Adsorption and Desorption Characteristics of Cd in Upland and Paddy Soil of Jianghan Plain
-
摘要: 为揭示旱地和水田土壤镉的吸附解吸特征,以江汉平原黄豆地、棉花地以及水稻田土壤为研究对象,开展土壤镉的吸附动力学实验、等温吸附-解吸实验以及有机质的影响实验.结果表明:江汉平原土壤对镉的吸附是一个较为复杂的吸附动力学过程且以化学吸附为主,研究区土壤镉的初始吸附速率总体上表现为水田土壤大于旱地土壤;旱地土壤对Cd2+具有较低的吸附能力和较高的解吸能力,水田土壤对Cd2+具有较高的吸附能力和较低的解吸能力,这与土壤有机质含量、土壤粘粒含量等因素有关;去除有机质后旱地、水田土壤对镉的吸附量均明显下降,且旱地土壤降幅更为明显,水田土壤去除有机质后对Cd2+的吸附能力依然高于旱地土壤.研究结果可为不同类型农田土壤的镉污染修复提供理论依据.Abstract: In order to reveal the adsorption and desorption characteristics of Cd2+ in upland and paddy soil, the soil of soybean field, cotton field and rice field in Jianghan Plain were taken as the research objects to carry out the adsorption kinetics experiment, isothermal adsorption desorption experiment and influence experiment of organic matter on soil Cd2+.The results showed that: the adsorption of Cd2+ by soil in Jianghan Plain was a complex adsorption kinetic process, and was dominated by chemisorption. The initial adsorption rate of Cd2+ in paddy soil was higher than that in dryland soil; while dryland soil had lower adsorption capacity and higher desorption capacity for Cd2+, paddy soil had higher adsorption capacity and lower desorption energy for Cd2+.This is related to soil properties such as organic matter content, Cd2+ background content and soil clay content. After removing organic matter, the adsorption capacity of Cd2+ in upland and paddy soil decreased significantly. The adsorption capacity of Cd2+ in paddy soil was still higher than that in upland soil after the removal of organic matter. The research in this paper can provide a theoretical basis for the remediation of Cd2+ pollution in different types of farmland soils.
-
Key words:
- paddy soil /
- upland /
- Cd /
- adsorption characteristics /
- environmental geology
-
表 1 供试样品基本情况
Table 1. The basic information of test samples
样品名称 地理位置 土地利用 室内命名 pH TOC(%) 粘粒(%) Cd(mg·kg-1) 黄豆地 三伏潭镇李泰村 黄豆地 粉砂壤土 8.27 0.48 0.94 0.24 棉花地 沙湖镇沙湖原种场 棉花地 粉砂壤土 8.06 0.71 0.76 0.27 水稻田1 郑场镇香卜村 水稻田 粉砂壤土 8.70 0.99 1.90 0.37 水稻田2 胡场镇蔡滩村 水稻田 粉砂壤土 7.93 1.05 1.09 0.41 表 2 吸附动力学模型拟合参数
Table 2. The fitting parameters of adsorption kinetic model
模型 参数 黄豆地 棉花地 水稻田1 水稻田2 Elovich模型 β 0.046 4 0.047 6 0.051 2 0.048 0 α 4.26E+08 2.57E+08 4.75E+08 5.72E+08 R2 0.952 7 0.877 9 0.914 1 0.982 1 表 3 等温吸附模型拟合参数
Table 3. Fitting parameters of isothermal adsorption model
模型 参数 黄豆地 棉花地 水稻田1 水稻田2 Langmuir等温线 K1 -12.61 -14.68 -35.61 -26.94 Langmuir等温线
$ {q}_{\mathrm{e}}=\left({S}_{\mathrm{m}}+{K}_{\mathrm{l}}{C}_{\mathrm{e}}\right)/\left(1+{K}_{\mathrm{l}}{C}_{\mathrm{e}}\right) $Sm 588.5 538.8 727.1 703.3 R2 0.201 40 0.264 40 0.077 82 0.098 82 Freundlich等温线
$ q_{\mathrm{e}}=K_{\mathrm{f}} C_{\mathrm{e}}^{1 / n} $Kf 186.0 242.1 375.1 385.8 1/n 0.448 6 0.332 4 0.377 1 0.345 5 R2 0.980 6 0.921 6 0.984 1 0.967 4 表 4 土壤矿质元素含量(%)
Table 4. Content of mineral elements in soil
Na2O MgO Al2O3 K2O CaO TFe2O3 SiO2 黄豆地 1.34 2.18 15.16 2.83 2.33 6.16 61.63 棉花地 1.68 1.87 13.88 2.44 1.82 5.35 64.91 水稻田1 1.23 2.39 15.73 3.01 2.09 6.65 62.02 水稻田2 0.98 2.46 15.79 3.07 2.33 7.06 61.39 -
[1] Ai, S. W., Liu, B. L., Yang, Y., et al., 2018. Temporal Variations and Spatial Distributions of Heavy Metals in a Wastewater-Irrigated Soil-Eggplant System and Associated Influencing Factors. Ecotoxicology and Environmental Safety, 153: 204-214. https://doi.org/10.1016/j.ecoenv.2018.02.026 [2] Al-Ghouti, M. A., Da'ana, D. A., 2020. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. Journal of Hazardous Materials, 393(1): 122383. https://doi.org/10.1016/j.jhazmat.2020.122383 [3] Bostick, B. C., Fendorf, S., Fendorf, M., 2000. Disulfide Disproportionation and CdS Formation Upon Cadmium Sorption on FeS2. Geochimica et Cosmochimica Acta, 64(2): 247-255. https://doi.org/10.1016/s0016-7037(99)00295-1 doi: 10.1016/S0016-7037(99)00295-1 [4] Cui, J., Wang, W. Q., Peng, Y., et al., 2019. Effects of Simulated Cd Deposition on Soil Cd Availability, Microbial Response, and Crop Cd Uptake in the Passivation-Remediation Process of Cd-Contaminated Purple Soil. Science of The Total Environment, 683(2): 782-792. https://doi.org/10.1016/j.scitotenv.2019.05.292 [5] Duan, Y., Wang, B. G., Wang, H. M., et al., 2021. Adsorption Characteristics of Cd in Alluvial and Lacustrine Soils: a Case Study in Dangtu County, Anhui. Earth Science, 46(4): 1490-1504(in Chinese with English abstract). [6] Hamid, Y., Tang, L., Hussain, B., et al., 2020. Organic Soil Additives for the Remediation of Cadmium Contaminated Soils and their Impact on the Soil-Plant System: A Review. Science of The Total Environment, 707(23): 136121. https://doi.org/10.1016/j.scitotenv.2019.136121 [7] Hu, S. M., Chen, X. M., Jing, F., et al., 2020. Effect of Biochar Addition on the Adsorption and Desorption Characteristics of Cd2+ in Red Paddy Soil. Journal of Soil and Water Conservation, 34 (2): 360-364(in Chinese with English abstract). [8] Huang, R., Dong, M. L., Mao, P., et al., 2020. Evaluation of Phytoremediation Potential of Five Cd (hyper)accumulators in Two Cd Contaminated Soils. Science of The Total Environment, 721(11): 137581. https://doi.org/10.1016/j.scitotenv.2020.137581 [9] Huang, Y. Y., Liu, D. D., Li, G. R., 2012. Adsorption Kinetics of As (Ⅲ) from Groundwater by Nanoscale Zero-Valent Iron. Earth Science, 37(2): 294-300(in Chinese with English abstract). [10] Juang, R. S., Chen, M. L., 1997. Application of the Elovich Equation to the Kinetics of Metal Sorption with Solvent-Impregnated Resins. Industrial & Engineering Chemistry Research, 36(3): 813-820. https://doi.org/10.1021/ie960351f [11] Khanam, R., Kumar, A., Nayak, A. K., et al., 2020. Metal(Loid)s (As, Hg, Se, Pb and Cd) in Paddy Soil: Bioavailability and Potential Risk to Human Health. Science of The Total Environment, 699(7): 134330. https://doi.org/10.1016/j.scitotenv.2019.134330 [12] Kögel-Knabner, I., Amelung, W., Cao, Z. H., et al., 2010. Biogeochemistry of Paddy Soils. Geoderma, 157(1/2): 1-14. https://doi.org/10.1016/j.geoderma.2010.03.009 [13] Li, H., He, J., Liu, C., et al., 2015. Adsorption and Desorption Characteristics of Zn on Calcareous Soil and Aeolian Sandy Soil in Arid Area. Environmental Chemistry, (4): 779-785(in Chinese with English abstract). [14] Liu, K. L., Huang, J., Li, D. M., et al., 2019. Comparison of Carbon Sequestration Efficiency in Soil Aggregates between Upland and Paddy Soils in a Red Soil Region of China. Journal of Integrative Agriculture, 18(6): 1348-1359. https://doi.org/10.1016/s2095-3119(18)62076-3 doi: 10.1016/S2095-3119(18)62076-3 [15] Livera, J., McLaughlin, M. J., Hettiarachchi, G. M., et al., 2011. Cadmium Solubility in Paddy Soils: Effects of Soil Oxidation, Metal Sulfides and Competitive Ions. Science of The Total Environment, 409(8): 1489-1497. https://doi.org/10.1016/j.scitotenv.2010.12.028 [16] Mamun, S., Chanson, G., Muliadi, ., et al., 2016. Municipal Composts Reduce the Transfer of Cd from Soil to Vegetables. Environmental Pollution, 213: 8-15. https://doi.org/10.1016/j.envpol.2016.01.072 [17] Pan, G. X., Li, L. Q., Wu, L. S., et al., 2003. Storage and Sequestration Potential of Topsoil Organic Carbon in China's Paddy Soils. Global Change Biology, 10(1): 79-92. https://doi.org/10.1111/j.1365-2486.2003.00717.x [18] Pérez-Marín, A. B., Zapata, V. M., Ortuño, J. F., et al., 2007. Removal of Cadmium from Aqueous Solutions by Adsorption Onto Orange Waste. Journal of Hazardous Materials, 139(1): 122-131. https://doi.org/10.1016/j.jhazmat.2006.06.008 [19] Rosa, M. A., Egido, J. A., Márquez, M. C., 2019. Empirical Kinetic Models for the Electrochemical Extraction of Arsenic and Heavy Metals from Clay Containing Tailings. Applied Clay Science, 182(6-7): 105254. https://doi.org/10.1016/j.clay.2019.105254 [20] Shakoor, M., Niazi, N., Bibi, I., et al., 2015. Unraveling Health Risk and Speciation of Arsenic from Groundwater in Rural Areas of Punjab, Pakistan. International Journal of Environmental Research and Public Health, 12(10): 12371-12390. https://doi.org/10.3390/ijerph121012371 [21] Sun, L. N., Chen, S., Chao, L., et al., 2007. Effects of Flooding on Changes in Eh, PH and Speciation of Cadmium and Lead in Contaminated Soil. Bulletin of Environmental Contamination and Toxicology, 79(5): 514-518. https://doi.org/10.1007/s00128-007-9274-8 [22] Tang, X., Li, Q., Wu, M., et al., 2016. Review of Remediation Practices Regarding Cadmium-Enriched Farmland Soil with Particular Reference to China. Journal of Environmental Management, 181: 646-662. https://doi.org/10.1016/j.jenvman.2016.08.043 [23] Wang, A. H., Su, Y. R., Li, Y., et al., 2011. Characteristics and Differences of Soil Organic Carbon Mineralization in Paddy Field and Upland under Straw Returning. Acta Pedologica Sinica, 48 (5): 979-987(in Chinese with English abstract). [24] Wang, F. Y., Yang, W. W., Cheng, P., et al., 2019. Adsorption Characteristics of Cadmium Onto Microplastics from Aqueous Solutions. Chemosphere, 235: 1073-1080. https://doi.org/10.1016/j.chemosphere.2019.06.196 [25] Wang, J. L., Guo, X., 2020. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere, 258(6): 127279. https://doi.org/10.1016/j.chemosphere.2020.127279 [26] Wang, J., Zhuang, S. Y., Zhu, Z. L., 2014. Changes of Organic Nitrogen Components in Paddy Field and Upland Soil with Different Planting Years. Acta Pedologica Sinica, 51 (2): 286-294(in Chinese with English abstract). [27] Wang, P. C., 2019. Distribution Characteristics, Source Apportionment and Interaction with Soluble Organic Matter of Heavy Metals in Farmland Soil of Jianghan Plain(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). [28] Wang, P. C., Li, Z. G., Liu, J. L., et al., 2019. Apportionment of Sources of Heavy Metals to Agricultural Soils Using Isotope Fingerprints and Multivariate Statistical Analyses. Environmental Pollution, 249(18): 208-216. https://doi.org/10.1016/j.envpol.2019.03.034 [29] Wissing, L., Kölbl, A., Vogelsang, V., et al., 2011. Organic Carbon Accumulation in a 2 000-Year Chronosequence of Paddy Soil Evolution. CATENA, 87(3): 376-385. https://doi.org/10.1016/j.catena.2011.07.007 [30] Yang, H. F., Zhang, G., Fu, P., et al., 2020. The Evaluation of In-Site Remediation Feasibility of Cd-Contaminated Soils with the Addition of Typical Silicate Wastes. Environmental Pollution, 265: 114865. https://doi.org/10.1016/j.envpol.2020.114865 [31] Yang, L., Zhang, Z., Li, Y. J., et al., 2018. Adsorption Characteristics of Cd2+ and Pb2+ in Typical Farmland Soils in Southwest China. Soil Bulletin, 49(4): 985-992(in Chinese with English abstract). [32] Yu, H. M., 2014. Adsorption and Desorption of Atrazine in Environment by Biochar and Its Mechanism(Dissertation). China University of mining and Technology, Beijing(in Chinese with English abstract). [33] Zeng, F. R., Ali, S., Zhang, H. T., et al., 2011. The Influence of PH and Organic Matter Content in Paddy Soil on Heavy Metal Availability and their Uptake by Rice Plants. Environmental Pollution, 159(1): 84-91. https://doi.org/10.1016/j.envpol.2010.09.019 [34] Zhang, L. P., Min, W. H., Fan, Z. Q., et al., 2020. Adsorption Characteristics of Cadmium by Granular Organic Matter in Acid Purple Paddy Soil. China Environmental Science, 40(6): 2588-2597(in Chinese with English abstract). [35] Zhang, Q., Li, Z. W., Huang, B., et al., 2017. Effect of Land Use Pattern Change from Paddy Soil to Vegetable Soil on the Adsorption-Desorption of Cadmium by Soil Aggregates. Environmental Science and Pollution Research, 24(3): 2734-2743. https://doi.org/10.1007/s11356-016-7853-0 [36] Zhang, S. W., Han, B., Sun, Y. H., et al., 2020. Microplastics Influence the Adsorption and Desorption Characteristics of Cd in an Agricultural Soil. Journal of Hazardous Materials, 388: 121775. https://doi.org/10.1016/j.jhazmat.2019.121775 [37] Zhang, S. W., Han, B., Sun, Y. H., et al., 2020. Microplastics Influence the Adsorption and Desorption Characteristics of Cd in an Agricultural Soil. Journal of Hazardous Materials, 388: 121775. https://doi.org/10.1016/j.jhazmat.2019.121775 [38] 段燕, 汪丙国, 王慧敏, 等, 2021. 冲积和湖积成因土壤Cd的吸附特征——以安徽省当涂县为例. 地球科学, 46(4): 1490-1504. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202104022.htm [39] 胡世民, 陈效民, 景峰, 等, 2020. 添加生物质炭对红壤性水稻土Cd2+吸附解吸特性的影响. 水土保持学报, 34(2): 360-364. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202002051.htm [40] 黄园英, 刘丹丹, 李桂荣, 2012. 纳米铁对地下水中As(Ⅲ)的吸附动力学. 地球科学, 37(2): 294-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202015.htm [41] 李虎, 贺婧, 刘冲, 等, 2015. 干旱区灰钙土和风沙土对Zn的吸附与解吸特性. 环境化学, 2015(4): 779-785. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201504023.htm [42] 王嫒华, 苏以荣, 李杨, 等, 2011. 稻草还田条件下水田和旱地土壤有机碳矿化特征与差异. 土壤学报, 48(5): 979-987. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201105011.htm [43] 王晋, 庄舜尧, 朱兆良, 2014. 不同种植年限水田与旱地土壤有机氮组分变化. 土壤学报, 51(2): 286-294. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201402010.htm [44] 王鹏聪, 2019. 江汉平原农田土壤重金属的分布特征、源解析及与可溶性有机质的相互作用(博士学位论文). 武汉: 中国地质大学. [45] 杨潞, 张智, 李余杰, 等, 2018. 西南地区典型农田土壤中Cd2+、Pb2+的吸附特性研究. 土壤通报, 49(4): 985-992. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201804033.htm [46] 俞花美, 2014. 生物质炭对环境中阿特拉津的吸附解吸作用及机理研究(博士学位论文). 北京: 中国矿业大学. [47] 张兰萍, 闵文豪, 范志强, 等, 2020. 酸性紫色水稻土颗粒有机质对镉的吸附特性. 中国环境科学, 40(6): 2588-2597. doi: 10.3969/j.issn.1000-6923.2020.06.029