• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    腾冲热泉中砷的甲基化和巯基化过程

    严克涛 郭清海 罗黎

    严克涛, 郭清海, 罗黎, 2022. 腾冲热泉中砷的甲基化和巯基化过程. 地球科学, 47(2): 622-632. doi: 10.3799/dqkx.2021.105
    引用本文: 严克涛, 郭清海, 罗黎, 2022. 腾冲热泉中砷的甲基化和巯基化过程. 地球科学, 47(2): 622-632. doi: 10.3799/dqkx.2021.105
    Yan Ketao, Guo Qinghai, Luo Li, 2022. Methylation and Thiolation of Arsenic in Tengchong Hot Springs. Earth Science, 47(2): 622-632. doi: 10.3799/dqkx.2021.105
    Citation: Yan Ketao, Guo Qinghai, Luo Li, 2022. Methylation and Thiolation of Arsenic in Tengchong Hot Springs. Earth Science, 47(2): 622-632. doi: 10.3799/dqkx.2021.105

    腾冲热泉中砷的甲基化和巯基化过程

    doi: 10.3799/dqkx.2021.105
    基金项目: 

    国家自然科学基金项目 41861134028

    详细信息
      作者简介:

      严克涛(1992-), 男, 博士研究生, 主要从事地热环境中砷的环境地球化学研究. ORCID: 0000-0003-1770-0348. E-mail: yanktwork@gmail.com

      通讯作者:

      郭清海, ORCID: 0000-0001-6602-9664. E-mail: qhguo2006@gmail.com

    • 中图分类号: P595

    Methylation and Thiolation of Arsenic in Tengchong Hot Springs

    • 摘要: 为了研究热泉中砷的形态及其分布、转化规律,针对云南腾冲热泉各种砷形态进行了IC-ICP-MS测试和水文地球化学分析.在91处热泉中检出了11种砷形态,包括(亚)砷酸盐、无机硫代砷和甲基(硫代)砷.其中(亚)砷酸盐含量>无机硫代砷含量>甲基砷含量.热泉中无机硫代砷含量及其巯基化程度与硫/砷比正相关.甲基砷含量低是富硫化物热泉中甲基硫代砷形成的主要限制因素,硫/砷摩尔比、总砷、温度、pH、Eh和TDS可影响甲基硫代砷的形成和转化.甲基硫代砷在热泉地表流径上可经历脱巯基、脱甲基然后被沉积物吸附,也可在流径下游重新形成.砷的巯基化和甲基化形态在热泉中广泛分布,甲基硫代砷在热泉环境中具有高迁移性和重现性,应引起相关研究重视.

       

    • 图  1  腾冲地热区地质图和采样点分布(参考自Guo et al., 2012

      Fig.  1.  Sampling location and geological map of Tengchong geothermal area (modified from Guo et al., 2012)

      图  2  As含量与现场指标(a)pH, (b)Eh, (c)TDS和(d)温度之间的关系

      . 热海热泉;. 朗蒲热泉;. 瑞滇热泉;. 邦腊掌热泉;. 太和热泉;. 户蚌热泉;. 大塘热泉

      Fig.  2.  Relationship between As concentration and (a) pH, (b) Eh, (c)TDS, (d) Temperature

      图  3  腾冲热泉中4种硫代砷比例与S/As之间的关系

      Fig.  3.  Relationship between four thioarsenate proportions and sulfide concentrations.

      图  4  各地热区热泉中甲基硫代砷含量箱型图

      a. 为甲基硫代砷占总As比例;b. 为甲基硫代砷绝对浓度

      Fig.  4.  Box and whisker plots of methylated thioarsenate contents in Tengchong geothermal areas

      图  5  腾冲热泉中甲基硫代砷比例与水化学指标之间的关系

      a. 甲基砷含量;b. S/As摩尔比;c. 总As含量;d. 温度;e. Eh;f. pH

      Fig.  5.  Relationships between methylated thioarsenate proportions and hydrochemical parameters

      图  6  腾冲热泉流径上甲基化As形态含量的变化

      Fig.  6.  Content fluctuation of methylated As species along Tengchong geothermal drainages

      表  1  水化学变量与甲基硫代砷摩尔比例之间的斯皮尔曼相关性分析

      Table  1.   Spearman's correlation analysis for methylated thioarsenate proportions (%) and hydrochemical parameters

      变量 rs 变量 rs
      甲基砷(%) 0.47 F-(mg/L) -0.24
      无机硫代砷(%) -0.05 Cl-(mg/L) -0.74
      硫化物(mg/L) -0.13 SO42-(mg/L) 0.05
      S/As摩尔比 0.39 Na+(mg/L) -0.66
      总As(μg/L) -0.77 K+(mg/L) -0.76
      pH -0.09 Ca2+(mg/L) 0.38
      Eh(mV) 0.45 Mg2+(mg/L) 0.19
      温度(℃) -0.57 SiO2(mg/L) -0.10
      TDS(mg/L) -0.74 三价铁(μg/L) -0.37
      DOC(mg/L) -0.41 Li+(μg/L) -0.75
      成熟度(MI) -0.49 Rb+(μg/L) -0.81
      HCO3-(mg/L) -0.23 Cs+(μg/L) -0.60
      注:n=43,加粗表示P值< 0.05.
      下载: 导出CSV
    • [1] Bai, D. H., Liao, Z. J., Zhao, G. Z., et al., 1994. The Inference of Magmatic Heat Source Beneath the Rehai (Hot Sea) Field of Tengchong From the Result of Magnetotelluric Sounding. Chinese Science Bulletin, 39(4): 344-347 (in Chinese). doi: 10.1360/csb1994-39-4-344
      [2] Ballantyne, J. M., Moore, J. N., 1988. Arsenic Geochemistry in Geothermal Systems. Geochimica et Cosmochimica Acta, 52(2): 475-483. https://doi.org/10.1016/0016-7037(88)90102-0
      [3] Conklin, S. D., Fricke, M. W., Creed, P. A., et al., 2008. Investigation of the PH Effects on the Formation of Methylated Thio: Arsenicals, and the Effects of PH and Temperature on Their Stability. Journal of Analytical Atomic Spectrometry, 23(5): 711. https://doi.org/10.1039/b713145c
      [4] Couture, R. M., Rose, J., Kumar, N., et al., 2013. Sorption of Arsenite, Arsenate, and Thioarsenates to Iron Oxides and Iron Sulfides: A Kinetic and Spectroscopic Investigation. Environmental Science & Technology, 47(11): 5652-5659. https://doi.org/10.1021/es3049724
      [5] Ellis, A. J., Mahon, W. A. J., 1964. Natural Hydrothermal Systems and Experimental Hot Water/rock Interactions (Part Ⅱ). Geochimica et Cosmochimica Acta, 31(4): 519-538. https://doi.org/10.1016/0016-7037(67)90032-4
      [6] Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215-216: 61-73. https://doi.org/10.1016/j.jvolgeores.2011.12.003
      [7] Guo, Q. H., Liu, M. L., Li, J. X., 2017. Thioarsenic Species in the High-Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses. Earth Science, 42 (2): 286-297 (in Chinese with English abstract).
      [8] Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453(1): 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010
      [9] Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2019. Magmatic Fluid Input Explaining the Geochemical Anomaly of Very High Arsenic in Some Southern Tibetan Geothermal Waters. Chemical Geology, 513: 32-43. https://doi.org/10.1016/j.chemgeo.2019.03.008.
      [10] Hinrichsen, S., Geist, F., Planer-Friedrich, B., 2015. Inorganic and Methylated Thioarsenates Pass the Gastrointestinal Barrier. Chem Res Toxicol, 28: 1678-1680. https://doi.org/10.1021/acs.chemrestox.5b00268.
      [11] Hirano, S., Kobayashi, Y., Cui, X., et al., 2004. The Accumulation and Toxicity of Methylated Arsenicals in Endothelial Cells: Important Roles of Thiol Compounds. Toxicol Appl Pharmacol, 198: 458-67. https://doi.org/10.1016/j.taap.2003.10.023.
      [12] Hug, K., Maher, W. A., Stott, M. B., et al., 2014. Microbial Contributions to Coupled Arsenic and Sulfur Cycling in the Acid-Sulfide Hot Spring Champagne Pool, New Zealand. Front Microbiol, 5: 569. https://doi.org/10.3389/fmicb.2014.00569
      [13] Kerl, C. F., Ballaran, T. B., Planer-Friedrich, B., 2019a. Iron Plaque at Rice Roots: No Barrier for Methylated Thioarsenates. Environmental Science & Technology, 53: 13666-13674. https://doi.org/10.1021/acs.est.9b04158
      [14] Kerl, C. F., Schindele, R. A., Bruggenwirth, L., et al., 2019b. Methylated Thioarsenates and Monothioarsenate Differ in Uptake, Transformation, and Contribution to Total Arsenic Translocation in Rice Plants. Environmental Science & Technology, 53: 5787-5796. https://doi.org/10.1021/acs.est.9b00592
      [15] Kim, Y. T., Lee, H., Yoon, H. O., et al., 2016. Kinetics of Dimethylated Thioarsenicals and the Formation of Highly Toxic Dimethylmonothioarsinic Acid in Environment. Environmental Science & Technology, 50: 11637-11645. https://doi.org/10.1021/acs.est.6b02656
      [16] Lang, S. Q., Butterfield, D. A., Schulte, M., et al., 2010. Elevated Concentrations of Formate, Acetate and Dissolved Organic Carbon Found at The Lost City Hydrothermal Field. Geochimica et Cosmochimica Acta, 74: 941-952. https://doi.org/10.1016/j.gca.2009.10.045
      [17] Langner, H. W., Jackson, C. R., Mcdermott, T. R., et al., 2001. Rapid Oxidation of Arsenite in a Hot Spring Ecosystem, Yellowstone National Park. Environmental Science & Technology, 35: 3302-3309. https://doi.org/10.1021/es0105562.
      [18] Li, Y. R., Low, G. K., Scott J. A., et al., 2011. Microbial Transformation of Arsenic Species in Municipal Landfill Leachate. Journal of hazardous materials, 188: 140-147. https://doi.org/10.1016/j.jhazmat.2011.01.093
      [19] Liu, M. L., He, T., Wu, Q. F., et al., 2019. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its Indicating Significance. Earth Science, 45: 2221-2231 (in Chinese with English abstract).
      [20] Liao, Z., Zhao, P., 1999. Yunnan-Tibet Geothermal Belt-Geothermal Resources and Case Histories. Science Press, Beijing (in Chinese with English abstract).
      [21] Naranmandura, H., Carew, M. W., Xu, S., et al., 2011. Comparative Toxicity of Arsenic Metabolites in Human Bladder Cancer EJ-1 Cells. Chem Res Toxicol, 24: 1586-96. https://doi.org/10.1021/tx200291p
      [22] Naranmandura, H., Ibata, K., Suzuki, K. T., 2007. Toxicity of Dimethylmonothioarsinic Acid Toward Human Epidermoid Carcinoma A431 Cells. Chemical Research in Toxicology, 20: 1120-1125. https://doi.org/10.1021/tx700103y
      [23] Planer-Friedrich, B., Forberg, J., Lohmayer, R., et al., 2020. Relative Abundance of Thiolated Species of As, Mo, W, and Sb in Hot Springs of Yellowstone National Park and Iceland. Environmental Science & Technology, 54: 4295-4304. https://doi.org/10.1021/acs.est.0c00668
      [24] Planer-Friedrich, B., Hartig, C., Lohmayer, R., et al., 2015. Anaerobic Chemolithotrophic Growth of the Haloalkaliphilic Bacterium Strain MLMS-1 by Disproportionation of Monothioarsenate. Environmental Science & Technology, 49: 6554-63. https://doi.org/10.1021/acs.est.5b01165
      [25] Planer-Friedrich, B., Lehr, C., Matschullat, J., et al., 2006. Speciation of Volatile Arsenic at Geothermal Features in Yellowstone National Park. Geochimica et Cosmochimica Acta, 70: 2480-2491. https://doi.org/10.1016/j.gca.2006.02.019
      [26] Planer-Friedrich, B., London, J., McCleskey, R. B., et al., 2007. Thioarsenates in Geothermal Waters of Yellowstone National Park: Determination, Preservation, and Geochemical Importance. Environmental Science & Technology, 41: 5245-5251. https://doi.org/10.1021/es070273v
      [27] Qin, J., Lehr, C. R., Yuan, C., et al., 2009. Biotransformation of Arsenic by A Yellowstone Thermoacidophilic Eukaryotic Alga. Proceedings of the National Academy of Sciences, 106: 5213-5217. https://doi.org/10.1073/pnas.0900238106
      [28] Rodríguez-Lado, L., Sun, G., Berg, M., et al., 2013. Groundwater Arsenic Contamination Throughout China. Science, 341: 866-868. https://doi.org/10.1126/science.1237484
      [29] Sharma, A. K., Tjell, J. C., Sloth, J. J., et al., 2014. Review of Arsenic Contamination, Exposure Through Water and Food and Low Cost Mitigation Options for Rural Areas. Applied Geochemistry, 41: 11-33. https://doi.org/10.1016/j.apgeochem.2013.11.012.
      [30] Song, X. Q., Peng, Q. Duan, Q. S., et al., 2019. Hydrochemistry Characteristics and Origin of Geothermal Water in Northeastern Guizhou. Earth Science, 44: 2874-2886 (in Chinese with English abstract).
      [31] Tong, W., Zhang, M. T., 1989. Geothermics in Tengchong. Science Press, Beijing (in Chinese).
      [32] Wallschläger, D., London, J., 2008. Determination of Methylated Arsenic-Sulfur Compounds in Groundwater. Environmental Science & Technology, 42: 228-234. https://doi.org/10.1021/es0707815
      [33] Wang, J., Halder, D., Wegner, L., et al., 2020a. Redox Dependence of Thioarsenate Occurrence in Paddy Soils and the Rice Rhizosphere. Environmental Science & Technology, 54: 3940-3950. https://doi.org/10.1021/acs.est.9b05639
      [34] Wang, J., Kerl, C. F., Hu, P., et al., 2020b. Thiolated Arsenic Species Observed in Rice Paddy Pore Waters. Nature Geoscience, 13: 282-287. https://doi.org/10.1038/s41561-020-0533-1
      [35] Webster, J.G., Nordstrom, D.K., 2003. Geothermal Arsenic. In: Welch, A.H., Stollenwerk, K.G. (eds) Arsenic in Ground Water. Springer, Boston, MA. https://doi.org/10.1007/0-306-47956-7_4
      [36] Wu, G., Huang, L., Jiang, H., et al., 2017. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by A Sulfate-Reducing Bacterium Isolated From A Hot Spring. Frontiers in microbiology, 8: 1336. https://doi.org/10.3389/fmicb.2017.01336
      [37] Zhu, Y. G., Xue, X. M., Kappler, A., et al., 2017. Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic. Environmental Science & Technology, 51: 7326-7339. https://doi.org/10.1021/acs.est.7b00689
      [38] Zhuang, Y. Q., Guo Q. H., Liu M. L., et al., 2016. Geochemical Simulation of Thioarsenic Speciation in High-Temperature, Sulfide-Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan. Earth Science, 41(9): 1499-1510 (in Chinese with English abstract).
      [39] 白登海, 廖志杰, 赵国泽, 等, 1994. 从MT探测结果推论腾冲热海热田的岩浆热源. 科学通报, 39(4): 344-347. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199404017.htm
      [40] 郭清海, 刘明亮, 李洁祥, 2017. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因. 地球科学. 42(2): 286-297. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201702010.htm
      [41] 廖志杰, 赵平, 1999. 滇藏地热带: 地热资源和典型地热系统. 北京: 科学出版社.
      [42] 刘明亮, 何曈, 吴启帆, 等, 2019. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006032.htm
      [43] 宋小庆, 彭钦, 段启杉, 等, 2019. 黔东北地区地热水化学特征及起源. 地球科学, 44(9): 2874-2886. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909006.htm
      [44] 佟伟, 章铭陶, 1989. 腾冲地热. 北京: 科学出版社.
      [45] 庄亚芹, 郭清海, 刘明亮, 等, 2016. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例. 地球科学. 41(9): 1499-1510. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201609006.htm
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  344
    • HTML全文浏览量:  57
    • PDF下载量:  29
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-03
    • 刊出日期:  2022-02-25

    目录

      /

      返回文章
      返回