., et al., 2017. Types, Characteristics and Genetic Mechanism of Deformation Bands in High-Porous Sandstone. Journal of China University of Mining & Technology, 46(6): 1267-1281 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKD201706012.htm
      [25] Lu, X., Wang, Y., Yang, D., et al., 2020. Characterization of Paleo-Karst Reservoir and Faulted Karst Reservoir in Tahe Oileld, Tarim Basin, China. Advances in Geo- Energy Research, 4(3): 339-348. https://doi.org/10.46690/ager.2020.03.11
      [26] Meng, L. D., Fu, X. F., Lv, Y. F., et al., 2017. Risking Fault Reactivation Induced by Gas Injection into Depleted Reservoirs Based on the Heterogeneity of Geomechanical Properties of Fault Zones. Petroleum Geoscience, 23(1): 29-38. https://doi.org/10.1144/petgeo2016-031
      [27] Pei, Y. W., Paton, D. A., Knipe, R. J., et al., 2015. A Review of Fault Sealing Behaviour and Its Evaluation in Siliciclastic Rocks. Earth-Science Reviews, 150: 121-138. https://doi.org/10.1016/j.earscirev.2015.07.011
      [28] Pei, Y. W., Paton, D. A., Knipe, R. J., et al., 2020. Field-Based Investigation of Fault Architecture: A Case Study from the Lenghu Fold-and-Thrust Belt, Qaidam Basin, NE Tibetan Plateau. GSA Bulletin, 132: 389-408. https://doi.org/10.1130/B35140.1
      [29] Pei, Y. W., Paton, D. A., Wu, K. Y., et al., 2017. Examining Fault Architecture and Strain Distribution Using Geospatial and Geomechanical Modelling: An Example from the Qaidam Basin, NE Tibet. Marine and Petroleum Geology, 84: 1-17. https://doi.org/10.1016/j.marpetgeo.2017.03.023
      [30] Rotevatn, A., Fossen, H., 2011. Simulating the Effect of Subseismic Fault Tails and Process Zones in a Siliciclastic Reservoir Analogue: Implications for Aquifer Support and Trap Definition. Marine and Petroleum Geology, 28(9): 1648-1662. https://doi.org/10.1016/j.marpetgeo.2011.07.005
      [31] Souque, C., Knipe, R. J., Davies, R. K., et al., 2019. Fracture Corridors and Fault Reactivation: Example from the Chalk, Isle of Thanet, Kent, England. Journal of Structural Geology, 122: 11-26. https://doi.org/10.1016/j.jsg.2018.12.004
      [32] Takahashi, M., 2003. Permeability Change during Experimental Fault Smearing. Journal of Geophysical Research: Solid Earth, 108(B5): 2235. https://doi.org/10.1029/2002JB001984
      [33] Takahashi, M., Mizoguchi, K., Kitamura, K., et al., 2007. Effects of Clay Content on the Frictional Strength and Fluid Transport Property of Faults. Journal of Geophysical Research: Solid Earth, 112(B8): B08206. https://doi.org/10.1029/2006JB004678
      [34] Torabi, A., Braathen, A., Cuisiat, F., et al., 2007. Shear Zones in Porous Sand: Insights from Ring-Shear Experiments and Naturally Deformed Sandstones. Tectonophysics, 437(1): 37-50. https://doi.org/10.1016/j.tecto.2007.02.018
      [35] Wan, L., Dai, L. M., Tang, G. M., et al., 2020. Multi-Scale Characterization and Evaluation of Pore-Throat Combination Characteristics of Lacustrine Mixed Rock Reservoir. Earth Science, 45(10): 3841-3852 (in Chinese with English abstract).
      [36] Wang, H. X., Liu, Z. D., Sha, W., et al., 2018. Characteristics of Deformation Bands in High-Porosity Sandstone and Their Influence on Fluid Flow: A Case Study of Youshashan Anticline at the Western Margin of Qaidam Basin. Acta Petrolei Sinica, 39(5): 554-563 (in Chinese with English abstract).
      [37] Wang, H. X., Lü, Y. F., Fu, X. F., et al., 2014. Fault Quality Correction and Its Role in the Oil and Gas Exploration and Development. Journal of China University of Mining & Technology, 43(3): 482-490 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD201403019.htm
      [38] Wu, K. Y., Pei, Y. W., Yin, L., et al., 2018. Structural Characteristics and Deformation Timing of the Daerbute Strike-Slip Fault in NW Junggar Basin, China. Frontiers of Earth Science, 12(3): 555-568. https://doi.org/10.1007/s11707-018-0686-z
      [39] Xie, L., Pei, Y. W., Li, A., et al., 2018. Implications of Meso- to Micro-Scale Deformation for Fault Sealing Capacity: Insights from the Lenghu5 Fold-and-Thrust Belt, Qaidam Basin, NE Tibetan Plateau. Journal of Asian Earth Sciences, 158: 336-351. https://doi.org/10.1016/j.jseaes.2018.03.004
      [40] Xu, J. P., Song, Y., Cheng, J. L., et al., 2005. Mathematics Model between Strike Length and Fault Throw of Hitch. Journal of China Coal Society, 30(1): 22-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB200501005.htm
      [41] Yao, H. S., Jiang, Y. P., Liu, J., 2015. Dominant Description of Small and Micro Faults of Complex Fault Block Oilfields. Journal of Northwest University (Natural Science Edition), 45(3): 445-452 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDZ201503023.htm
      [42] Zhou, Y., Shen, B. Y., Yan, Y., et al., 2020. Nanoparticles Study on the Indosinian Xiaomei Shear Zone in the Hainan Island, China: Implication to Developmental Stage and Formation Mechanism of Nanoparticles in a Fault Zone. Journal of Earth Science, 31(5): 957-967. https://doi.org/10.1007/s12583-020-1286-x
      [43] 陈国辉, 卢双舫, 刘可禹, 等, 2020. 页岩气在孔隙表面的赋存状态及其微观作用机理. 地球科学, 45(5): 1782-1790. doi: 10.3799/dqkx.2019.194
      [44] 付荣智, 2017. 亚地震断层定量预测及对注水开发的影响(硕士学位论文). 大庆: 东北石油大学.
      [45] 付晓飞, 肖建华, 孟令东, 2014. 断裂在纯净砂岩中的变形机制及断裂带内部结构. 吉林大学学报(地球科学版), 44(1): 25-37. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401003.htm
      [46] 付晓飞, 许鹏, 魏长柱, 等, 2012. 张性断裂带内部结构特征及油气运移和保存研究. 地学前缘, 19(6): 200-212. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201206025.htm
      [47] 贾茹, 付晓飞, 孟令东, 等, 2017. 断裂及其伴生微构造对不同类型储层的改造机理. 石油学报, 38(3): 286-296. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703005.htm
      [48] 李乐, 刘爱武, 漆智先, 等, 2020. 潜江凹陷王场背斜潜四下段盐韵律层页岩储层孔隙结构特征. 地球科学, 45(2): 602-616. doi: 10.3799/dqkx.2019.220
      [49] 李阳, 李占东, 于亚楠, 等, 2009. 相干体技术识别小断层: 以宋芳屯油田芳231区块为例. 油气地球物理, (2): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200905013.htm
      [50] 刘志达, 付晓飞, 孟令东, 等, 2017. 高孔隙性砂岩中变形带类型、特征及成因机制. 中国矿业大学学报, 46(6): 1267-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201706012.htm
      [51] 万琳, 代黎明, 汤国民, 等, 2020. 湖相混积岩储层孔喉组合特征多尺度表征及评价. 地球科学, 45(10): 3841-3852. doi: 10.3799/dqkx.2020.144
      [52] 王海学, 刘志达, 沙威, 等, 2018. 高孔隙性砂岩内变形带特征及对流体流动的影响: 以柴达木盆地西缘油砂山背斜为例. 石油学报, 39(5): 554-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201805006.htm
      [53] 王海学, 吕延防, 付晓飞, 等, 2014. 断裂质量校正及其在油气勘探开发中的作用. 中国矿业大学学报, 43(3): 482-490. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201403019.htm
      [54] 许进鹏, 宋扬, 程久龙, 等, 2005. 小断层的走向长度与断距关系的数学模型. 煤炭学报, 30(1): 22-25. doi: 10.3321/j.issn:0253-9993.2005.01.005
      [55] 姚红生, 蒋永平, 刘金, 2015. 复杂断块油田小微断层的显性描述. 西北大学学报(自然科学版), 45(3): 445-452. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201503023.htm
    • 加载中
    图(13) / 表(3)
    计量
    • 文章访问数:  507
    • HTML全文浏览量:  42
    • PDF下载量:  50
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-12-01
    • 刊出日期:  2022-05-25

    目录

      /

      返回文章
      返回