Petrogenesis and Geological Significance of Early Cretaceous Granites in Tajigang Mining Area, Central Tibet
-
摘要: 塔吉冈铜多金属矿位于南羌塘地块的南缘,是认识班公湖-怒江成矿带构造-岩浆-成矿作用的理想窗口.以塔吉冈铜多金属矿区内出露的花岗岩为研究对象,对其进行了系统的锆石U-Pb定年、全岩地球化学和锆石原位Hf同位素研究.结果显示塔吉冈花岗岩形成于早白垩世晚期(120~118 Ma),岩石地球化学具有高SiO2、高碱(Na2O+K2O)、低P2O5的特征,铝饱和指数(A/CNK)为0.78~1.02,整体显示偏铝质钙碱性Ⅰ型花岗岩的特征.塔吉冈花岗岩具有正的锆石εHf(t)值(+3.9~+7.2)、年轻的地壳模式年龄(TDMC=717~926 Ma)以及与陆壳相似的Zr/Hf(26.88~38.65)、Nb/Ta(7.01~13.61)、Sm/Nd(0.17~0.21)、Nb/La(0.32~0.58)等特征元素比值,指示其起源于新生的火成岩下地壳部分熔融.对比研究区域地质资料,塔吉冈花岗岩形成于拉萨与南羌塘地块碰撞的构造背景,并显示与区域同时期成矿相关岩体一致的地球化学与同位素组成,均为西藏中部新生下地壳部分熔融的产物.考虑到新生地壳通常富含铜金等金属元素,研究提出西藏中部大规模发育的新生地壳熔融成因的花岗岩体具有一定的成矿条件,是今后寻找斑岩型铜金矿重点勘查方向.Abstract: Tajigang copper polymetallic ore is located in the south margin of southern Qiangtang terrane, providing an ideal window for understanding the tectonic-magmatic activities and mineralization of Bangong Co-Nujiang metallogenic belt. In this paper, it focuses on the granites in Tajigang mining area and reports their zircon U-Pb ages, geochemical and zircon Hf isotopic data. These granite rocks were dated as Early Cretaceous (120-118 Ma) and characterized by high SiO2, total alkali (Na2O+K2O), and low P2O5 contents, with aluminum saturation index (A/CNK) of 0.78-1.02, suggesting geochemical affinity to calc alkaline Ⅰ-type granite. Furthermore, the granites display positive εHf(t) values (+3.9-+7.2) with relatively young crustal model age (TDMC=717-926 Ma) and show similar Zr/Hf (26.88-38.65), Nb/Ta (7.01-13.61), Sm/Nd (0.17-0.21), and Nb/La (0.32-0.58) ratios to crust, indicating a magma source of juvenile igneous lower crust. Together with data from the recent literature, it proposes that the Tajigang granites formed in a collision setting of Lhasa and southern Qiangtang terranes. In addition, the Tajigang granites show similar geochemical and isotopic compositions with the regional simultaneous metallogenic related rocks which were derived by partial melting of juvenile lower crust. In general, the juvenile crust was enriched in Cu, Au and other elements. Thus, our research proposes that these widely exposed juvenile-crust derived granitic rocks of central Tibet have certain metallogenic conditions and are the key exploration direction for prospecting porphyry Cu-Au deposits in the future.
-
图 6 塔吉冈矿区花岗岩稀土配分模式图(a);微量元素蛛网图(b)(底图据Sun and McDonough, 1989)
Fig. 6. Chondrite-normalized REE pattern (a); primitive mantle-normalized trace element diagram (b)
表 1 LA-ICP-MS锆石U-Th-Pb同位素分析结果
Table 1. LA-ICP-MS zircon isotopic U-Th-Pb analysis results
测点 元素含量(10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ TJG2001-01 219 433 0.51 0.047 8 0.003 4 0.120 8 0.008 1 0.018 4 0.000 3 87 168 116 7 118 2 TJG2001-02 213 533 0.40 0.049 3 0.003 0 0.124 7 0.006 7 0.018 7 0.000 3 161 146 119 6 120 2 TJG2001-04 316 694 0.45 0.050 7 0.002 8 0.130 1 0.007 0 0.018 6 0.000 2 228 126 124 6 119 1 TJG2001-05 200 468 0.43 0.047 4 0.003 1 0.121 0 0.007 2 0.018 7 0.000 3 78 142 116 7 120 2 TJG2001-06 320 668 0.48 0.048 7 0.002 3 0.123 3 0.005 8 0.018 3 0.000 3 132 111 118 5 117 2 TJG2001-07 306 595 0.51 0.052 5 0.003 7 0.128 9 0.008 9 0.017 7 0.000 3 306 130 123 8 113 2 TJG2001-08 346 745 0.46 0.048 4 0.002 4 0.120 2 0.005 7 0.018 0 0.000 2 117 111 115 5 115 2 TJG2001-10 343 765 0.45 0.048 5 0.002 9 0.120 8 0.006 8 0.018 1 0.000 2 120 137 116 6 116 2 TJG2001-11 312 671 0.46 0.046 9 0.002 7 0.121 9 0.006 8 0.018 9 0.000 3 43 133 117 6 121 2 TJG2001-12 214 592 0.36 0.047 2 0.002 8 0.122 6 0.007 0 0.018 7 0.000 3 58 137 117 6 120 2 TJG2001-13 41.0 89.9 0.46 0.049 8 0.008 8 0.109 0 0.012 4 0.018 2 0.000 6 187 363 105 11 116 4 TJG2001-14 271 631 0.43 0.050 1 0.002 8 0.128 9 0.005 7 0.018 6 0.000 3 198 130 123 5 119 2 TJG2001-15 249 603 0.41 0.051 6 0.002 7 0.130 7 0.006 5 0.018 3 0.000 3 333 120 125 6 117 2 TJG2001-16 307 709 0.43 0.050 1 0.002 7 0.130 1 0.007 5 0.018 5 0.000 3 198 128 124 7 118 2 TJG2001-17 276 667 0.41 0.049 5 0.003 5 0.122 3 0.008 3 0.017 9 0.000 3 169 159 117 8 114 2 TJG2001-18 257 611 0.42 0.048 5 0.003 6 0.125 0 0.007 9 0.018 8 0.000 3 124 176 120 7 120 2 TJG2001-19 260 628 0.41 0.051 6 0.002 9 0.132 6 0.006 7 0.018 6 0.000 3 333 97 126 6 119 2 TJG2001-20 116 291 0.40 0.049 9 0.005 0 0.125 0 0.009 7 0.018 6 0.000 4 191 218 120 9 119 3 TJG2001-03 220 584 0.38 0.043 1 0.003 2 0.113 0 0.007 8 0.019 0 0.000 3 error 109 7 121 2 TJG2001-09 224 367 0.61 0.067 7 0.005 3 0.169 7 0.010 6 0.018 7 0.000 4 861 165 159 9 120 2 TJG2011-01 167 455 0.37 0.046 8 0.003 1 0.125 0 0.008 1 0.019 3 0.000 3 39 152 120 7 123 2 TJG2011-02 159 428 0.37 0.050 8 0.003 2 0.135 3 0.008 2 0.019 3 0.000 3 232 144 129 7 123 2 TJG2011-03 246 576 0.43 0.049 6 0.002 8 0.132 6 0.007 0 0.019 3 0.000 3 176 133 126 6 124 2 TJG2011-04 288 685 0.42 0.048 2 0.002 8 0.125 8 0.007 1 0.018 9 0.000 3 109 133 120 6 121 2 TJG2011-05 185 362 0.51 0.047 9 0.003 3 0.123 9 0.007 9 0.018 7 0.000 3 95 156 119 7 119 2 TJG2011-06 269 604 0.45 0.052 9 0.003 0 0.141 4 0.007 8 0.019 1 0.000 3 324 131 134 7 122 2 TJG2011-07 150 446 0.34 0.048 6 0.003 3 0.125 9 0.008 1 0.018 7 0.000 2 132 152 120 7 120 2 TJG2011-10 98.2 164 0.60 0.050 9 0.005 6 0.122 8 0.010 6 0.018 6 0.000 5 235 237 118 9 119 3 TJG2011-11 370 712 0.52 0.047 1 0.002 7 0.119 4 0.005 9 0.018 3 0.000 3 54 135 115 5 117 2 TJG2011-12 224 603 0.37 0.049 4 0.002 9 0.128 8 0.007 1 0.018 6 0.000 3 165 137 123 6 119 2 TJG2011-13 304 632 0.48 0.053 2 0.003 0 0.137 2 0.007 0 0.018 9 0.000 3 345 126 131 6 120 2 TJG2011-14 215 512 0.42 0.049 4 0.003 2 0.127 9 0.007 5 0.018 7 0.000 3 165 150 122 7 119 2 TJG2011-15 234 611 0.38 0.048 7 0.003 0 0.126 5 0.007 1 0.018 8 0.000 3 200 76 121 6 120 2 TJG2011-16 248 630 0.39 0.047 0 0.003 2 0.124 9 0.006 6 0.019 3 0.000 2 56 156 119 6 123 2 TJG2011-17 164 494 0.33 0.049 3 0.003 1 0.122 4 0.006 7 0.018 1 0.000 3 165 148 117 6 115 2 TJG2011-18 182 510 0.36 0.053 3 0.003 2 0.139 0 0.007 9 0.018 9 0.000 3 343 137 132 7 121 2 TJG2011-19 309 726 0.43 0.050 6 0.003 0 0.131 9 0.006 9 0.018 8 0.000 3 233 135 126 6 120 2 TJG2011-08 351 551 0.64 0.060 0 0.003 5 0.161 8 0.008 9 0.019 4 0.000 3 606 125 152 8 124 2 TJG2011-09 236 528 0.45 0.064 2 0.003 7 0.177 3 0.009 7 0.020 1 0.000 3 746 121 166 8 128 2 TJG2011-20 185 493 0.37 0.070 3 0.005 4 0.182 5 0.013 7 0.018 8 0.000 3 1000 159 170 12 120 2 表 2 锆石Hf同位素特征
Table 2. Zircon Hf isotopic data
测点 年龄(Ma) 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ 176Hf/177Hfi εHf(0) εHf(t) 2σ TDM (Ma) TDMC(Ma) fLu/Hf TJG2001-01 118 0.043 581 0.000 400 0.001 315 0.000 011 0.282 902 0.000 016 0.282 899 4.6 7.1 0.6 501 724 -0.96 TJG2001-02 120 0.040 377 0.000 498 0.001 182 0.000 014 0.282 831 0.000 013 0.282 828 2.1 4.6 0.5 600 882 -0.96 TJG2001-04 119 0.030 224 0.000 074 0.000 920 0.000 001 0.282 858 0.000 013 0.282 856 3.0 5.6 0.5 558 820 -0.97 TJG2001-06 117 0.035 192 0.000 323 0.001 077 0.000 007 0.282 837 0.000 013 0.282 834 2.3 4.8 0.5 591 871 -0.97 TJG2001-07 113 0.082 175 0.003 128 0.002 532 0.000 100 0.282 843 0.000 014 0.282 838 2.5 4.8 0.5 604 864 -0.92 TJG2001-08 115 0.030 396 0.000 194 0.000 927 0.000 005 0.282 825 0.000 012 0.282 823 1.9 4.3 0.4 604 896 -0.97 TJG2001-10 116 0.028 312 0.000 174 0.000 872 0.000 004 0.282 855 0.000 012 0.282 854 3.0 5.4 0.4 561 827 -0.97 TJG2001-12 120 0.032 883 0.000 186 0.001 010 0.000 004 0.282 865 0.000 013 0.282 862 3.3 5.8 0.4 550 805 -0.97 TJG2001-13 116 0.025 869 0.000 379 0.000 814 0.000 007 0.282 824 0.000 016 0.282 822 1.8 4.3 0.6 604 898 -0.98 TJG2001-14 119 0.031 931 0.000 176 0.000 963 0.000 005 0.282 848 0.000 013 0.282 846 2.7 5.2 0.5 573 844 -0.97 TJG2001-15 117 0.027 879 0.000 439 0.000 845 0.000 012 0.282 840 0.000 013 0.282 838 2.4 4.9 0.5 582 861 -0.97 TJG2001-16 118 0.028 586 0.000 076 0.000 873 0.000 001 0.282 840 0.000 014 0.282 838 2.4 4.9 0.5 583 861 -0.97 TJG2001-17 114 0.042 179 0.000 090 0.001 248 0.000 003 0.282 836 0.000 013 0.282 833 2.3 4.7 0.5 595 875 -0.96 TJG2001-18 120 0.032 013 0.000 293 0.000 950 0.000 009 0.282 847 0.000 011 0.282 845 2.7 5.2 0.4 574 844 -0.97 TJG2001-19 119 0.026 675 0.000 221 0.000 816 0.000 005 0.282 816 0.000 013 0.282 814 1.5 4.1 0.4 616 915 -0.98 TJG2011-02 123 0.025 809 0.000 087 0.000 784 0.000 002 0.282 867 0.000 012 0.282 865 3.3 6.0 0.4 544 797 -0.98 TJG2011-03 124 0.029 762 0.000 098 0.000 911 0.000 001 0.282 852 0.000 013 0.282 850 2.8 5.5 0.5 566 830 -0.97 TJG2011-04 121 0.028 860 0.000 051 0.000 910 0.000 001 0.282 903 0.000 014 0.282 901 4.6 7.2 0.5 494 717 -0.97 TJG2011-05 119 0.034 666 0.000 482 0.001 047 0.000 013 0.282 864 0.000 015 0.282 861 3.2 5.8 0.5 552 808 -0.97 TJG2011-06 122 0.028 907 0.000 394 0.000 877 0.000 010 0.282 841 0.000 013 0.282 839 2.4 5.0 0.4 581 856 -0.97 TJG2011-07 120 0.022 866 0.000 103 0.000 712 0.000 003 0.282 837 0.000 014 0.282 835 2.3 4.9 0.5 585 867 -0.98 TJG2011-10 119 0.038 942 0.000 615 0.001 182 0.000 016 0.282 883 0.000 014 0.282 880 3.9 6.4 0.5 526 765 -0.96 TJG2011-11 117 0.037 782 0.000 726 0.001 126 0.000 020 0.282 857 0.000 012 0.282 855 3.0 5.5 0.4 562 824 -0.97 TJG2011-12 119 0.028 968 0.000 111 0.000 899 0.000 002 0.282 878 0.000 013 0.282 876 3.7 6.3 0.5 529 775 -0.97 TJG2011-13 120 0.028 321 0.000 409 0.000 881 0.000 009 0.282 864 0.000 014 0.282 862 3.3 5.8 0.5 548 804 -0.97 TJG2011-14 119 0.057 139 0.000 836 0.001 707 0.000 027 0.282 871 0.000 014 0.282 867 3.5 6.0 0.5 552 795 -0.95 TJG2011-15 120 0.036 214 0.000 435 0.001 096 0.000 011 0.282 835 0.000 012 0.282 832 2.2 4.8 0.4 594 873 -0.97 TJG2011-16 123 0.025 400 0.000 126 0.000 787 0.000 003 0.282 859 0.000 012 0.282 858 3.1 5.7 0.4 554 814 -0.98 TJG2011-18 121 0.021 834 0.000 180 0.000 687 0.000 004 0.282 811 0.000 015 0.282 810 1.4 4.0 0.5 620 923 -0.98 TJG2011-20 120 0.026 859 0.000 070 0.000 821 0.000 003 0.282 811 0.000 012 0.282 809 1.4 3.9 0.4 623 926 -0.98 表 3 花岗岩全岩主量(%)、微量(10-6)和稀土元素(10-6)分析结果
Table 3. Major, trace and rare earth element data of granites
样品编号 TJG2001 TJG2002 TJG2003 TJG2004 TJG2005 TJG2006 TJG2007 TJG2008 TJG2009 SiO2 73.19 71.18 70.49 71.17 70.88 74.12 77.18 75.95 76.30 TiO2 0.19 0.28 0.33 0.26 0.29 0.31 0.10 0.13 0.13 Al2O3 14.65 15.14 15.03 15.07 14.39 12.83 12.15 12.52 12.46 Fe2O3T 0.71 1.91 2.24 1.79 1.02 2.26 0.52 1.05 1.00 MnO 0.01 0.02 0.03 0.02 0.02 0.03 0.01 0.01 0.01 MgO 0.26 0.43 0.55 0.44 0.57 0.52 0.11 0.19 0.18 CaO 1.77 1.83 1.91 1.88 2.22 1.07 0.63 0.74 0.66 Na2O 3.91 4.30 4.14 4.47 4.19 3.38 2.76 2.75 2.73 K2O 4.99 4.08 4.17 4.26 4.64 4.91 5.86 6.05 6.02 P2O5 0.05 0.07 0.09 0.07 0.07 0.07 0.02 0.03 0.03 LOI 0.44 0.43 0.61 0.44 1.43 0.48 0.31 0.45 0.45 SUM 100.17 99.69 99.59 99.86 99.71 99.99 99.64 99.88 99.96 Na2O+K2O 8.89 8.39 8.31 8.73 8.83 8.29 8.62 8.81 8.74 Mg# 45 34 36 36 56 35 32 30 30 Li 21.83 44.63 33.79 41.03 24.80 41.58 19.29 23.46 21.73 Be 5.54 5.24 4.49 5.19 5.95 5.76 5.27 6.53 6.60 Sc 2.48 3.51 4.37 3.27 5.37 3.71 1.72 2.06 1.82 V 10.85 17.52 21.68 16.31 18.97 19.43 5.09 9.18 8.01 Cr 5.85 5.23 6.93 4.76 5.70 5.41 1.80 2.50 2.34 Co 1.58 1.97 3.19 1.91 5.93 2.88 2.19 5.37 6.24 Ni 2.13 3.18 3.81 3.13 3.37 3.44 1.41 1.84 1.59 Cu 3.67 2.36 22.46 2.34 6.54 2.65 11.29 29.81 30.63 Zn 16.81 26.37 32.77 28.18 59.95 38.37 19.35 17.05 16.87 Ga 21.28 21.71 22.32 22.26 20.87 20.15 18.34 18.71 18.67 Rb 199.93 210.60 158.28 210.40 205.82 254.26 215.95 248.70 248.74 Sr 262.45 198.35 191.97 213.42 386.10 113.08 111.01 112.52 106.54 Y 25.07 27.76 31.76 27.78 43.38 38.18 36.36 24.46 24.92 Zr 171.67 197.93 234.26 201.41 220.20 221.87 91.46 143.85 134.61 Nb 16.45 18.72 21.02 18.66 24.23 21.96 18.45 17.08 16.03 Sn 7.90 3.29 2.35 3.68 7.88 2.52 1.43 1.91 1.76 Cs 8.89 17.72 8.51 16.17 10.46 19.30 7.81 11.64 11.77 Ba 293.84 294.82 315.73 426.43 388.81 167.59 182.54 164.08 161.16 La 32.86 37.37 40.93 35.80 42.86 46.33 31.73 48.14 49.54 Ce 58.87 69.20 73.68 64.47 77.29 84.13 57.05 86.38 91.34 Pr 6.10 7.27 7.88 6.74 8.21 8.77 5.93 8.94 9.41 Nd 20.84 25.27 27.35 23.77 27.57 28.35 19.85 29.04 31.16 Sm 4.06 4.86 5.46 4.39 5.68 5.38 3.96 5.25 5.47 Eu 0.58 0.65 0.70 0.73 0.59 0.42 0.25 0.25 0.29 Gd 3.76 4.49 5.41 4.51 6.20 5.32 3.92 4.34 4.78 Tb 0.72 0.74 0.94 0.86 1.21 1.01 0.89 0.74 0.80 Dy 4.17 4.40 5.35 4.46 7.16 6.14 5.31 4.23 4.34 Ho 0.80 0.95 1.08 0.88 1.51 1.23 1.13 0.78 0.84 Er 2.50 2.77 3.34 2.68 4.46 3.86 3.90 2.48 2.57 Tm 0.38 0.42 0.45 0.41 0.64 0.56 0.60 0.37 0.37 Yb 2.58 2.73 3.14 2.84 4.36 3.81 4.26 2.51 2.64 Lu 0.37 0.39 0.44 0.39 0.58 0.52 0.59 0.38 0.37 Hf 4.68 5.25 6.23 5.60 6.20 6.35 3.40 4.65 4.62 Ta 1.64 1.64 1.87 1.66 2.35 2.11 2.37 2.44 2.27 Tl 0.88 0.81 0.78 0.87 1.18 0.87 0.92 1.15 1.14 Pb 22.09 22.63 55.25 23.85 23.12 22.29 22.04 32.62 32.86 Th 21.69 20.11 21.61 22.57 20.24 21.41 25.03 38.47 40.64 U 3.77 3.33 4.34 3.49 3.80 4.19 3.89 5.31 5.32 Eu* 0.45 0.42 0.39 0.50 0.30 0.24 0.19 0.15 0.17 Zr/Hf 36.65 37.69 37.58 35.96 35.50 34.92 26.88 30.90 29.16 Nb/Ta 10.00 11.39 11.22 11.22 10.32 10.42 7.78 7.01 7.05 Sm/Nd 0.19 0.19 0.20 0.18 0.21 0.19 0.20 0.18 0.18 ∑REE 138.61 161.52 176.15 152.94 188.32 195.83 139.35 193.82 203.94 ∑LREE 123.32 144.63 156.00 135.91 162.19 173.38 118.76 178.01 187.21 ∑HREE 15.29 16.90 20.16 17.03 26.13 22.45 20.59 15.81 16.72 样品编号 TJG2010 TJG2011 TJG2012 TJG2013 TJG2014 TJG2015 TJG2016 TJG2017 SiO2 75.25 71.30 72.07 72.04 71.06 72.12 72.15 70.77 TiO2 0.24 0.39 0.34 0.39 0.39 0.38 0.35 0.39 Al2O3 12.30 14.67 14.38 14.26 14.72 14.15 14.08 14.80 Fe2O3T 1.67 1.68 1.39 2.02 1.74 2.13 1.95 1.67 MnO 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.01 MgO 0.30 0.60 0.45 0.64 0.63 0.66 0.61 0.65 CaO 0.77 2.21 1.68 2.18 2.24 1.95 1.84 2.28 Na2O 2.66 3.62 3.49 3.41 3.60 3.50 3.48 3.80 K2O 5.83 4.75 5.41 4.64 4.77 4.41 4.54 4.40 P2O5 0.04 0.10 0.08 0.09 0.09 0.10 0.09 0.10 LOI 0.59 0.60 0.52 0.57 0.58 0.74 0.74 0.86 SUM 99.67 99.92 99.83 100.25 99.83 100.15 99.83 99.73 Na2O+K2O 8.49 8.36 8.90 8.04 8.37 7.91 8.01 8.20 Mg# 29 45 43 43 45 42 42 48 Li 29.52 42.74 36.14 50.06 46.57 50.98 50.22 40.36 Be 6.48 4.17 5.06 3.76 4.53 3.91 3.89 4.87 Sc 3.26 4.93 4.39 5.01 5.07 5.44 4.80 5.13 V 14.50 25.77 17.75 29.53 25.82 27.11 26.11 25.68 Cr 4.07 8.25 4.26 8.86 7.19 8.95 8.40 8.69 Co 8.63 3.14 2.87 2.70 2.64 3.79 3.92 4.33 Ni 2.28 7.04 5.69 6.24 6.34 6.11 6.81 8.31 Cu 24.96 24.93 55.55 66.40 37.44 11.73 12.31 18.76 Zn 20.26 48.88 88.35 49.71 57.99 46.13 46.52 26.54 Ga 19.71 20.80 20.55 20.84 21.18 20.02 19.91 20.92 Rb 252.30 176.21 180.79 176.55 174.30 170.91 176.14 174.01 Sr 106.02 262.20 194.01 232.40 252.55 242.82 199.66 256.89 Y 31.27 30.85 36.49 28.09 32.67 30.85 28.57 32.58 Zr 172.55 232.02 237.11 193.49 229.37 214.16 198.37 219.55 Nb 26.98 21.04 21.36 19.66 21.66 20.53 19.25 21.21 Sn 2.65 7.28 3.17 4.47 6.02 5.74 2.75 13.65 Cs 12.29 8.37 6.97 9.60 8.68 8.31 8.40 7.28 Ba 174.23 523.65 506.27 445.13 528.62 381.33 381.46 382.43 La 57.74 38.95 39.50 40.48 38.65 38.53 37.31 44.00 Ce 105.95 71.10 70.78 73.97 71.07 71.14 68.42 81.66 Pr 10.94 7.53 7.51 7.69 7.57 7.59 7.01 8.47 Nd 36.39 25.96 26.45 26.36 25.98 26.07 24.26 29.57 Sm 6.05 5.21 5.51 4.99 5.12 5.30 4.62 5.66 Eu 0.27 0.76 0.59 0.76 0.76 0.67 0.67 0.73 Gd 5.38 4.86 5.44 4.77 4.97 4.93 4.35 5.23 Tb 0.98 0.89 0.98 0.76 0.88 0.89 0.80 0.88 Dy 5.11 4.95 5.70 4.70 5.10 5.06 4.51 5.11 Ho 1.10 1.06 1.16 0.89 1.05 0.98 0.90 1.03 Er 3.22 3.02 3.74 2.89 3.30 3.22 2.81 3.38 Tm 0.48 0.43 0.53 0.41 0.46 0.45 0.41 0.46 Yb 3.20 3.01 3.48 2.57 2.98 2.82 2.74 2.97 Lu 0.47 0.44 0.52 0.39 0.46 0.42 0.39 0.44 Hf 4.98 6.00 6.49 5.30 6.10 5.71 5.32 6.28 Ta 3.39 1.63 2.10 1.44 1.88 1.72 1.69 1.99 Tl 1.11 0.93 0.91 0.98 0.88 0.93 0.94 1.04 Pb 31.35 11.02 12.56 11.91 12.10 13.66 15.03 13.05 Th 35.30 25.23 30.74 24.77 22.56 27.26 24.54 27.13 U 6.34 2.50 3.50 3.80 2.49 2.70 2.49 3.50 Eu* 0.14 0.45 0.33 0.47 0.45 0.39 0.45 0.40 Zr/Hf 34.64 38.65 36.54 36.50 37.62 37.52 37.28 34.95 Nb/Ta 7.95 12.88 10.18 13.61 11.49 11.95 11.40 10.68 Sm/Nd 0.17 0.20 0.21 0.19 0.20 0.20 0.19 0.19 ∑REE 237.27 168.16 171.90 171.64 168.35 168.06 159.20 189.57 ∑LREE 217.34 149.50 150.35 154.27 149.15 149.30 142.28 170.08 ∑HREE 19.94 18.66 21.55 17.37 19.20 18.76 16.92 19.50 -
[1] Chappell, B. W., Stephens, W. E., 1988. Origin of Infracrustal (Ⅰ-Type) Granite Magmas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2/3): 71-86. https://doi.org/10.1017/s0263593300014139 [2] Chen, G. R., Liu, H. F., Jiang, G. W., et al., 2004. Discovery of the Shamuluo Formation in the Central Segmentof the Bangong Co-Nujiang River Suture Zone, Tibet. Regional Geology of China, 23(2): 193-194(in Chinese with English abstract). [3] Chen, Y., Zhu, D. C., Zhao, Z. D., et al., 2014. Slab Breakoff Triggered ca. 113 Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2): 449-463. https://doi.org/10.1016/j.gr.2013.06.005 [4] Fan, J. J., 2016. Reconstructing the Late Mesozoic Closing Process of the Middle and West Segments of the Bangong-Nujiang Ocean in Space and Time(Dissertation). Jilin University, Changchun (in Chinese with English abstract). [5] Fan, J. J., Li, C., Xie, C. M., et al., 2014. Petrology, Geochemistry, and Geochronology of the Zhonggang Ocean Island, Northern Tibet: Implications for the Evolution of the Banggongco-Nujiang Oceanic Arm of the Neo-Tethys. International Geology Review, 56(12): 1504-1520. https://doi.org/10.1080/00206814.2014.947639 [6] Geng, Q. R., Zhang, Z., Peng, Z. M., et al., 2016. Jurassic-Cretaceous Granitoids and Related Tectono-Metallogenesis in the Zapug-Duobuza Arc, Western Tibet. Ore Geology Reviews, 77: 163-175. https://doi.org/10.1016/j.oregeorev.2016.02.018 [7] Hao, L. L., Wang, Q., Wyman, D. A., et al., 2016. Underplating of Basaltic Magmas and Crustal Growth in a Continental Arc: Evidence from Late Mesozoic Intermediate-Felsic Intrusive Rocks in Southern Qiangtang, Central Tibet. Lithos, 245: 223-242. https://doi.org/10.1016/j.lithos.2015.09.015 [8] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012a. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007 [9] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012b. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h [10] Ingle, S., Weis, D., Frey, F. A., 2002. Indian Continental Crust Recovered from Elan Bank, Kerguelen Plateau (ODP Leg 183, Site 1137). Journal of Petrology, 43(7): 1241-1257. https://doi.org/10.1093/petrology/43.7.1241 [11] Jia, X. H., Wang, Q., Tang, G. J., 2009. A-Type Granites: Research Progress and Implications. Geotectonica et Metallogenia, 33(3): 465-480(in Chinese with English abstract). [12] Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7/8): 917-933. https://doi.org/10.1130/b26033.1 [13] Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154 [14] Li, G. M., Qin, K. Z., Li, J. X., et al., 2015. Cretaceous Magmatism and Metallogeny in the Bangong-Nujiang Metallogenic Belt, Central Tibet: Evidence from Petrogeochemistry, Zircon U-Pb Ages, and Hf-O Isotopic Compositions. Gondwana Research, 41: 110-127. https://doi.org/10.1016/j.gr.2015.09.006 [15] Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic Ⅰ- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1/2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018 [16] Li, Y., Zhang, S. Z., Li, F. Q., et al., 2020. Geochronology, Geochemistry and Petrogenesis of Late Jurassic Granitoids in Shiquanhe Area, Western Lhasa Block, Tibet. Earth Science, 45(8): 2846-2856(in Chinese with English abstract). [17] Liao, L. G., Cao, S. H., Xiao, Y. B., et al., 2005. The Delineation and Significance of the Continental-Margin Volcanic-Magmatic Arc Zone in the Northern Part of the Bangong-Nujiang Suture Zone. Sedimentary Geology and Tethyan Geology, 25(1): 163-170(in Chinese with English abstract). [18] Lin, B., Tang, J. X., Chen, Y. C., et al., 2017. Geochronology and Genesis of the Tiegelongnan Porphyry Cu(Au) Deposit in Tibet: Evidence from U-Pb, Re-Os Dating and Hf, S, and H-O Isotopes. Resource Geology, 67(1): 1-21. https://doi.org/10.1111/rge.12113 [19] Liu, H. Y., Yue, Y. Z., Dunzhu, W. D., et al., 2019. Petrogenesis and Geological Significance of Late Jurassic Volcanic Rocks in Mami Area, Central Tibetan Plateau. Earth Science, 44(7): 2368-2378(in Chinese with English abstract). [20] Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California, 39. [21] Ma, A. L., Hu, X. M., Kapp, P., et al., 2018. The Disappearance of a Late Jurassic Remnant Sea in the Southern Qiangtang Block (Shamuluo Formation, Najiangco Area): Implications for the Tectonic Uplift of Central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 506: 30-47. https://doi.org/10.1016/j.palaeo.2018.06.005 [22] Qu, X. M., Xin, H. B., Du, D. D., et al., 2012. Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau. Geochimica, 41(1): 1-14(in Chinese with English abstract). [23] Sun, J., Mao, J. W., Wang, J. X., et al., 2020. Timing of Cu-Au Mineralization in Nadun Cu-Au Deposit of Duolong District, Tibet, and Its Implication for Mineral Exploration. Mineral Deposits, 39(6): 1091-1102(in Chinese with English abstract). [24] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [25] Sun, Z. M., 2015. Copper-Gold Mineralization and Metallogenic Regularity of Duolong Mineralization Area in Western Bangongco-Nujiang Metallogenic Belt, Tibet. Jilin University, Changchun(in Chinese with English abstract). [26] Tang, J. X., Song, Y., Wang, Q., et al., 2016. Geological Characteristics and Exploration Model of the Tiegelongnan Cu(Au-Ag) Deposit: The First Ten Million Tons Metal Resources of a Porphyry-Epithermal Deposit in Tibet. Acta Geoscientica Sinica, 37(6): 663-690(in Chinese with English abstract). [27] Tang, J. X., Sun, X. G., Ding, S., et al., 2014. Discovery of the Epithermal Deposit of Cu(Au-Ag) in the Duolong Ore Concentrating Area, Tibet. Acta Geoscientica Sinica, 35(1): 6-10(in Chinese with English abstract). [28] Wang, Q., Lin, B., Tang, J. X., et al., 2018. Diagenesis, Lithogenesis and Geodynamic Setting of Intrusions in Senadong Area, Duolong District, Tibet. Earth Science, 43(4): 1125-1141(in Chinese with English abstract). [29] Wang, W., Zhai, Q. G., Hu, P. Y., et al., 2021. Cretaceous Magmatic Rocks in the Nyima Area, North Tibet: Constraints for the Tectonic Evolution of the Bangong-Nujiang Suture Zone. Acta Petrologica Sinica, 37(2): 545-562(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.02.13 [30] Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X [31] Wei, S. G., Song, Y., Tang, J. X., et al., 2017. Geochronology, Geochemistry, Sr-Nd-Hf Isotopic Compositions, and Petrogenetic and Tectonic Implications of Early Cretaceous Intrusions Associated with the Duolong Porphyry-Epithermal Cu-Au Deposit, Central Tibet. International Geology Review, 60(9): 1116-1139. https://doi.org/10.1080/00206814.2017.1369178 [32] Wei, S. G., Tang, J. X., Song, Y., et al., 2017. Zircons LA-MC-ICP-MS U-Pb Ages, Petrochemical, Petrological and Its Significance of the Potassic Monzonitic Granite Porphyry from the Duolong Ore-Concentrated District, Gaize County, Xizang(Tibet). Geological Review, 63(1): 189-206(in Chinese with English abstract). [33] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 [34] Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract). [35] Yao, X. F., Tang, J. X., Li, Z. J., et al., 2012. Magma Origin of Two Plutons from Gaerqiong Copper-Gold Deposit and Its Geological Significance, Western Bangonghu-Nujiang Metallogenic Belt, Tibet: Implication from Hf Isotope Characteristics. Journal of Jilin University (Earth Science Edition), 42(S2): 188-197(in Chinese with English abstract). [36] Zhang, H. R., Hou, Z. Q., 2021. Comparisons of the Collision Processes and Related Metallogenesis of Zagros and Himalaya Orogens. Journal of Earth Sciences and Environment, 43(3): 436-448(in Chinese with English abstract). [37] Zhang, Z., Geng, Q. R., Peng, Z. M., et al., 2015. Petrogenesis of Fuye Pluton in Rutog, Tibet: Zircon U-Pb Dating and Hf Isotopic Constraints. Geological Bulletin of China, 34(Z1): 262-273(in Chinese with English abstract). [38] Zhou, Y. Z., 2011. Progress Made in A-Type Granite Study and Discussion on Some Issues. Geology of Anhui, 21(3): 169-175(in Chinese with English abstract). [39] Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7-17. https://doi.org/10.1016/j.lithos.2015.06.023 [40] Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010 [41] 陈国荣, 刘鸿飞, 蒋光武, 等, 2004. 西藏班公湖-怒江结合带中段沙木罗组的发现. 地质通报, 23(2): 193-194. doi: 10.3969/j.issn.1671-2552.2004.02.015 [42] 范建军, 2016. 班公湖-怒江洋中西段晚中生代汇聚消亡时空重建(博士学位论文). 长春: 吉林大学. [43] 贾小辉, 王强, 唐功建, 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465-480. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200903020.htm [44] 李勇, 张士贞, 李奋其, 等, 2020. 西藏拉萨地块西段狮泉河地区晚侏罗世花岗岩年代学、地球化学与岩石成因. 地球科学, 45(8): 2846-2856. doi: 10.3799/dqkx.2020.102 [45] 廖六根, 曹圣华, 肖业斌, 等, 2005. 班公湖-怒江结合带北侧陆缘火山-岩浆弧带的厘定及其意义. 沉积与特提斯地质, 25(1): 163-170. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD2005Z1029.htm [46] 刘海永, 岳鋆璋, 顿珠旺堆, 等, 2019. 青藏高原中部麻米地区晚侏罗世火山岩岩石成因及其地质意义. 地球科学, 44(7): 2368-2378. doi: 10.3799/dqkx.2018.382 [47] 曲晓明, 辛洪波, 杜德道, 等, 2012. 西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束. 地球化学, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201002.htm [48] 孙嘉, 毛景文, 王佳新, 等, 2020. 西藏多龙矿集区拿顿铜金矿床成矿时代的厘定及其找矿指示意义. 矿床地质, 39(6): 1091-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202006009.htm [49] 孙振明, 2015. 西藏班-怒成矿带西段多龙矿集区铜金成矿作用与成矿规律(硕士学位论文). 长春: 吉林大学. [50] 唐菊兴, 宋扬, 王勤, 等, 2016. 西藏铁格隆南铜(金银)矿床地质特征及勘查模型: 西藏首例千万吨级斑岩-浅成低温热液型矿床. 地球学报, 37(6): 663-690. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201606003.htm [51] 唐菊兴, 孙兴国, 丁帅, 等, 2014. 西藏多龙矿集区发现浅成低温热液型铜(金银)矿床. 地球学报, 35(1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201401002.htm [52] 王勤, 林彬, 唐菊兴, 等, 2018. 多龙矿集区色那东岩体年龄、成因与动力学背景. 地球科学, 43(4): 1125-1141. doi: 10.3799/dqkx.2017.613 [53] 王伟, 翟庆国, 胡培远, 等, 2021. 藏北尼玛地区白垩纪岩浆岩对班公湖-怒江缝合带演化的制约. 岩石学报, 37(2): 545-562. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202102013.htm [54] 韦少港, 唐菊兴, 宋扬, 等, 2017. 西藏改则多龙矿集区地堡那木岗矿床钾玄质二长花岗斑岩锆石LA-MC-ICP-MS U-Pb年龄、地球化学特征及其地质意义. 地质论评, 63(1): 189-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201701021.htm [55] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [56] 姚晓峰, 唐菊兴, 李志军, 等, 2012. 班怒带西段尕尔穷铜金矿两套侵入岩源区及其地质意义: 来自Hf同位素特征的指示. 吉林大学学报(地球科学版), 42(S2): 188-197. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2022.htm [57] 张洪瑞, 侯增谦, 2021. 大陆碰撞造山与成矿过程: 扎格罗斯和喜马拉雅造山带对比. 地球科学与环境学报, 43(3): 436-448. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202103007.htm [58] 张璋, 耿全如, 彭智敏, 等, 2015. 西藏日土地区弗野岩体的成因: 锆石U-Pb年龄及Hf同位素约束. 地质通报, 34(Z1): 262-273. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2015Z1004.htm [59] 周宇章, 2011. A型花岗岩研究进展与问题讨论. 安徽地质, 21(3): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ201103002.htm