Construction of Geological Selection Index System and Evaluation Technology of Favorable Area for Underground Coal Gasification
-
摘要: 为厘清影响煤炭地下气化的地质因素,构建科学的地质指标评价体系,对影响煤炭地下气化的七大类地质条件、41个次级地质指标进行了系统分析和分级量化,建立了地质选区指标体系;根据对选区的重要程度,将各地质指标分为基本地质指标(A)和关键地质指标(B)两类,基于这两大类指标,提出了两种新的煤炭地下气化有利区定量评价方法,精细型(A+B)和通用型(B);利用专家打分法和层次分析法确定了这两种评价方法中所涉及到的地质指标权重;依据资源、开采技术、区域构造和环境四大类条件,厘定了评价结果的定性分级方案;综合定量评价和定性分级,提出了有利区优选的一般步骤,最终形成了一套完整的煤炭地下气化有利区评价技术体系.该评价技术体系的有效应用,可为煤炭地下气化科学选址和产业化进程推进提供重要理论支撑.Abstract: In order to clarify the geological factors affecting underground coal gasification (UCG) and construct a scientific and quantitative geological index evaluation system, seven types of geological conditions and 41 geological indexes affecting UCG are systematically analyzed, graded and quantified, and then the geological selection index system is established in the paper. According to the importance of the selected area, each geological index is divided into two categories: basic geological index (A) and key geological index (B). Based on these two categories of indexes, two new quantitative evaluation methods for favorable areas of UCG are proposed, namely fine type (A+B) and general type (B). The weight of geological indexes involved in the two evaluation methods is determined using expert scoring method and analytic hierarchy process (AHP). According to the conditions of resources, mining technology, regional structure and environment, the qualitative classification scheme of evaluation results is determined, and the general steps of favorable area optimization are put forward by comprehensive quantitative evaluation and qualitative classification. Finally, a complete set of evaluation technical system for favorable areas of UCG is formed. The effective application of the evaluation technology system can provide important theoretical support for the scientific site selection and industrialization process of UCG.
-
表 1 煤炭地下气化地质选区指标体系
Table 1. Geological selection index system of UCG
序号 类型 亚类 参考指标 指标类型 分类评价级别 Ⅰ类 Ⅱ类 Ⅲ类 Ⅳ类 1 煤岩煤质条件U1 煤种U11 中国煤炭分类 B HM CY SM QM FM PM WY JM 8 7 6 5 4 3 2 1 2 水分U12 原煤水分含量(%) A 0~15 15~35 35~55 > 55 3 灰分U13 原煤灰分含量(%) B 0~20 20~35 35~50 > 50 4 挥发分U14 原煤挥发分含量(%) B 50~37 37~20 20~10 < 10 5 硫分U15 原煤全硫含量(%) B 0~1.00 1.01~3.00 3.01~4 > 4 6 反应性U16 1 000度时,对CO2反应性(%) B > 30 20~30 20~10 < 10 7 黏结性U17 原煤黏结指数(%) B 0~5 5~20 20~45 > 45 8 煤层赋存条件U2 煤层厚度U21 煤层厚度(m) B 5~15 2.5~5 2~2.5 > 15 m; < 2 m B 5~15 2.5~5 0.8~2.5 > 15 m; < 0.8 m 9 煤层倾角U22 煤层倾角(°) A 35 12~35 35~70 < 12; > 70 10 煤层埋深U23 煤层埋深(m) B 100~500 500~1 000 1 000~2 000 < 100;
> 2 00011 煤体结构U24 原生煤和碎裂煤所占比重A为评定指标(%) A < 30 30~50 50~70 > 70 12 煤层结构U25 夹矸厚度系数(%) A < 20 20~30 30~60 > 60 13 煤层厚度变化U26 煤层厚度变异系数(%) B ≥0.95 0.85~0.95 0.85~0.75 < 0.75 14 煤炭储量U27 开采年限(a) B > 20 15~20 9~15 < 9 15 围岩条件U3 顶板渗透性U31 k为渗透率;以lg(k)为计算值 B > 6 4~6 2~4 < 2 16 底板渗透性U32 k为渗透率;以lg(k)为计算值 B > 6 4~6 2~4 < 2 17 顶板岩性U33 常见煤层顶底板沉积岩层 A 泥岩
6砂质泥岩
5泥质砂岩
4粉砂岩
3细砂岩
2多孔透水含水砂岩
118 顶板厚度U34 煤层顶板的厚度(m) B ≥100 100~20 20~15 < 15 19 构造条件U4 断层U41 断层复杂程度ZG(黄温钢,2014) B < 1 1~2 2~3 ≥3 20 褶皱U42 褶皱复杂程度Ks(%) A ≤70 70~117 117~165 > 165 21 陷落柱U43 陷落柱影响指数(%) B ≤5 5~15 15~30 > 30 22 岩浆岩侵入U44 岩浆岩侵入指数(%)(黄温钢,2014) B ≤5 5~15 15~30 > 30 23 水文条件U5 相对涌水量U51 煤层相对涌水量(m3/t) B < 1 1~2 2~5 > 5 24 距顶板含水层距离U52 气化煤层距顶板含水层最近距离(m) B > 100 40~100 40~31 < 31 25 距底板含水层距离U53 气化煤层距底板含水层最近距离(m) B 50 35 20 15 26 环境条件U6 氟U61 煤中有害元素分级(μg/g) A ≤100 100~200 200~400 > 400 27 砷U62 煤中有害元素含量分级(μg/g) A ≤4 4~25 25~80 > 80 28 汞U63 煤中有害元素含量分级(μg/g) A < 0.150 0.150~0.250 0.250~0.600 > 0.600 29 镉U64 煤中镉含量分级(μg/g) A ≤0.20 0.20~1.00 1.00~10.00 > 10.00 30 氯U65 煤中有害元素含量分级(μg/g) A ≤0.05 0.05~0.150 0.150~0.300 > 0.300 31 磷U66 煤中有害元素含量分级(%) A ≤0.010 0.010~0.050 0.050~0.100 > 0.100 32 空气污染可能程度U67 主要为硫化物和粉尘 B 轻微
4中等
3严重
2极严重
133 有机物污染可能程度U68 主要为有机物污染问题 B 轻微
4中等
3严重
2极严重
134 地面塌陷可能程度U69 气化厚煤层时可能出现地面垮落的风险 B 轻微
4中等
3严重
2极严重
135 其他条件U7 勘查程度U71 预查、普查、详查、勘查 B 勘查
4详查
3普查
2预查
136 距生产矿井U72 气化炉距生产矿井最近距离(km) B ≥5 5~3.2 3.2~1.6 ≤1.6 37 距废弃矿井U73 气化炉距废弃矿井最近距离(km) A ≥3 3~1.6 ≤1.6 38 地形地貌U74 地形地貌特征 A 平原
8低山丘陵
7平坦高原
6低山
5沟壑
高原
4中山
3高山
2高寒
高原
139 交通运输U75 地表交通运输便利程度(km) A 便利
4中等
3一般
2困难
140 居民区U76 研究区距居民区最近距离 A ≥3 1~3 ≤1 41 生态保护区U77 视当地政府政策而定 B ≥3 1~3 ≤1 表 2 常用隶属函数
Table 2. Common membership functions
类型 成本型 区间型 效益型 矩阵型 $ A\left(x\right)=\left\{\begin{array}{l}1, \;\;\;x\le a, \\ 0, \;\;\;x > a, \end{array}\right. $ $ A\left(x\right)=\left\{\begin{array}{l}1, \;\;\;a\le x\le b, \\ 0, \;\;\;x < a, x > b, \end{array}\right. $ $ A\left(x\right)=\left\{\begin{array}{l}1,\;\;\; x\ge a, \\ 0,\;\;\; x < a, \end{array}\right. $ 梯形型 $ A\left(x\right)=\left\{\begin{array}{l}1,\;\;\; x < a, \\ \frac{b-x}{b-a},\;\;\; a\le x\le b, \\ 0, \;\;\;x > b, \end{array}\right. $ $ A\left(x\right)=\left\{\begin{array}{l}\frac{x-a}{b-a}, \;\;\;a\le x < b, \\ 1, \;\;\;b\le x\le c, \\ \frac{d-x}{d-c}, \;\;\;c < x\le d, \\ 0, \;\;\;x < a, x\ge d, \end{array}\right. $ $ A\left(x\right)=\left\{\begin{array}{l}0, \;\;\;x < a, \\ \frac{x-a}{b-a}, \;\;\;a\le x\le b\\ 1,\;\;\; x > b, \end{array}\right., $ k次抛物型 $ A\left(x\right)=\left\{\begin{array}{l}(1,\;\;\; x < a, \\ {\frac{b-x}{b-a})}^{k}, \;\;\;a\le x\le b\\ 0, \;\;\;x > b, \end{array}\right., $ $ A\left(x\right)=\left\{\begin{array}{l}{\left(\frac{b-x}{b-a}\right)}^{k}, a\le x\le b, \\ 1,\;\;\; b < x\le c, \\ {\left(\frac{b-x}{b-a}\right)}^{k}, \;\;\;c < x\le d, \\ 0, \;\;\;x > d, \end{array}\right. $ $ A\left(x\right)=\left\{\begin{array}{l}(0,\;\;\; x < a, \\ {\frac{b-x}{b-a})}^{k}, \;\;\;a\le x\le b\\ 1, \;\;\;x > b, \end{array}\right., $ $ \mathrm{\Gamma } $型 $ A\left(x\right)=\left\{\begin{array}{l}1,\;\;\; x\le a, \\ {\mathrm{e}}^{-k(x-a)}, \;\;\;x > a, \end{array}\right. $ $ A\left(x\right)=\left\{\begin{array}{l}{\mathrm{e}}^{k(x-a)},\;\;\; x < a, \\ 1, \;\;\;a\le x\le b\\ {\mathrm{e}}^{-k(x-a)}, \;\;\;x > b, \end{array}\right., $ $ A\left(x\right)=\left\{\begin{array}{l}0, \;\;\;\;\;\;x < a, \\ 1-{\mathrm{e}}^{-k(x-a)}, \;\;\;x\ge a, \end{array}\right. $ 正态型 $ A\left(x\right)=\left\{\begin{array}{l}1, \;\;\;\;\;\;x\le a, \\ \mathrm{e}\mathrm{x}\mathrm{p}\left\{-{\left(\frac{x-a}{\sigma }\right)}^{2}\right\}, \;\;\;x > a, \end{array}\right. $
$ \sigma > 0, $$ A\left(x\right)=\mathrm{e}\mathrm{x}\mathrm{p}\left\{-{\left(\frac{x-a}{\sigma }\right)}^{2}\right\}, $
$ \sigma > 0, $$ A\left(x\right)=\left\{\begin{array}{l}0,\;\;\;\;\;\; x\le a, \\ 1-\mathrm{e}\mathrm{x}\mathrm{p}\left\{-{\left(\frac{x-a}{\sigma }\right)}^{2}\right\},\;\;\; x > a, \end{array}\right. $
$ \sigma > 0, $柯西型 $ A\left(x\right)=\left\{\begin{array}{l}1, \;\;\;\;\;\;x\le a, \\ \frac{1}{1+\alpha {(x-\alpha)}^{\beta }}, \;\;\;x > a, \end{array}\right. $
$ (\alpha > 0, \beta > 0) $$ A\left(x\right)=\frac{1}{1+\alpha {(x-\alpha)}^{\beta }}, $
$ (\alpha > 0, \beta \mathrm{为}\mathrm{正}\mathrm{偶}\mathrm{数}) $$ A\left(x\right)=\left\{\begin{array}{l}0, \;\;\;\;\;\;x\le a, \\ \frac{1}{1+\alpha {(x-\alpha)}^{-\beta }},\;\;\; x > a, \end{array}\right. $
$ (\alpha > 0, \beta > 0) $表 3 煤炭地下气化地质指标权重
Table 3. Weight of geological indexes of UCG
序号 类型 权重 精细化评价 通用型评价 亚类(A+B类,共41个) 权重 亚类(B类,共25个) 权重 1 煤岩煤质条件
U10.160 8 煤种U11 0.283 2 煤种U11 0.295 2 2 水分U12 0.040 7 - - 3 灰分U13 0.107 0 灰分U12 0.105 0 4 挥发分U14 0.156 2 挥发分U13 0.162 8 5 硫分U15 0.133 6 硫分U14 0.139 3 6 反应性U16 0.155 5 反应性U15 0.162 1 7 黏结性U17 0.123 8 黏结性U16 0.129 1 8 煤层赋存条件
U20.195 0 煤层厚度U21 0.182 9 煤层厚度U21 0.235 5 9 煤层倾角U22 0.101 2 - - 10 煤层埋深U23 0.136 2 煤层埋深U22 0.178 8 11 煤体结构U24 0.081 9 - - 12 煤层结构U25 0.104 1 - - 13 煤层厚度变化U26 0.184 5 煤层厚度变化U23 0.276 6 14 煤炭储量U27 0.209 3 煤炭储量U24 0.309 2 15 围岩条件
U30.124 1 顶板渗透性U31 0.233 9 顶板渗透性U31 0.275 1 16 底板渗透性U32 0.219 2 底板渗透性U32 0.272 5 17 顶板岩性U33 0.140 6 - - 18 顶板厚度U34 0.406 4 顶板厚度U34 0.452 4 19 构造条件
U40.141 4 断层U41 0.285 2 断层U41 0.320 8 20 褶皱U42 0.110 9 - - 21 陷落柱U43 0.331 2 陷落柱U42 0.372 6 22 岩浆岩侵入U44 0.272 6 岩浆岩侵入U43 0.306 6 23 水文条件
U50.147 4 相对涌水量U51 0.388 7 相对涌水量U51 0.388 7 24 距顶板含水层距离U52 0.490 8 距顶板含水层距离U52 0.490 8 25 距底板含水层距离U53 0.120 5 距底板含水层距离U53 0.120 5 26 环境条件
U60.133 4 氟U61 0.056 5 - - 27 砷U62 0.056 5 - - 28 汞U63 0.056 5 - - 29 镉U64 0.056 5 - - 30 氯U65 0.056 5 - - 31 磷U66 0.056 5 - - 32 空气污染可能程度U67 0.180 0 空气污染可能程度U61 0.164 5 33 有机物污染可能程度U68 0.272 6 水污染可能程度U62 0.489 3 34 地面塌陷可能程度U69 0.208 3 地面塌陷可能程度U63 0.346 2 35 其他条件
U70.097 9 勘查程度U71 0.184 4 勘查程度U71 0.295 8 36 距生产矿井U72 0.127 1 距生产矿井U72 0.294 4 37 距废弃矿井U73 0.098 4 - - 38 地形地貌U74 0.162 8 - - 39 交通运输U75 0.025 3 - - 40 居民区U76 0.201 0 - - 41 生态保护区U77 0.201 0 生态保护区U73 0.409 9 表 4 煤炭地下气化四大类条件定性评价及分级方案
Table 4. Qualitative evaluation and classification scheme of four conditions for UCG
评价
指标分类评价级别 优 良 中 劣 资源条件 可气化煤炭资源量分布非常集中,开采年限20年以上.厚煤层和特厚煤层发育,厚度变化稳定,埋深较浅(> 100 m),煤质变化稳定,以褐煤或长焰煤为主. 可气化煤炭资源量集中,开采年限15至20年;中厚和厚煤层发育,厚度变化较稳定,埋深较大;煤质变化稳定,以瘦煤、气煤或肥煤为主. 可气化煤炭资源量一般,开采年限9~15年.中厚煤层发育,煤厚变化一般,埋深较大;煤种以贫煤、无烟煤或焦煤为主. 煤炭资源分布分散,开采年限9年以下.极薄和薄煤层发育,煤厚极不稳定,埋深过浅或过深,煤层分叉严重. 开采技术条件 水文地质条件简单,煤层上部含水层不发育或距顶板距离非常大,煤层顶底板渗透率低,且不易垮落. 水文地质条件一般,煤层顶板距上部含水层较远,一般不会出现顶板垮落沟通含水层致气化中断的风险. 水文地质条件中等,煤层距上部含水层较近,可能会出现含水层沟通气化炉的事故发生;顶板强度低,厚度不大. 水文地质条件复杂,煤层距含水层非常近,极易出现含水层沟通气化炉的风险;顶板极易垮落. 区域构造条件 地质构造简单,断层稀少,煤层不受岩浆岩影响,陷落柱不发育. 地质构造一般,断层较发育,有时受岩浆岩影响,陷落柱分布稀少. 地质构造中等,断层发育,或受岩浆岩和陷落柱影响一般. 地质构造复杂,断层、陷落柱非常发育,煤层受岩浆岩侵入严重. 环境条件 水污染和地面塌陷可能性很低,距地表密集建筑物和生态保护区很远. 水污染和地面塌陷可能性一般,距地表密集建筑物的距离较近. 水和空气污染中等,地面塌陷严重,可能会对周围建筑物存在影响. 水污染和空气污染严重,地面塌陷非常严重,会严重干扰正常的居民生活和交通运输. -
[1] Bhutto, A. W., Bazmi, A. A., Zahedi, G., 2013. Underground Coal Gasification: From Fundamentals to Applications. Progress in Energy and Combustion Science, 39(1): 189-214. https://doi.org/10.1016/j.pecs.2012.09.004 [2] Bielowicz, B., Kasiński, J. R., 2014. The Possibility of Underground Gasification of Lignite from Polish Deposits. International Journal of Coal Geology, 131: 304-318. https://doi.org/10.1016/j.coal.2014.06.025 [3] Chen, B., 2006. The Study on High Temperature Gasification of Different Types of Coal (Dissertation). East China University of Technology, Shanghai (in Chinese with English abstract). [4] Chen, J. M., Wu, Z. H., Liu, W. H., et al., 2021. Heavy Metal Pollution Evaluation and Species Analysis of Waste Rock Piles in Shuikoushan, Hunan Province. Earth Science, 46(11): 4127-4139 (in Chinese with English abstract). [5] Chen, Z. H., Jiang, C. Q., 2020. An Integrated Mass Balance Approach for Assessing Hydrocarbon Resources in a Liquid-Rich Shale Resource Play: An Example from Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin. Journal of Earth Science, 31(6): 1259-1272. doi: 10.1007/s12583-020-1088-1 [6] Ge, S. R., 2017. Chemical Mining Technology for Deep Coal Resources. Journal of China University of Mining & Technology, 46(4): 679-691 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD201704001.htm [7] Han, L., Qin, Y., Wang, Z. T., 2019. Geological Consideration for Site Selection of Underground Coal Gasifier. Coal Geology & Exploration, 47(2): 44-50 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT201902008.htm [8] Huang, F. M., Wang, Y., Dong, Z. L., et al., 2019. Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model. Earth Science, 44(2): 664-676 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201902027.htm [9] Huang, W. G., 2014. Study on Comprehensive Evaluation and Stable Production Technology for Underground Gasification of Residual Coal (Dissertation). China University of Mining & Technology, Xuzhou (in Chinese with English abstract). [10] Huang, W. G., Wang, Z. T., 2017. Comprehensive Evaluation Model of Fuzzy Analytic Hierarchy Process with Variable Weight for Underground Coal Gasification. Journal of Xi'an University of Science and Technology, 37(4): 500-507 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-XKXB201704008.htm [11] Jin, F. L., Ji, M. J., Zhang, P. C., 1998. Characteristics of Magmatic Intrusion and Prediction for Coalbed Thickness in Yonggu Mine, Huaibei Coalfield. Journal of China University of Mining & Technology, 27(2): 100-103 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD802.023.htm [12] Khadse, A. N., 2015. Resources and Economic Analyses of Underground Coal Gasification in India. Fuel, 142: 121-128. https://doi.org/10.1016/j.fuel.2014.10.057 [13] Li, H. Z., Guo, G. L., Zheng, N. S., 2018. Influence of Coal Types on Overlying Strata Movement and Deformation in Underground Coal Gasification without Shaft and Prediction Method of Surface Subsidence. Process Safety and Environmental Protection, 120: 302-312. https://doi.org/10.1016/j.psep.2018.09.023 [14] Li, H. Z., Zha, J. F., Guo, G. L., et al., 2020. Improvement of Resource Recovery Rate for Underground Coal Gasification through the Gasifier Size Management. Journal of Cleaner Production, 259(Prepublish): 120911. https://doi.org/10.1016/j.jclepro.2020.120911 [15] Li, W. J., Wei, J. J., Su, Q. Q., et al., 2016. Analysis of Heat Transmission Effect of Underground Coal Gasification Process on Upper Strata of Coal Seam. Energy and Energy Conservation, (1): 3-4, 35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SXJL201601002.htm [16] Li, Y. G., Li, X. C., 2007. Weight Determination of Comprehensive Evaluation Model. Journal of Eastern Liaoning University (Social Sciences), 9(2): 92-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CZXB200702022.htm [17] Liang, J., Zhang, Y. C., Wei, C. Y., et al., 2006. Experiment Research on Underground Coal Gasification of Xiyang Anthracite. Journal of China University of Mining & Technology, 35(1): 25-28, 34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200601005.htm [18] Liu, S. Q., Li, J. G., Mei, M., et al., 2007. Groundwater Pollution from Underground Coal Gasification. Journal of China University of Mining & Technology, 17(4): 467-472. http://www.cnki.com.cn/Article/CJFDTotal-ZHKD200704007.htm [19] Liu, S. Q., Liang, J., Yu, X. D., et al., 2003. Characteristics of Underground Gasification of Different Kinds of Coal. Journal of China University of Mining & Technology, 32(6): 624-628 (in Chinese with English abstract). [20] Liu, S. Q., Shi, S. Z., Feng, G. X., et al., 2019. Geological Site Selection and Evaluation for Underground Coal Gasification. Journal of China Coal Society, 44(8): 2531-2538 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB201908028.htm [21] Liu, S. Q., Zhang, S. J., Niu, M. F., et al., 2016. Technology Process and Application Prospect of Underground Coal Gasification. Earth Science Frontiers, 23(3): 97-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201603016.htm [22] Liu, S. Q., Zhou, R., Pan, J., et al., 2013. Location Selection and Groundwater Pollution Prevention & Control Regarding Underground Coal Gasification. Coal Science and Technology, 41(5): 23-27, 62 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTKJ201305005.htm [23] Luo, W., Yang, X. L., Ning, L. Y., et al., 2019. Pollution Status and Characteristics of Main Carbonate Aquifers in Guizhou Province. Earth Science, 44(9): 2851-2861 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909004.htm [24] Nieć, M., Sermet, E., Chećko, J., et al., 2017. Evaluation of Coal Resources for Underground Gasification in Poland. Selection of Possible UCG Sites. Fuel, 208: 193-202. [25] Perkins, G., 2018. Underground Coal Gasification-Part Ⅰ: Field Demonstrations and Process Performance. Progress in Energy and Combustion Science, 67: 158-187. doi: 10.1016/j.pecs.2018.02.004 [26] Qin, Y., Wang, Z. T., Han, L., 2019. Geological Problems in Underground Coal Gasification. Journal of China Coal Society, 44(8): 2516-2530 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB201908027.htm [27] Shafirovich, E., Varma, A., 2009. Underground Coal Gasification: A Brief Review of Current Status. Industrial & Engineering Chemistry Research, 48(17): 7865-7875. https://doi.org/10.1021/ie801569r [28] Sheng, Y., Benderev, A., Bukolska, D., et al., 2016. Interdisciplinary Studies on the Technical and Economic Feasibility of Deep Underground Coal Gasification with CO2 Storage in Bulgaria. Mitigation and Adaptation Strategies for Global Change, 21(4): 595-627. https://doi.org/10.1007/s11027-014-9592-1 [29] Vyas, D. U., Singh, R. P., 2015. Worldwide Developments in UCG and Indian Initiative. Procedia Earth and Planetary Science, 11: 29-37. https://doi.org/10.1016/j.proeps.2015.06.005 [30] Wang, G., Qin, Y., Xie, Y. W., et al., 2018. Coalbed Methane System Potential Evaluation and Favourable Area Prediction of Gujiao Blocks, Xishan Coalfield, Based on Multi-Level Fuzzy Mathematical Analysis. Journal of Petroleum Science and Engineering, 160: 136-151. doi: 10.1016/j.petrol.2017.10.042 [31] Wang, Z. Q., 2016. Establishment of Mass and Energy Balance Model in UCG Process Based on Three Zones Distribution (Dissertation). China University of Mining and Technology, Beijing (in Chinese with English abstract). [32] Wu, C. F., Liu, X. L., Zhang, S. S., 2018. Construction of Index System of "Hierarchical Progressive" Geological Selection of Coalbed Methane in Multiple Seam Area of Eastern Yunnan and Western Guizhou. Journal of China Coal Society, 43(6): 1647-1653 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201806019.htm [33] Xu, H., Chen, Y. P., Xin, F. D., et al., 2022. Challenges Faced by Underground Coal Gasification and Technical Countermeasures. Coal Science and Technology, 50(1): 265-274 (in Chinese with English abstract). [34] Yang, D. M., Koukouzas, N., Green, M., et al., 2016. Recent Development on Underground Coal Gasification and Subsequent CO2 Storage. Journal of the Energy Institute, 89(4): 469-484. https://doi.org/10.1016/j.joei.2015.05.004 [35] Yang, L. H., Liang, J., Xiang, Y. Q., 2001. Study on the Reaction Kinetic Character in Underground Coal Gasification. Journal of Fuel Chemistry and Technology, 29(3): 223-227 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RLHX200103005.htm [36] Yang, L. H., Pan, X., Dong, G. M., 2013. Study on Model Test of Underground Gasification of Coking Coal. Coal Science and Technology, 41(5): 16-18, 22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTKJ201305003.htm [37] Yao, K., Liu, H. T., Pan, X., et al., 2011. Model Test on Water Inflow of Underground Coal Gasification (UCG). Coal Conversion, 34(3): 27-30, 40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTZH201103007.htm [38] Ye, H. J., Zhang, R. X., Wu, P., et al., 2019. Characteristics and Driving Factor of Hydrochemical Evolution in Karst Water in the Critical Zone of Liupanshui Mining Area. Earth Science, 44(9): 2887-2898 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909007.htm [39] Zhang, J. W., Chen, H. Y., 2021. Preliminary Study on Quantitative Ecological Evaluation of Exploration and Development of Ore Deposits: A Case Study of Luoboling Porphyry Copper Molybdenum Deposit, Fujian Province. Earth Science, 46(11): 3818-3828 (in Chinese with English abstract). [40] Zhao, M. D., Dong, D. L., Tian, K., 2017. Change Mechanism Simulation Study of the Overlying Strata Temperature Field and Fracture Field in UCG. Journal of Mining Science and Technology, 2(1): 1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYKX201701002.htm [41] Zhao, Y., Huang, W. G., Xu, Q., et al., 2018. Study on Evaluation of Geological Conditions for Underground Coal Gasification: Taking Zhuzhai Minefield of Jiangsu Province as an Example. Journal of Henan Polytechnic University (Natural Science), 37(3): 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JGXB201803001.htm [42] Zhou, Z., Wang, L. X., Guo, Z. J., et al., 2020. Assessment of Coal Underground Gasification Resources in Lupanshui Coalfield, Guizhou Province. Coal Geology of China, 32(3): 27-33 (in Chinese with English abstract). [43] Zou, C. N., Chen, Y. P., Kong, L. F., et al., 2019. Underground Coal Gasification and Its Strategic Significance to the Development of Natural Gas Industry in China. Petroleum Exploration and Development, 46(2): 195-204 (in Chinese with English abstract). [44] 陈波, 2006. 不同煤种的高温气化反应性研究(硕士学位论文). 上海: 华东理工大学. [45] 陈佳木, 吴志华, 刘文浩, 等, 2021. 湖南水口山多金属矿区废石堆重金属污染评价及赋存形态分析. 地球科学, 46(11): 4127-4139. doi: 10.3799/dqkx.2021.019 [46] 葛世荣, 2017. 深部煤炭化学开采技术. 中国矿业大学学报, 46(4): 679-691. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201704001.htm [47] 韩磊, 秦勇, 王作棠, 2019. 煤炭地下气化炉选址的地质影响因素. 煤田地质与勘探, 47(2): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201902008.htm [48] 黄发明, 汪洋, 董志良, 等, 2019. 基于灰色关联度模型的区域滑坡敏感性评价. 地球科学, 44(2): 664-676. doi: 10.3799/dqkx.2018.175 [49] 黄温钢, 2014. 残留煤地下气化综合评价与稳定生产技术研究(博士学位论文). 徐州: 中国矿业大学. [50] 黄温钢, 王作棠, 2017. 煤炭地下气化变权‒模糊层次综合评价模型. 西安科技大学学报, 37(4): 500-507. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201704008.htm [51] 金法礼, 冀明君, 张培础, 1998. 淮北煤田永固井田岩浆岩侵入特征及煤厚预测. 中国矿业大学学报, 27(2): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD802.023.htm [52] 李文军, 魏家骏, 苏倩倩, 等, 2016. 煤炭地下气化过程对煤层上部岩层的传热分析. 能源与节能, (1): 3-4, 35. doi: 10.3969/j.issn.2095-0802.2016.01.002 [53] 李因果, 李新春, 2007. 综合评价模型权重确定方法研究. 辽东学院学报(社会科学版), 9(2): 92-97. https://www.cnki.com.cn/Article/CJFDTOTAL-CZXB200702022.htm [54] 梁杰, 张彦春, 魏传玉, 等, 2006. 昔阳无烟煤地下气化模型试验研究. 中国矿业大学学报, 35(1): 25-28, 34. doi: 10.3321/j.issn:1000-1964.2006.01.006 [55] 刘淑琴, 梁杰, 余学东, 等, 2003. 不同煤种地下气化特性研究. 中国矿业大学学报, 32(6): 624-628. doi: 10.3321/j.issn:1000-1964.2003.06.006 [56] 刘淑琴, 师素珍, 冯国旭, 等, 2019. 煤炭地下气化地质选址原则与案例评价. 煤炭学报, 44(8): 2531-2538. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908028.htm [57] 刘淑琴, 张尚军, 牛茂斐, 等, 2016. 煤炭地下气化技术及其应用前景. 地学前缘, 23(3): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201603016.htm [58] 刘淑琴, 周蓉, 潘佳, 等, 2013. 煤炭地下气化选址决策及地下水污染防控. 煤炭科学技术, 41(5): 23-27, 62. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201305005.htm [59] 罗维, 杨秀丽, 宁黎元, 等, 2019. 贵州主要碳酸盐岩含水层污染现状与特征. 地球科学, 44(9): 2851-2861. doi: 10.3799/dqkx.2019.178 [60] 秦勇, 王作棠, 韩磊, 2019. 煤炭地下气化中的地质问题. 煤炭学报, 44(8): 2516-2530. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908027.htm [61] 王张卿, 2016. 基于三区分布的煤炭地下气化物料与能量平衡模型的构建(博士学位论文). 北京: 中国矿业大学. [62] 吴财芳, 刘小磊, 张莎莎, 2018. 滇东黔西多煤层地区煤层气"层次递阶"地质选区指标体系构建. 煤炭学报, 43(6): 1647-1653. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806019.htm [63] 许浩, 陈艳鹏, 辛福东, 等, 2022. 煤炭地下气化面临的挑战与技术对策. 煤炭科学技术, 50(1): 265-274. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202201027.htm [64] 杨兰和, 梁杰, 项友谦, 2001. 煤炭地下气化反应动力学特性的研究. 燃料化学学报, 29(3): 223-227. doi: 10.3969/j.issn.0253-2409.2001.03.006 [65] 杨兰和, 潘霞, 董贵明, 2013. 焦煤地下气化模型试验研究. 煤炭科学技术, 41(5): 16-18, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201305003.htm [66] 姚凯, 刘洪涛, 潘霞, 等, 2011. 涌入水对煤炭地下气化影响的模型实验研究. 煤炭转化, 34(3): 27-30, 40. doi: 10.3969/j.issn.1004-4248.2011.03.006 [67] 叶慧君, 张瑞雪, 吴攀, 等, 2019. 六盘水矿区关键带岩溶水水化学演化特征及驱动因子. 地球科学, 44(9): 2887-2898. doi: 10.3799/dqkx.2019.201 [68] 张纪伟, 陈华勇, 2021. 金属矿床勘查与开发定量生态评估体系初探: 以福建罗卜岭斑岩型铜钼矿为例. 地球科学, 46(11): 3818-3828. doi: 10.3799/dqkx.2020.373 [69] 赵明东, 董东林, 田康, 2017. 煤炭地下气化覆岩温度场和裂隙场变化机制模拟研究. 矿业科学学报, 2(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201701002.htm [70] 赵岳, 黄温钢, 徐强, 等, 2018. 煤炭地下气化地质条件评价研究: 以江苏省朱寨井田为例. 河南理工大学学报(自然科学版), 37(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201803001.htm [71] 周泽, 汪凌霞, 郭志军, 等, 2020. 贵州省六盘水煤田煤炭地下气化资源评价. 中国煤炭地质, 32(3): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202003006.htm [72] 邹才能, 陈艳鹏, 孔令峰, 等, 2019. 煤炭地下气化及对中国天然气发展的战略意义. 石油勘探与开发, 46(2): 195-204. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902002.htm
计量
- 文章访问数: 329
- HTML全文浏览量: 54
- PDF下载量: 54
- 被引次数: 0