• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    土工膜岩土力学性质的温度影响试验

    林海 陈薪文 曾一帆

    林海, 陈薪文, 曾一帆, 2022. 土工膜岩土力学性质的温度影响试验. 地球科学, 47(6): 2165-2174. doi: 10.3799/dqkx.2021.103
    引用本文: 林海, 陈薪文, 曾一帆, 2022. 土工膜岩土力学性质的温度影响试验. 地球科学, 47(6): 2165-2174. doi: 10.3799/dqkx.2021.103
    Lin Hai, Chen Xinwen, Zeng Yifan, 2022. Experimental Study on Effect of Temperature on Geo-Mechanical Properties of Geomembrane. Earth Science, 47(6): 2165-2174. doi: 10.3799/dqkx.2021.103
    Citation: Lin Hai, Chen Xinwen, Zeng Yifan, 2022. Experimental Study on Effect of Temperature on Geo-Mechanical Properties of Geomembrane. Earth Science, 47(6): 2165-2174. doi: 10.3799/dqkx.2021.103

    土工膜岩土力学性质的温度影响试验

    doi: 10.3799/dqkx.2021.103
    基金项目: 

    国家自然科学基金 41702324

    国家自然科学基金 42062018

    详细信息
      作者简介:

      林海(1986-),男,副教授,博士,从事岩土力学与基础工程相关的教学和环境岩土工程有关的科研工作.ORCID:0000-0002-3498-8059.E-mail:linhai@ncu.edu.cn

    • 中图分类号: TU411.99

    Experimental Study on Effect of Temperature on Geo-Mechanical Properties of Geomembrane

    • 摘要: HDPE土工膜(geomembrane,GM)在城市卫生填埋场等环保工程中可能会面临高温环境,现有关于GM力学性能的试验研究大都在常温下进行,土工膜力学性质的温度效应关乎到边坡稳定和工程安全.为了揭露土工膜岩土力学性质的温度影响规律,开展了GM温控拉伸试验以及不同温度条件下的GM/砂土界面直剪试验和GM/无纺土工布(geotextile,GT)界面直剪试验.通过对比分析不同温度条件下GM的拉伸性质和GM界面剪切特性,揭露温度环境对土工膜岩土力学性质的定性及定量影响规律.试验结果表明,GM的抗拉强度随温度变化影响显著,相对于常温情况,大于70 ℃的高温可使GM的抗拉强度折减近80%;温度对GM/GT界面剪切特性的影响要明显大于GM/砂土界面,GM岩土力学性质的温度效应引起工程人员的重视.

       

    • 图  1  砂土颗粒级配曲线

      Fig.  1.  Curve of sand particle gradation

      图  2  温控万能试验机

      Fig.  2.  Temperature control universal testing machine

      图  3  哑铃形土工膜试样

      Fig.  3.  Dumbbell-shaped geomembrane samples

      图  4  GM剪切试验及固定方式示意

      a.GM/砂土界面剪切试验; b.土工布的固定方式; c.土工膜试样的固定方式

      Fig.  4.  Schematic diagrams of GM shear test and fixing method

      图  5  GM/GT界面剪切重复试验

      Fig.  5.  Repeated shear results for the GM/GT interface

      T=60 ℃, σn=400 kPa

      图  6  不同温度下GMX、GMS拉伸应力应变曲线

      a.不同温度下GMX的拉伸应力应变曲线;b.不同温度下GMS的拉伸应力应变曲线

      Fig.  6.  GMX and GMS tensile stress-strain curves at different temperatures

      图  7  GMS抗拉强度和弹性模量的温度效应

      Fig.  7.  Temperature effect graph of GMS tensile strength and elastic modulus

      图  8  不同温度下GMS/砂土界面应力位移曲线

      Fig.  8.  GMS/sand interface stress-displacement curves at different temperatures

      a.σn =25 kPa; b.σn =50 kPa; c.σn =100 kPa; d.σn =200 kPa; e.σn =400 kPa

      图  9  不同温度下GMS/砂土界面强度包线

      Fig.  9.  GMS/sand interface strength envelope at different temperatures

      图  10  不同法向压力下GMX/砂土界面应力位移曲线

      Fig.  10.  GMX/sand interface stress-displacement curves at different temperatures

      a.σn =25 kPa; b.σn =50 kPa; c.σn =100 kPa; d.σn =200 kPa; e.σn =400 kPa

      图  11  不同温度下GMX/砂土界面强度包线

      Fig.  11.  GMX/sand interface strength envelope at different temperatures

      图  12  不同法向应力下GMS/GT界面应力位移曲线

      Fig.  12.  GMS/GT interface stress-displacement curves at different temperatures

      a.σn =25 kPa; b.σn =50 kPa; c.σn =100 kPa; d.σn =200 kPa; e.σn =400 kPa

      图  13  不同温度下GMS/GT界面强度包线

      Fig.  13.  GMS/GT interface strength envelope at different temperatures

      图  14  GM/砂土界面和GMS/GT界面剪切摩擦角的温度效应

      Fig.  14.  The temperature effect of the shear friction angle of the GM/sand interface and GMS/GT interface

      表  1  土工合成材料的岩土参数

      Table  1.   The geotechnical parameters of geosynthetics

      试验材料 厚度(mm) 密度(g•cm-3) 断裂强度(N/mm) 断裂伸长率(%) 穿刺强度(N) 撕裂强度(N)
      光面土工膜(GMS) 2 0.94 54 718 640 251
      糙面土工膜(GMX) 1.5 0.94 26 400 534 268
      厚度(mm) 单位面积质量(g/m²) 拉伸强度(kN/m) 伸长率(%) 撕裂强度(kN) 刺破强度(kN)
      无纺土工布(GT) 5.5 300 40 75 1.1 7.9
      下载: 导出CSV

      表  2  不同温度下GM/砂土、GMS/GT界面强度指标

      Table  2.   GM/sand, GMS/GT interface strength index at different temperatures

      界面 摩擦角 20 ℃ 30 ℃ 40 ℃ 50 ℃ 60 ℃
      GMS/砂土 φ (°) 23.80 23.90 24.44 23.95 24.39
      R2 0.996 5 0.997 5 0.995 1 0.996 3 0.995 1
      GMX/砂土 φ (°) 31.38 31.70 31.19 32.38 32.49
      R2 0.996 5 0.995 7 0.995 6 0.992 0 0.999 0
      GMS/GT φ (°) 9.58 9.96 10.10 11.01 10.02
      R2 0.997 9 0.997 5 0.998 6 0.984 1 0.998 4
      下载: 导出CSV
    • [1] Abdelaal, F. B., Rowe, R. K., Hsuan, Y. G., et al., 2015. Effect of High Temperatures on the Physical and Mechanical Properties of HDPE Geomembranes in Air. Geosynthetics International, 22(3): 207. https://doi.org/10.1680/gein.15.00006
      [2] Akpinar, M. V., Benson, C. H., 2005. Effect of Temperature on Shear Strength of Two Geomembrane-Geotextile Interfaces. Geotextiles and Geomembranes, 23(5): 443-453. https://doi.org/10.1016/j.geotexmem.2005.02.004
      [3] Bacas, B. M., Cañizal, J., Konietzky, H., 2015. Shear Strength Behavior of Geotextile/Geomembrane Interfaces. Journal of Rock Mechanics and Geotechnical Engineering, 7(6): 638-645. https://doi.org/10.1016/j.jrmge.2015.08.001
      [4] Bao, C. G., 2006. Study on Interface Behavior of Geosynthetics and Soil. Chinese Journal of Rock Mechanics and Engineering, 25(9): 1735-1744(in Chinese with English abstrac).
      [5] Calder, G. V., Stark, T. D., 2010. Aluminum Reactions and Problems in Municipal Solid Waste Landfills. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 14(4): 258-265. https://doi.org/10.1061/(asce)hz.1944-8376.0000045
      [6] Chappel, M. J., Rowe, R. K., Brachman, R., et al., 2012. A Comparison of Geomembrane Wrinkles for Nine Field Cases. Geosynthetics International, 19(6): 453-469. https://doi.org/10.1680/gein.12.00030
      [7] Fairbrother, A., Hsueh, H. C., Kim, J. H., et al., 2019. Temperature and Light Intensity Effects on Photodegradation of High-Density Polyethylene. Polymer Degradation and Stability, 165: 153-160. https://doi.org/10.1016/j.polymdegradstab.2019.05.002.
      [8] Feng, S. J., Gao, L. Y., Wang, Y., 2008. Analysis of Tension of Geomembranes Placed on Landfill Slopes. Chinese Journal of Geotechnical Engineering, 30(10): 1484-1489(in Chinese with English abstract)
      [9] Fox, P. J., Stark, T. D., 2004. State-of-the-Art Report: GCL Shear Strength and Its Measurement. Geosynthetics International, 11(3): 141-175. https://doi.org/10.1680/gein.2004.11.3.141
      [10] Hanson, J. L., Chrysovergis, T. S., Yesiller, N., et al., 2015. Temperature and Moisture Effects on GCL and Textured Geomembrane Interface Shear Strength. Geosynthetics International, 22(1): 110-124. https://doi.org/10.1680/gein.14.00035
      [11] He, C., Tang, H. M., Shen, P. W., et al, 2021. Progressive Failure Mode and Stability Reliability of Strain-Softening Slope. Earth Science, 46(2): 697-707(in Chinese with English abstract)
      [12] Koerner, G. R., Koerner, R. M., 2006. Long-Term Temperature Monitoring of Geomembranes at Dry and Wet Landfills. Geotextiles and Geomembranes, 24(1): 72-77. https://doi.org/10.1016/j.geotexmem.2004.11.003
      [13] Li, L., Fall, M., Fang, K., 2020. Shear Behavior at Interface between Compacted Clay Liner-Geomembrane under Freeze-Thaw Cycles. Cold Regions Science and Technology, 172: 103006. https://doi.org/10.1016/j.coldregions.2020.103006
      [14] Listyarini, S., 2017. Designing Heap Leaching for Nickel Production that Environmentally and Economically Sustain. International Journal of Environmental Science and Development, 8(12): 799-803. https://doi.org/10.18178/ijesd.2017.8.12.1060
      [15] Liu, M. L., He, T., Wu, Q. F., et al., 2020. Hydrogeochemistry of Geothermal Waters from Xiongan New Area and Its Indicating Significance. Earth Science, 45(6): 2221-2231(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.270
      [16] Martin, J. W., Stark, T. D., Thalhamer, T., et al., 2013. Detection of Aluminum Waste Reactions and Waste Fires. Journal of Hazardous, Toxic, and Radioactive Waste, 17(3): 164-174. https://doi.org/10.1061/(asce)hz.2153-5515.0000171
      [17] Morsy, M. S., Rowe, R. K., 2020. Effect of Texturing on the Longevity of High-Density Polyethylene (HDPE) Geomembranes in Municipal Solid Waste Landfills. Canadian Geotechnical Journal, 57: 61-72. https://doi.org/10.1139/cgj-2019-0047
      [18] Qian, X. D, Shi, J. Y., Liu, X. D., 2011. Design and Construction of Modern Sanitary Landfills. China Architecture and Building Press, Beijing(in Chinese).
      [19] Rodriguez, E. L., Filisko, F. E., 1987. Thermal Effects in High Density Polyethylene and Low Density Polyethylene at High Hydrostatic Pressures. Journal of Materials Science, 22(6): 1934-1940. https://doi.org/10.1007/bf01132919
      [20] Rowe, R. K., Abdelaal, F. B., Zafari, M., et al., 2020. An Approach to High-Density Polyethylene (HDPE) Geomembrane Selection for Challenging Design Requirements. Canadian Geotechnical Journal, 57: 1550-1565. https://doi.org/10.1139/cgj-2019-0572
      [21] Rowe, R. K., Yu, Y., 2019. Magnitude and Significance of Tensile Strains in Geomembrane Landfill Liners. Geotextiles and Geomembranes, 47(3): 439-458. https://doi.org/10.1016/j.geotexmem.2019.01.001
      [22] SL 235-2012, 2012. Specification for Test and Measurement of Geosynthetics. China Water & Power Press, Beijing(in Chinese).
      [23] Stark, T. D., Martin, J. W., Gerbasi, G. T., et al., 2012. Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill. Geotechnical and Geoenvironmental Engineering, 138(3): 252-261. https://doi.org/10.1061/(asce)gt.1943-5606.0000581
      [24] Take, W. A., Watson, E., Brachman, R. W. I., et al., 2012. Thermal Expansion and Contraction of Geomembrane Liners Subjected to Solar Exposure and Backfilling. Journal of Geotechnical and Geoenvironmental Engineering, 138(11): 1387-1397. https://doi.org/10.1061/(asce)gt.1943-5606.0000694
      [25] Xiao, Z. Y., Tu, F., 2010. HDPE Geomembrane-Geotextile Interface Shear Properties Determined by Large Size Direct Shear Test. Engineering Mechanics, 27(12): 186-191(in Chinese with English abstract)
      [26] Xu, S. F., Wang, G. C., Wang, Z., 2010. Evaluation of Tensile Forces of Geomembrane Placed on Waste Landfill Slope due to Temperature Variation and Filling Height. Rock and Soil Mechanics, 31(10): 3120-3124 (in Chinese with English abstract)
      [27] 包承纲, 2006. 土工合成材料界面特性的研究和试验验证. 岩石力学与工程学报, 25(9): 1735-1744. doi: 10.3321/j.issn:1000-6915.2006.09.002
      [28] 冯世进, 高丽亚, 王印, 2008. 垃圾填埋场边坡上土工膜的受力分析. 岩土工程学报, 30(10): 1484-1489. doi: 10.3321/j.issn:1000-4548.2008.10.011
      [29] 何成, 唐辉明, 申培武, 等, 2021. 应变软化边坡渐进破坏模式及稳定性可靠度. 地球科学, 46(2): 697-707. doi: 10.3799/dqkx.2020.058
      [30] 刘明亮, 何曈, 吴启帆, 等, 2020. 雄安新区地热水化学特征及其指示意义. 地球科学, 45(6): 2221-2231. doi: 10.3799/dqkx.2019.270
      [31] 钱学德, 施建勇, 刘晓东, 2011. 现代卫生填埋场的设计与施工. 北京: 中国建筑工业出版社.
      [32] SL 235-2012, 2012. 土工合成材料测试规程. 北京: 中国水利水电出版社.
      [33] 肖朝昀, 涂帆, 2010. HDPE土工膜与无纺土工布界面剪切性能试验研究. 工程力学, 27(12): 186-191. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201012031.htm
      [34] 许四法, 王国才, 王哲, 2010. 温度和填埋高度引起的垃圾填埋场边坡部土工膜张拉力评价. 岩土力学, 31(10): 3120-3124. doi: 10.3969/j.issn.1000-7598.2010.10.015
    • 加载中
    图(14) / 表(2)
    计量
    • 文章访问数:  218
    • HTML全文浏览量:  39
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-04-14
    • 刊出日期:  2022-06-25

    目录

      /

      返回文章
      返回