The Water-Sediment Regulation Scheme at Xiaolangdi Reservoir and Its Impact on Sulfur Cycling in the Yellow River Basin
-
摘要: 陆地风化的硫酸盐(SO42-)通过河流体系输入海洋,其通量以及硫酸盐同位素组成(δ34SSO4和δ18OSO4)对全球硫循环及海洋SO42-同位素组成至关重要.河流体系SO42-含量及δ34SSO4和δ18OSO4组成不但受SO42-来源控制,而且受河流内部硫酸盐细菌还原及氧化过程影响,但其影响程度仍不明确,特别是拦河筑坝以及水沙调控过程对流域硫循环的影响仍不清楚.选择黄河小浪底水库作为研究对象,借助水化学、水体氢氧同位素(δDH2O和δ18OH2O)及δ34SSO4和δ18OSO4方法,通过对比分析水沙调控前后下泄河水SO42-含量及同位素组成差异,阐明水沙调控过程对河水SO42-通量及同位素组成的影响机制.结果表明:(1)2018年黄河小浪底水库水沙调控发生在7月份,8月份泥沙下泄与中游黄土高原降雨有关.两次排沙过程下泄水δ18OH2O均值分别为-8.1‰和-8.9‰,SO42-均值分别为1.43 mmol/L和1.77 mmol/L,δ34SSO4均值分别为8.3‰和7.4‰,δ18OSO4均值分别为5.4‰和5.7‰.(2)水沙调控开始前(6月份)下泄河水δ18OH2O均值为-7.0‰,SO42-均值为1.59 mmol/L,δ34SSO4均值为8.0‰,δ18OSO4均值为7.5‰;水沙调控结束后(10月份)下泄河水δ18OH2O均值为-9.2‰,SO42-均值为1.26 mmol/L,δ34SSO4均值为6.7‰,δ18OSO4均值为7.3‰.(3)黄河小浪底水库7月份水沙调控导致泥沙暴露,有机硫和来自硫酸盐细菌还原产生的硫化物发生氧化,造成下泄河水δ18OSO4值降低,但下泄河水在下游河道内流动过程中δ34SSO4和δ18OSO4变化不大.(4)2018年黄河小浪底水文站SO42-输出通量为0.061 Tmol/a,水沙调控过程SO42-输出通量占全年SO42-输出通量的比例为14.8%,入海δ34SSO4和δ18OSO4流量均值分别为7.6‰和6.8‰.黄河排沙过程改变原有水-沉积物界面环境,导致硫化物以及有机硫二次释放,改变了黄河入海硫酸盐通量以及硫和氧同位素组成.Abstract: Weathering-derived sulfate (SO42-) from the Continent could be transported to the Ocean by river systems, and sulfate flux coupled with sulfur and oxygen isotope compositions (δ34SSO4 and δ18OSO4) were vital to the global sulfur cycling and sulfate isotope compositions in ocean. SO42- contents together with δ34SSO4and δ18OSO4 values were not only controlled by SO42- sources, but affected by sulfate bacterial reduction (SBR) in internal riversystem, however, these effects were still unclear, and particularly the influences from dam and water-sediment regulation scheme (WSRS) on sulfur cycling in watershed were still unknown. The Xiaolangdi Reservoir in the Yellow River was selected to solve this problem, and hydrochemical compositions, water isotope compositions (δDH2O and δ18OH2O), and δ34SSO4and δ18OSO4 were determined to constrain the effects of WSRS on riverine sulfate flux and isotope compositions by comparing the SO42- contents and isotope compositions before and after the WSRS. The results indicated that (1) WSRS occurred in July 2018, sediment discharge in August was due to sediment scoured by precipitation in midstream of Yellow River. The discharged river water during these two sediment removal had average δ18OH2O values of -8.1‰ and -8.9‰, and average SO42- concentrations of 1.43 mmol/L and 1.77 mmol/L, and average δ34SSO4 values of 8.3‰ and 7.4‰, and average δ18OSO4 values of 5.4‰ and 5.7‰, respectively. (2) The dischared river water before the WSRS (June) had positive average 18OH2O value of -7.0‰, moderate average SO42- concentration of 1.59 mmol/L, positive average δ34SSO4 and δ18OSO4values of 8.0‰ and 7.5‰, resepectively. The dischared river water after the WSRS (October) had negative average δ18OH2O value of -9.2‰, low average SO42- concentration of 1.26 mmol/L, negative average δ34SSO4 value of 6.7‰ and positive average δ18OSO4value of 7.3‰, respectively. (3) The WSRS in July resulted in the exposure of sediment, and the organic sulfur and sulfide from SBR had been reoxidized to sulfate, during which water oxygen was incorporated into fresh sulfate with low oxygen isotope composition, but there was small varitaion of δ34SSO4 and δ18OSO4values in downstream river water. (4) The SO42- flux was about 0.061 Tmol/a in 2018, and the proporation of SO42- flux during WSRS was about 14.8%. The flow-weighted average δ34SSO4 and δ18OSO4values of SO42- into the Ocean were 7.6‰ and 6.8‰, respectively. The conclusion is that the WSRS had altered the water-sediment environment in the Yellow River, and corresponding organic and sulfide were released into the air and reoxidized, which changed the sulfate flux and sulfur and oxygen isotope compostion to the Ocean.
-
表 1 黄河小浪底水库下游水体水化学及同位素组成
Table 1. Hydrochemical and isotope compositions of water samples in the downstream of the Xiaolangdi Reservoir
内容 单位 黄河干流河水 支流河水 地下水 排沙前 第一次排沙 第二次排沙 排沙结束后 沁河 伊洛河 日期 6月 7月 8月 10月 7/10 6/7/10 6/8/10 pH值 8.4±0.1 7.9±0.1 8.1±0.1 8.5±0.1 8.2±1.0 8.3±0.2 7.7±0.1 EC值 μS/cm 948±34 902±51 806±50 745±6 714±171 672±150 878±48 DO值 mg/L 6.96±0.26 3.59±1.72 nd 9.26±0.32 6.92 8.23±1.98 10.43 K+ mmol/L 0.13±0.00 0.13±0.01 0.13±0.00 0.12±0.01 0.11±0.05 0.13±0.04 0.08±0.02 Na+ mmol/L 4.32±0.21 3.90±0.32 3.97±0.17 2.84±0.14 1.77±0.23 1.63±0.75 2.24±0.31 Ca2+ mmol/L 1.36±0.06 1.29±0.14 1.44±0.07 1.37±0.07 1.99±0.81 1.57±0.46 2.06±0.29 Mg2+ mmol/L 1.18±0.04 1.10±0.12 1.17±0.05 1.05±0.05 1.07±0.19 1.02±0.18 1.57±0.20 HCO3- mmol/L 3.14±0.34 3.59±0.28 2.94±0.08 3.23±0.06 2.97±0.81 3.15±0.41 8.51±0.35 SO42- mmol/L 1.59±0.11 1.43±0.16 1.77±0.08 1.26±0.01 1.61±0.47 1.13±0.24 0.12±0.03 NO3- mmol/L 0.21±0.02 0.25±0.02 0.22±0.02 0.12±0.03 0.22±0.07 0.26±0.07 0.01±0.01 Cl- mmol/L 2.92±0.19 2.54±0.38 2.24±0.07 1.36±0.22 1.25±0.14 1.18±0.44 1.39±0.06 TZ+ meq/L 9.55±0.39 8.85±0.69 9.35±0.39 7.82±0.36 8.04±1.76 6.95±1.82 9.65±1.35 TZ- meq/L 9.48±0.52 9.24±0.51 8.98±0.22 7.13±0.49 7.69±1.66 6.87±1.32 10.17±0.46 NICB* % 0.7±3.2 -4.9±8.6 3.9±3.2 8.5±8.7 4.3±0.3 0.0±6.6 -6.4±11.5 δDH2O ‰ -56±1 -56±0 -62±0 -64±0 -52±3 -52±2 -71±0 δ18OH2O ‰ -7.0±0.1 -8.1±0.2 -8.9±0.1 -9.2±0.1 -7.4±0.4 -7.5±0.4 -10.1±0.1 δ34SSO4 ‰ 8.0±0.3 8.3±0.1 7.4±0.2 6.7±0.1 9.1±2.1 10.9±2.9 44.3±1.3 δ18OSO4 ‰ 7.5±0.6 5.4±0.6 5.7±0.3 7.3±0.3 5.8±1.9 6.0±1.4 12.8±0.5 注:*.NICB=(TZ+-TZ-)/TZ+×100%,其中TZ+=K++Na++2Ca2++2Mg2+,TZ-=HCO3-+2SO42-+NO3-+Cl-,单位:meq/L;nd=no detected. 表 2 黄河流域河水硫酸盐潜在来源的δ34SSO4和δ18OSO4组成
Table 2. Sulfur and oxygen isotope values of potential riverine sulfate sources in the Yellow River Basin
表 3 研究区地表水硫酸盐来源混入比例计算结果Fig. 3 The mixing ratios of variable sulfate sources in surface water in studied area
来源 排沙前下泄河水(6月) 第一次排沙下泄水(7月) 第二次排沙下泄水(8月) 排沙结束后下泄水(10月) 均值±标准偏差(%) 均值±标准偏差(%) 均值±标准偏差(%) 均值±标准偏差(%) 大气降水 9.0±6.8 14.2±10.6 9.6±6.9 15.9±9.2 沉积岩黄铁矿 15.9±2.7 24.9±11.3 27.6±2.0 16.6±1.9 黄土石膏溶解 61.4±10.0 37.4±17.8 48.4±14.9 49.6±10.4 生活污水 9.7±7.5 16.0±12.4 9.5±6.5 12.4±7.4 化学肥料 4.1±2.7 7.5±5.4 4.9±3.2 5.5±3.2 表 4 2018年黄河小浪底水库下泄水流量、硫酸盐含量以及硫和氧同位素组成、人为输出硫酸盐通量
Table 4. Water discharge, sulfate concentration, sulfur and oxygen isotope values of river water from Xiaolangdi Reservoir and anthropogenic sulfate fluxes
时期 下泄水流量 SO42- δ34SSO4 δ18OSO4 SO42-通量 人为输入SO42- 108 m3 mmol/L ‰ ‰ Tmol Tmol 1月~6月 161.9 1.59 8.0 7.5 0.026 0.003 6 7月 64.7 1.43 8.3 5.4 0.009 0.002 1 8月 56.1 1.77 7.4 5.7 0.010 0.001 4 9月~12月 127.5 1.26 6.7 7.3 0.016 0.002 9 全年 410.2 1.49a 7.6a 6.8a 0.061 0.010 0 注:a. 流量均值. -
[1] Balci, N., Shanks, W. C. III, Mayer, B., et al., 2007. Oxygen and Sulfur Isotope Systematics of Sulfate Produced by Bacterial and Abiotic Oxidation of Pyrite. Geochimica et Cosmochimica Acta, 71(15): 3796-3811. https://doi.org/10.1016/j.gca.2007.04.017 [2] Bao, H., Lyons, J. R., Zhou, C, 2008. Triple Oxygen Isotope Evidence for Elevated CO2 Levels after a Neoproterozoic Glaciation. Nature, 453(7194): 504-506. https://doi.org/10.1038/nature06959;> doi: 10.1038/nature06959;> [3] Burke, A., Present, T. M., Paris, G., et al., 2018. Sulfur Isotopes in Rivers: Insights into Global Weathering Budgets, Pyrite Oxidation, and the Modern Sulfur Cycle. Earth and Planetary Science Letters, 496: 168-177. https://doi.org/10.1016/j.epsl.2018.05.022 [4] Canfield, D. E., Raiswell, R, 1999. The Evolution of the Sulfur Cycle. American Journal of Science, 299(7): 697-723. https://doi.org/10.2475/ajs.299.7-9.697 [5] Chen, J.S., Wang, F.Y., He, D.W., 2006. Geochemistry of Water Quality of the Yellow River Basin. Earth Science Frontiers, 13(1): 58-73(in Chinese with English abstract). [6] Cheng, F., Zhang, H. M., Zhang, G. L., et al., 2019. Distribution and Emission of N2O in the Largest River-Reservoir System along the Yellow River. Science of the Total Environment, 666: 1209-1219. https://doi.org/10.1016/j.scitotenv.2019.02.277 [7] Ding, T., Gao, J., Tian, S., et al. 2016. Chemical and Isotopic Characteristics of the Water and Suspended Particulate Materials in the Yangtze River and Their Geological and Environmental Implications. Acta Geologica Sinica, 88(1): 276-360. https://doi.org/10.3969/j.issn.1000-9515.2014.01.023 [8] Egbi, C. D., Anornu, G. K., Ganyaglo, S. Y., et al., 2020. Nitrate Contamination of Groundwater in the Lower Volta River Basin of Ghana: Sources and Related Human Health Risks. Ecotoxicology and Environmental Safety, 191: 110227. https://doi.org/10.1016/j.ecoenv.2020.110227 [9] Fan, B. L., Zhao, Z. Q., Tao, F. X., et al., 2014. Characteristics of Carbonate, Evaporite and Silicate Weathering in Huanghe River Basin: aComparison among the Upstream, Midstream and Downstream. Journal of Asian Earth Sciences, 96: 17-26. https://doi.org/10.1016/j.jseaes.2014.09.005 [10] Fan, B.L., Zhang, D., Tao, Z.H., et al., 2017. Compositions of Hydrogen and Oxygen Isotope Values of Yellow River Water and the Response to Climate Change. China Environmental Science, 37(5): 1906-1914(in Chinese with English abstract). [11] Gao, J.F., Ding, T.P., Tian, S.H., et al., 2011. Silicon Isotope Compositions of Suspended Matter in the Yellow River, China, and Its Significance in Geological Environment. Acta Geologica Sinica, 85(10): 1613-1628(in Chinese with English abstract). [12] He, J.Y., Zhang, D., Zhao, Z.Q., 2017. Spatial and Temporal Variations in Hydrochemical Composition of River Water in Yellow River Basin, China. Chinese Journal of Ecology, 36(5): 1390-1401(in Chinese with English abstract). [13] Hemingway, J. D., Olson, H., Turchyn, A. V., et al., 2020. Triple Oxygen Isotope Insight into Terrestrial Pyrite Oxidation. Proceedings of the National Academy of Sciences of the United States of America, 117(14): 7650-7657. https://doi.org/10.1073/pnas.1917518117 [14] Hosono, T., Lorphensriand, O., Onodera, S. I., et al., 2014. Different Isotopic Evolutionary Trends of δ34S and δ18O Compositions of Dissolved Sulfate in an Anaerobic Deltaic Aquifer System. Applied Geochemistry, 46: 30-42. https://doi.org/10.1016/j.apgeochem.2014.04.012 [15] Li, G.R., Liu, C.Q., Chen, C., et al., 2009. Sulfur Isotope Composition of River Channel and Reservoir Water in Upper Reaches of Wujiang River in High Flow Season. Resources and Environment in the Yangtze Basin, 18(4): 350-355(in Chinese). [16] Li, S. L., Chetelat, B., Yue, F. J., et al., 2014. Chemical Weathering Processes in the Yalong River Draining the Eastern Tibetan Plateau, China. Journal of Asian Earth Sciences, 88: 74-84. https://doi.org/10.1016/j.jseaes.2014.03.011 [17] Li, X. D., Liu, C. Q., Liu, X. L., et al., 2011a. Identification of Dissolved Sulfate Sources and the Role of Sulfuric Acid in Carbonate Weathering Using Dual-Isotopic Data from the Jialing River, Southwest China. Journal of Asian Earth Sciences, 42(3): 370-380. https://doi.org/10.1016/j.jseaes.2011.06.002 [18] Li, X. Q., Zhou, A. G., Gan, Y. Q., et al., 2011b. Controls on the δ34S and δ18O of Dissolved Sulfate in the Quaternary Aquifers of the North China Plain. Journal of Hydrology, 400(3/4): 312-322. https://doi.org/10.1016/j.jhydrol.2011.01.034 [19] Li, X.Q., Liu, Y.D., Zhou, A.G., et al., 2014. Sulfur and Oxygen Isotope Compositions of Dissolved Sulfate in the Yangtze River during High Water Period and Its Sulfate Source Tracing. Earth Science, 39(11): 1647-1654, 1692(in Chinese with English abstract). [20] Liu, S. M., Li, L. W., Zhang, G. L., et al., 2012. Impacts of Human Activities on Nutrient Transports in the Huanghe (Yellow River) Estuary. Journal of Hydrology, 430/431: 103-110. https://doi.org/10.1016/j.jhydrol.2012.02.005 [21] Liu, S.T., Zhang, D., Li, Y.H., et al., 2020. Water Sources and Factors Controlling Hydro-Chemical Compositions in the Yiluo River Basin. Environmental Science, 41(3): 1184-1196(in Chinese with English abstract). [22] Mayer, B., Shanley, J. B., Bailey, S. W., et al., 2010. Identifying Sources of Stream Water Sulfate after a Summer Drought in the Sleepers River Watershed (Vermont, USA) Using Hydrological, Chemical, and Isotopic Techniques. Applied Geochemistry, 25(5): 747-754. https://doi.org/10.1016/j.apgeochem.2010.02.007 [23] Meybeck, M, 2003. Global Occurrence of Major Elements in Rivers. Treatise on Geochemistry, 5(1): 207-223 [24] Otero, N., Soler, A., Canals, À, 2008. Controls of δ34S and δ18O in Dissolved Sulphate: Learning from a Detailed Survey in the Llobregat River (Spain). Applied Geochemistry, 23(5): 1166-1185. https://doi.org/10.1016/j.apgeochem.2007.11.009 [25] Parnell, A. C., Inger, R., Bearhop, S., et al., 2010. Source Partitioning Using Stable Isotopes: Coping with too much Variation. PLoS One, 5(3): e9672. https://doi.org/10.1371/journal.pone.0009672 [26] Qin, Y., Hao, F., Zhang, D., et al., 2020. Accumulation of Organic Carbon in a Large Canyon Reservoir in Karstic Area, Southwest China. Environmental Science and Pollution Research, 27(20): 25163-25172. https://doi.org/10.1007/s11356-020-08724-1 [27] Szynkiewicz, A., Borrok, D. M., Skrzypek, G., et al., 2015. Isotopic Studies of the Upper and Middle Rio Grande. Part 1-Importance of Sulfide Weathering in the Riverine Sulfate Budget. Chemical Geology, 411: 323-335. https://doi.org/10.1016/j.chemgeo.2015.05.022 [28] Szynkiewicz, A., Modelska, M., Buczyński, S., et al., 2013. The Polar Sulfur Cycle in the Werenskioldbreen, Spitsbergen: Possible Implications for Understanding the Deposition of Sulfate Minerals in the North Polar Region of Mars. Geochimica et Cosmochimica Acta, 106: 326-343. https://doi.org/10.1016/j.gca.2012.12.041 [29] Torres, M. A.; ., West, A. J., Li, G, 2014. Sulphide Oxidation and Carbonate Dissolution as a Source of CO2 over Geological Timescales. Nature, 507(7492): 346-349. https://doi.org/10.1038/nature13030 [30] Torres, M. A., West, A. J., Clark, K. E., et al., 2016. The Acid and Alkalinity Budgets of Weathering in the Andes-Amazon System: Insights into the Erosional Control of Global Biogeochemical Cycles. Earth and Planetary Science Letters, 450: 381-391. https://doi.org/10.1016/j.epsl.2016.06.012 [31] Torres-Martínez, J. A., Mora, A., Knappett, P. S. K., et al., 2020. Tracking Nitrate and Sulfate Sources in Groundwater of an Urbanized Valley Using a Multi-Tracer Approach Combined with a Bayesian Isotope Mixing Model. Water Research, 182: 115962. https://doi.org/10.1016/j.watres.2020.115962 [32] Turchyn, A. V., Tipper, E. T., Galy, A., et al., 2013. Isotope Evidence for Secondary Sulfide Precipitation along the Marsyandi River, Nepal, Himalayas. Earth and Planetary Science Letters, 374: 36-46. https://doi.org/10.1016/j.epsl.2013.04.033 [33] Tuttle, M. L. W., Breit, G. N., Cozzarelli, I. M, 2009. Processes Affecting δ34S and δ18O Values of Dissolved Sulfate in Alluvium along the Canadian River, Central Oklahoma, USA. Chemical Geology, 265(3/4): 455-467. https://doi.org/10.1016/j.chemgeo.2009.05.009 [34] Vilmin, L., Mogollón, J. M., Beusen, A. H. W., et al., 2018. Forms and Subannual Variability of Nitrogen and Phosphorus Loading to Global River Networks over the 20th Century. Global and Planetary Change, 163: 67-85. https://doi.org/10.1016/j.gloplacha.2018.02.007 [35] Wei, J., Zhang, B.D., Cai, B., et al., 2019. Practices and Enlightenments of Multi-Reservoir Joint-Dispatching in the Main Stream of the Yellow River in 2018. China Flood & Drought Management, 29(4): 10-14, 35(in Chinese with English abstract). [36] Yu, Y. G., Shi, X. F., Wang, H. J., et al., 2013. Effects of Dams on Water and Sediment Delivery to the Sea by the Huanghe (Yellow River): The Special Role of Water-Sediment Modulation. Anthropocene, 3: 72-82. https://doi.org/10.1016/j.ancene.2014.03.001 [37] Zhang, D., Huang, X.Y., Li, C. J, 2013. Sources of Riverine Sulfate in Yellow River and Its Tributaries Determined by Sulfur and Oxygen Isotopes. Advances in Water Science, 24(3): 418-426(in Chinese with English abstract). [38] Zhang, D., Li, X. D., Zhao, Z. Q., et al., 2015. Using Dual Isotopic Data to Track the Sources and Behaviors of Dissolved Sulfate in the Western North China Plain. Applied Geochemistry, 52: 43-56. https://doi.org/10.1016/j.apgeochem.2014.11.011 [39] Zhang, D., Li, Y.H., Zhang, H.Y., et al., 2019a. Application of Modified DDARP Method for Purification of Barite in Natural Water Samples. Rock and Mineral Analysis, 38(1): 77-84(in Chinese with English abstract). [40] Zhang, D., Liu, S.T., Zhang, Y.L., et al., 2018. Characteristics of Sulfur and Oxygen Isotopes of Dissolved Sulfate in Response to Water-Sediment Controlling in the Yellow River. Chinese Journal of Ecology, 37(3): 723-733(in Chinese with English abstract). [41] Zhang, D., Qin, Y., Zhao, Z. Q, 2015. Chemical Weathering of Carbonate Rocks by Sulfuric Acid on Small Basin in North China. Acta Scientiae Circumstantiae, 35(11): 3568-3578(in Chinese with English abstract). [42] Zhang, D., Yang, J.M., Huang, X.Y., et al., 2019b. Sources of Dissolved Heavy Metals in River Water of the Yiluo River Basin Based on Sulfur Isotope of Sulfate. China Environmental Science, 39(6): 2549-2559(in Chinese with English abstract). [43] Zhang, D., Zhao, Z. Q., Li, X. D., et al., 2020a. Assessing the Oxidative Weathering of Pyrite and Its Role in Controlling Atmospheric CO2Release in the Eastern Qinghai-Tibet Plateau. Chemical Geology, 543: 119605. https://doi.org/10.1016/j.chemgeo.2020.119605 [44] Zhang, D., Zhao, Z. Q., Peng, Y. B., et al., 2020b. Sulfur Cycling in the Yellow River and the Sulfate Flux to the Ocean. Chemical Geology, 534: 119451. https://doi.org/10.1016/j.chemgeo.2019.119451 [45] Zhang, L. J., Wang, L., J Cai, W., et al., 2013. Impact of Human Activities on Organic Carbon Transport in the Yellow River. Biogeosciences, 10(4): 2513-2524. https://doi.org/10.5194/bg-10-2513-2013 [46] Zhang, Q. Q., Jin, Z. D., Zhang, F., et al., 2015. Seasonal Variation in River Water Chemistry of the Middle Reaches of the Yellow River and Its Controlling Factors. Journal of Geochemical Exploration, 156: 101-113. https://doi.org/10.1016/j.gexplo.2015.05.008 [47] Zhang, Q. Q., Wang, H. W., Lu, C, 2020c. Tracing Sulfate Origin and Transformation in an Area with Multiple Sources of Pollution in Northern China by Using Environmental Isotopes and Bayesian Isotope Mixing Model. Environmental Pollution, 265: 115105. https://doi.org/10.1016/j.envpol.2020.115105 [48] Zhang, T.T., Yao, P., Wang, J.P., et al., 2015. Effect of Water and Sediment Regulation on the Transport of Particulate Organic Carbon in the Lower Yellow River. Environmental Science, 36(8): 2817-2826(in Chinese with English abstract). [49] Zhang, Y.L., Dong, Y.L., Zhang, D, 2015a. Impacts of the Sanmenxia Reservoir on Organic Carbon Transport Characteristics of the Huanghe River. Scientia Geographica Sinica, 35(7): 912-918(in Chinese with English abstract). [50] Zhang, Y.L., Yang, X.L., Zhang, D, 2015b. Partial Pressure of CO2 and CO2 Degassing Fluxes of Huayuankou and Xiaolangdi Station Affected by Xiaolangdi Reservoir. Environmental Science, 36(1): 40-48(in Chinese with English abstract). [51] 陈静生, 王飞越, 何大伟, 2006. 黄河水质地球化学. 地学前缘, 13(1): 58-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200601009.htm [52] 范百龄, 张东, 陶正华, 等, 2017. 黄河水氢、氧同位素组成特征及其气候变化响应. 中国环境科学, 37(5): 1906-1914. doi: 10.3969/j.issn.1000-6923.2017.05.038 [53] 高建飞, 丁悌平, 田世洪, 等, 2011. 黄河水及其悬浮物硅同位素组成的变化特征及其地质环境意义. 地质学报, 85(10): 1613-1628. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201110007.htm [54] 何姜毅, 张东, 赵志琦, 2017. 黄河流域河水水化学组成的时间和空间变化特征. 生态学杂志, 36(5): 1390-1401. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201705028.htm [55] 李干蓉, 刘丛强, 陈椽, 等, 2009. 丰水期乌江上游干流水库-河流体系硫同位素组成. 长江流域资源与环境, 18(4): 350-355. doi: 10.3969/j.issn.1004-8227.2009.04.009 [56] 李小倩, 刘运德, 周爱国, 等, 2014. 长江干流丰水期河水硫酸盐同位素组成特征及其来源解析. 地球科学, 39(11): 1647-1654, 1692. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201411009.htm [57] 刘松韬, 张东, 李玉红, 等, 2020. 伊洛河流域河水来源及水化学组成控制因素. 环境科学, 41(3): 1184-1196. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202003022.htm [58] 魏军, 张丙夺, 蔡彬, 等, 2019.2018年黄河干流水库群联合调度实践与启示. 中国防汛抗旱, 29(4): 10-14, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-FHKH201904010.htm [59] 张东, 黄兴宇, 李成杰, 2013. 硫和氧同位素示踪黄河及支流河水硫酸盐来源. 水科学进展, 24(3): 418-426. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201303017.htm [60] 张东, 李玉红, 张鸿禹, 等, 2019a. 应用改进DDARP方法纯化天然水体样品中硫酸钡固体的效果评价. 岩矿测试, 38(1): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201901011.htm [61] 张东, 刘松韬, 张永领, 等, 2018. 黄河水沙调控过程中河水溶解性硫酸盐硫和氧同位素组成特征. 生态学杂志, 37(3): 723-733. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201803013.htm [62] 张东, 秦勇, 赵志琦, 2015. 我国北方小流域硫酸参与碳酸盐矿物化学风化过程研究. 环境科学学报, 35(11): 3568-3578. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201511021.htm [63] 张东, 杨锦媚, 黄兴宇, 等, 2019b. 基于硫酸盐硫同位素的伊洛河流域河水溶解性重金属来源. 中国环境科学, 39(6): 2549-2559. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201906042.htm [64] 张婷婷, 姚鹏, 王金鹏, 等, 2015. 调水调沙对黄河下游颗粒有机碳输运的影响. 环境科学, 36(8): 2817-2826. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201508016.htm [65] 张永领, 董玉龙, 张东, 2015a. 在三门峡水库影响下黄河有机碳的输送特征. 地理科学, 35(7): 912-918. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201507015.htm [66] 张永领, 杨小林, 张东, 2015b. 小浪底水库影响下的黄河花园口站和小浪底站pCO2特征及扩散通量. 环境科学, 36(1): 40-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201501006.htm