• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西沙海域盆地构造格局及其差异演化过程分析

    李林 王彬 雷超 任建业 张远泽 高圆圆 李丽 刘博文

    李林, 王彬, 雷超, 任建业, 张远泽, 高圆圆, 李丽, 刘博文, 2021. 西沙海域盆地构造格局及其差异演化过程分析. 地球科学, 46(9): 3321-3337. doi: 10.3799/dqkx.2021.098
    引用本文: 李林, 王彬, 雷超, 任建业, 张远泽, 高圆圆, 李丽, 刘博文, 2021. 西沙海域盆地构造格局及其差异演化过程分析. 地球科学, 46(9): 3321-3337. doi: 10.3799/dqkx.2021.098
    Li Lin, Wang Bin, Lei Chao, Ren Jianye, Zhang Yuanze, Gao Yuanyuan, Li Li, Liu Bowen, 2021. Tectonic Framework in the Xisha Area and Its Differential Evolution. Earth Science, 46(9): 3321-3337. doi: 10.3799/dqkx.2021.098
    Citation: Li Lin, Wang Bin, Lei Chao, Ren Jianye, Zhang Yuanze, Gao Yuanyuan, Li Li, Liu Bowen, 2021. Tectonic Framework in the Xisha Area and Its Differential Evolution. Earth Science, 46(9): 3321-3337. doi: 10.3799/dqkx.2021.098

    西沙海域盆地构造格局及其差异演化过程分析

    doi: 10.3799/dqkx.2021.098
    基金项目: 

    中国石油天然气集团公司重大科技专项 2013E-0502

    国家科技重大专项 2017X05026006

    国家自然科学基金项目 41772093

    详细信息
      作者简介:

      李林(1970-), 男, 高级工程师, 主要从事油气地质、深水油气勘探及海域天然气水合物研究, ORCID: 0000-0002-6758-611X, lilin_hz@petrochina.com.cn

      通讯作者:

      王彬, wangb_hz@petrochina.com.cn

    • 中图分类号: P736

    Tectonic Framework in the Xisha Area and Its Differential Evolution

    • 摘要: 西沙海域夹持于南海西北次海盆和西南次海盆之间,构造演化过程与南海的扩张和南海西部的走滑作用关系密切.基于覆盖西沙海域的区域地震资料开展了构造—地层解释、盆地结构特征分析和区域构造演化制图,整体上将西沙海域划分出3种类型盆地,即高角度断层控制的盆地、低角度拆离断层控制的盆地和走滑盆地.结合地壳厚度变化和伸展薄化程度,突出断层的构造样式,将西沙海域划分为北部拆离断层构造发育区、东南部拆离断层构造发育区、西部走滑断层发育区和中部高角度断层发育区,进而明确了西沙海域盆地的基本构造格局.同时,以关键构造界面为主线,强调了不同类型断层在岩石圈地壳减薄过程中的作用,阐明了西沙海域盆地的差异构造演化过程.

       

    • 图  1  西沙海域及其周缘构造特征

      琼东南盆地断层据Lei and Ren(2016);中建盆地等区域断层为本次研究成果;海底磁条带据Briais et al.(1993);虚线所示二维深反射地震剖面和三维地震反射工区分布据Lei and Ren(2016)以及Lei et al.(2020)

      Fig.  1.  Structures of Xisha area and its surroundings

      图  2  琼东南盆地构造‒沉积演化过程及其与南海构造演化过程的对比

      Lei et al.(2020)

      Fig.  2.  Tectonic-sedimentary evolution of Qiongdongnan basin and its correlated with tectonic evolution of the South China Sea

      图  3  西沙海域西北部区域地震剖面构造‒地层综合解释

      Fig.  3.  Tectonic-stratigraphic interpretation of seismic profile in the northwest of the Xisha area

      图  4  西沙海域中西部区域地震剖面构造‒地层综合解释

      Fig.  4.  Tectonic-stratigraphic interpretation of seismic profile in the central and western Xisha area

      图  5  西沙海域中部区域地震剖面构造‒地层综合解释

      Fig.  5.  Tectonic-stratigraphic interpretation of seismic profile in the central Xisha area

      图  6  西沙海域东部区域地震剖面构造‒地层综合解释

      Fig.  6.  Tectonic-stratigraphic interpretation of seismic profile in the eastern Xisha area

      图  7  西沙海域岩浆构造局部放大特征

      图a和图b的位置如图 4图 3中方框所示

      Fig.  7.  Close-up images of magmatic structure in Xisha area

      图  8  西海海域及其周缘地壳厚度分布及构造区带划分(a),西沙海域及其周缘不同构造单元盆地结构特征(b)

      图a中虚线所示二维深反射地震剖面和三维地震反射工区分布据Lei and Ren(2016)以及Lei et al.(2020),白色数字为地壳厚度(km);图b1据任建业等(2015)修改;图b2据Lei et al.(2019)修改;图b4据Vu et al.(2017)修改

      Fig.  8.  Map for the thickness of the crust in the Xisha area, which is overlapped by tectonic divisions (a); basin structure in the different structural units in the Xisha area (b)

      图  9  西沙海域不同构造位置构造演化阶段划分

      Fig.  9.  Tectonic evolution stages of different tectonic units in the Xisha area

      图  10  中建盆地构造‒岩浆演化过程

      Fig.  10.  Tectonic-magmatic evolution of the Zhongjian basin

    • [1] Bai, Y. L., Wu, S. G., Liu, Z., et al., 2015. Full-Fit Reconstruction of the South China Sea Conjugate Margins. Tectonophysics, 661: 121-135. https://doi.org/10.1016/j.tecto.2015.08.028
      [2] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92JB02280
      [3] Ding, W. W., 2021. Continental Margin Dynamics of South China Sea: From Continental Break-Up to Seafloor Spreading. Earth Science, 46(3): 790-800 (in Chinese with English abstract).
      [4] Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/S1367-9120(01)00069-4
      [5] Huang, C. Y., Wang, P. X., Yu, M. M., et al., 2019. Potential Role of Strike-Slip Faults in Opening up the South China Sea. National Science Review, 6(5): 891-901. https://doi.org/10.1093/nsr/nwz119
      [6] Huang, H. B., Klingelhoefer, F., Qiu, X. L., et al., 2021. Seismic Imaging of an Intracrustal Deformation in the Northwestern Margin of the South China Sea: The Role of a Ductile Layer in the Crust. Tectonics, 40(2): e2020TC006260. https://doi.org/10.1029/2020TC006260
      [7] Lei, C., Alves, T. M., Ren, J. Y., et al., 2019. Depositional Architecture and Structural Evolution of a Region Immediately Inboard of the Locus of Continental Breakup (Liwan Sub-Basin, South China Sea). GSA Bulletin, 131(7-8): 1059-1074. https://doi.org/10.1130/b35001.1
      [8] Lei, C., Alves, T. M., Ren, J. Y., et al., 2020. Rift Structure and Sediment Infill of Hyperextended Continental Crust: Insights from 3D Seismic and Well Data (Xisha Trough, South China Sea). Journal of Geophysical Research: Solid Earth, 125(5): e2019JB018610. https://doi.org/10.1029/2019JB018610
      [9] Lei, C., Ren, J. Y., 2016. Hyper-Extended Rift Systems in the Xisha Trough, Northwestern South China Sea: Implications for Extreme Crustal Thinning Ahead of a Propagating Ocean. Marine and Petroleum Geology, 77: 846-864. https://doi.org/10.1016/j.marpetgeo.2016.07.022
      [10] Lei, C., Ren, J. Y., Pang, X., et al., 2018. Continental Rifting and Sediment Infill in the Distal Part of the Northern South China Sea in the Western Pacific Region: Challenge on the Present-Day Models for the Passive Margins. Marine and Petroleum Geology, 93: 166-181. https://doi.org/10.1016/j.marpetgeo.2018.02.020
      [11] Lei, C., Ren, J. Y., Tong, D. J., 2013. Geodynamics of the Ocean-Continent Transition Zone, Northern Margin of the South China Sea: Implications for the Opening of the South China Sea. Chinese Journal of Geophysics, 56(4): 1287-1299 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dqwlxb201304023
      [12] Lei, C., Ren, J. Y., Zhang, J., 2015. Tectonic Province Divisions in the South China Sea: Implications for Basin Geodynamics. Earth Science, 40(4): 744-762 (in Chinese with English abstract). http://www.cqvip.com/qk/94035x/201504/664551720.html
      [13] Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014GC005567
      [14] Li, S. T., Lin, C. S., Zhang, Q. M., et al., 1998. Episodic Rifting and Its Dynamical Process in North Continental Margin of South China Sea, and the Tectonic Event from 10 Ma. Chinese Science Bulletin, 43(8): 797-810 (in Chinese with English abstract). doi: 10.1360/csb1998-43-8-797
      [15] Li, S. Z., Suo, Y. H., Liu, X., et al., 2012a. Basin Dynamics and Basin Groups of the South China Sea. Marine Geology & Quaternary Geology, 32(6): 55-78 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2013MGQG...32...55L
      [16] Li, S.Z., Sao, Y. H., Liu, X., et al., 2012b. Basic Structural Pattern and Tectonic Models of the SCS: Problems, Advances and Controversies. Marine Geology & Quaternary Geology, 32(6): 35-53 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2013MGQG...32...35L
      [17] Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
      [18] Lin, J., Li, J. B., Xu, Y. G., et al., 2019. Ocean Drilling and Major Advances in Marine Geological and Geophysical Research of the South China Sea. Acta Oceanologica Sinica, 41(10): 125-140 (in Chinese with English abstract).
      [19] Liu, H. L., Yao, Y. J., Shen, B. Y., et al., 2015. On Linkage of Western Boundary Faults of the South China Sea. Earth Science, 40(4): 615-632 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201504003.htm
      [20] Liu, H. L., Zheng, H. B., Wang, Y. L., et al., 2011. Basement of the South China Sea Area: Tracing the Tethyan Realm. Acta Geologica Sinica-English Edition, 85(3): 637-655. https://doi.org/10.1111/j.1755-6724.2011.00457.x
      [21] Mi, L. J., Zhang, X. T., Pang, X., et al., 2019. Formation Mechanism and Petroleum Geology of Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 1-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB2019S1001.htm
      [22] Morley, C. K., 2002. A Tectonic Model for the Tertiary Evolution of Strike-Slip Faults and Rift Basins in SE Asia. Tectonophysics, 347(4): 189-215. https://doi.org/10.1016/S0040-1951(02)00061-6
      [23] Pubellier, M., Aurelio, M., Sautter, B., 2018. The Life of a Marginal Basin Depicted in a Structural Map of the South China Sea. Episodes, 41(3): 139-142. https://doi.org/10.18814/epiiugs/2018/018014
      [24] Ren, J. Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361 (in Chinese with English abstract).
      [25] Ren, J. Y., Lei, C., 2011. Tectonic Stratigraphic Framework of Yinggehai-Qiongdongnan Basins and Its Implication for Tectonic Province Division in South China Sea. Chinese Journal of Geophysics, 54(12): 3303-3314 (in Chinese with English abstract). http://tga.cgu.org.tw/AbstractFinal/U6-P-27.pdf
      [26] Ren, J. Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract). http://www.cqvip.com/QK/98600X/201501/662674863.html
      [27] Savva, D., Meresse, F., Pubellier, M., et al., 2013. Seismic Evidence of Hyper-Stretched Crust and Mantle Exhumation Offshore Vietnam. Tectonophysics, 608: 72-83. https://doi.org/10.1016/j.tecto.2013.07.010
      [28] Sibuet, J. C., Yeh, Y. C., Lee, C. S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98-119. https://doi.org/10.1016/j.tecto.2016.02.022
      [29] Sun, Z., Li, F. C., Lin, J., et al., 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789 (in Chinese with English abstract).
      [30] Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental marginSpecial Topic: The South China Sea Ocean Drilling. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      [31] Sun, Z., Liu, S. Q., Pang, X., et al., 2016. Recent Research Progress on the Rifting-Breakup Process in Passive Continental Margins. Journal of Tropical Oceanography, 35(1): 1-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY201601001.htm
      [32] Sun, Z., Sun, L. T., Zhou, D., et al., 2009. Discussion on the South China Sea Evolution and Lithospheric Breakup through 3D Analogue Modeling. Earth Science, 34(3): 435-447 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1367912008001302
      [33] Sun, Z., Zhong, Z. H., Keep, M., et al., 2009. 3D Analogue Modeling of the South China Sea: A Discussion on Breakup Pattern. Journal of Asian Earth Sciences, 34(4): 544-556. https://doi.org/10.1016/j.jseaes.2008.09.002
      [34] Tamaki, K., 1995. Opening Tectonics of the Japan Sea. In: Taylor, B., Backarc Basins: Tectonics and Magmatism. Springer, Boston.
      [35] Tang, W., Wang, Y. M., Yang, C. H., et al., 2013. Evolution and Main Controlling Factors of Reef in the Southern Deepwater of Qiongdongnan Basin. Natural Gas Geoscience, 24(5): 965-974 (in Chinese with English abstract). http://www.researchgate.net/publication/288166630_Evolution_and_main_controlling_factors_of_reef_in_the_southern_deepwater_of_Qiongdongnan_Basin
      [36] Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the Mechanics of the Collision between India and Asia. Geological Society, London, Special Publications, 19(1): 113-157. https://doi.org/10.1144/gsl.sp.1986.019.01.07
      [37] Tu, K., Flower, M. F. J., Carlson, R. W., 1992. Magmatism in the South China Basin: 1. Isotopic and Trace-Element Evidence for an Endogenous Dupal Mantle Component. Chemical Geology, 97(1-2): 47-63. https://doi.org/10.1016/0009-2541(92)90135-R
      [38] Vu, A. T., Wessel Fyhn, M. B., Xuan, C. T., et al., 2017. Cenozoic Tectonic and Stratigraphic Development of the Central Vietnamese Continental Margin. Marine and Petroleum Geology, 86: 386-401. https://doi.org/10.1016/j.marpetgeo.2017.06.001
      [39] Wang, C. Y., He, X. X., Qiu, S. Y., 1979. A Preliminary Study of Carbonate Rocks and Micropalaeontology in the XiYong I Well. Petroleum Geology and Experiment, 1: 23-38 (in Chinese with English abstract). http://www.researchgate.net/publication/292755126_Preliminary_study_about_carbonate_strata_and_micropaleontology_of_well_Xiyong-1_in_Xisha_Islands
      [40] Wang, Q., Zhao, M. H., Zhang, H. Y., et al., 2020. Crustal Velocity Structure of the Northwest Sub-Basin of the South China Sea Based on Seismic Data Reprocessing. Science in China (Series D), 50(11): 1553-1568 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=7103247740
      [41] Yang, L. L., Ren, J. Y., McIntosh, K., et al., 2018. The Structure and Evolution of Deepwater Basins in the Distal Margin of the Northern South China Sea and Their Implications for the Formation of the Continental Margin. Marine and Petroleum Geology, 92: 234-254. https://doi.org/10.1016/j.marpetgeo.2018.02.032
      [42] Yao, B. C., 1995. The Characteristics of the Zhongnan-Liyue Fault and Its Tectonic Significance. South China Sea Geological Research. 1-14 (in Chinese with English abstract).
      [43] Ye, Q., Mei, L. F., Shi, H. S., et al., 2020. The Influence of Pre-Existing Basement Faults on the Cenozoic Structure and Evolution of the Proximal Domain, Northern South China Sea Rifted Margin. Tectonics, 39(3): e2019TC005845. https://doi.org/10.1029/2019TC005845
      [44] Yuan, Y., Zhao, M. H., He, E. Y., et al., 2021. The Crustal Structures and Rift-Breakup Models of Typical Rifted Margins. Earth Science, 46(3): 801-816 (in Chinese with English abstract).
      [45] Yue, J. P., Zhang, Y., Shen, H. L., et al., 2013. Constraints of Geological Characteristics of the South China Continental Margin on the Basement of Basins in Northern South China Sea. Acta Petrolei Sinica, 34(S2): 120-128 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB2013S2016.htm
      [46] Zhang, C., Manatschal, G., Pang, X., et al., 2020. Discovery of Mega-Sheath Folds Flooring the Liwan Subbasin (South China Sea): Implications for the Rheology of Hyperextended Crust. Geochemistry, Geophysics, Geosystems, 21(7): e2020GC009023. https://doi.org/10.1029/2020GC009023
      [47] Zhang, G. C., Jia, Q. J., Wang, W. Y., et al., 2018. On Tectonic Framework and Evolution of the South China Sea. Chinese Journal of Geophysics, 61(10): 4194-4215 (in Chinese with English abstract). http://www.researchgate.net/publication/329944421_On_tectonic_framework_and_evolution_of_the_South_China_Sea
      [48] Zhao, Y. H., Ren, J. Y., Pang, X., et al., 2018a. Structural Style, Formation of Low Angle Normal Fault and Its Controls on the Evolution of Baiyun Rift, Northern Margin of the South China Sea. Marine and Petroleum Geology, 89: 687-700. https://doi.org/10.1016/j.marpetgeo.2017.11.001
      [49] Zhao, Z. X., Sun, Z., Liu, J. B., et al., 2018b. The Continental Extension Discrepancy and Anomalous Subsidence Pattern in the Western Qiongdongnan Basin, South China Sea. Earth and Planetary Science Letters, 501: 180-191. https://doi.org/10.1016/j.epsl.2018.08.048
      [50] Zhou, D., Wang, W. Y., Pang, X., et al., 2006. Mesozoic Subduction-Accretion Zone in Northeastern South China Sea Inferred from Geophysical Interpretations. Science in China (Series D), 36(3): 209-218 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JDXG200605003.htm
      [51] Zhu, M. Z., Graham, S., McHargue, T., 2009. The Red River Fault Zone in the Yinggehai Basin, South China Sea. Tectonophysics, 476(3-4): 397-417. https://doi.org/10.1016/j.tecto.2009.06.015
      [52] Zhu, W. L., Mi, L. J., 2010. Atlas of Petroliferous Basins in the Seas of China. Petroleum Industry Press, Beijing (in Chinese).
      [53] Zhu, W. L., Xie, X. N., Wang, Z. F., et al., 2017. New Insights on the Origin of the Basement of the Xisha Uplift, South China Sea. Science China Earth Sciences, 60(12): 2214-2222. https://doi.org/10.1007/s11430-017-9089-9
      [54] Zou, H. P., 2001. Continental Marginal Rifting along the Northern South China Sea: The Crustal Response to the Lower Lithospheric Delamination. Marine Geology & Quaternary Geology, 21(1): 39-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200101007.htm
      [55] 丁巍伟, 2021. 南海大陆边缘动力学: 从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303
      [56] 雷超, 任建业, 佟殿君, 2013. 南海北部洋陆转换带盆地发育动力学机制. 地球物理学报, 56(4): 1287-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304025.htm
      [57] 雷超, 任建业, 张静, 2015. 南海构造变形分区及成盆过程. 地球科学, 40(4): 744-762. doi: 10.3799/dqkx.2015.062
      [58] 李思田, 林畅松, 张启明, 等, 1998. 南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件. 科学通报, 43(8): 797-810. doi: 10.3321/j.issn:0023-074X.1998.08.003
      [59] 李三忠, 索艳慧, 刘鑫, 等, 2012a. 南海的盆地群与盆地动力学. 海洋地质与第四纪地质, 32(6): 55-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201206010.htm
      [60] 李三忠, 索艳慧, 刘鑫, 等, 2012b. 南海的基本构造特征与成因模型: 问题与进展及论争. 海洋地质与第四纪地质, 32(6): 35-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201206009.htm
      [61] 林间, 李家彪, 徐义刚, 等, 2019. 南海大洋钻探及海洋地质与地球物理前沿研究新突破. 海洋学报, 41(10): 125-140. doi: 10.3969/j.issn.0253-4193.2019.10.009
      [62] 刘海龄, 姚永坚, 沈宝云, 等, 2015. 南海西缘结合带的贯通性. 地球科学, 40(4): 615-632. doi: 10.3799/dqkx.2015.049
      [63] 米立军, 张向涛, 庞雄, 等, 2019. 珠江口盆地形成机制与油气地质. 石油学报, 40(S1): 1-10. doi: 10.7623/syxb2019S1001
      [64] 任建业, 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330
      [65] 任建业, 雷超, 2011. 莺歌海-琼东南盆地构造-地层格架及南海动力变形分区. 地球物理学报, 54(12): 3303-3314. doi: 10.3969/j.issn.0001-5733.2011.12.028
      [66] 任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm
      [67] 孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202103002.htm
      [68] 孙珍, 刘思青, 庞雄, 等, 2016. 被动大陆边缘伸展-破裂过程研究进展. 热带海洋学报, 35(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201601001.htm
      [69] 孙珍, 孙龙涛, 周蒂, 等, 2009. 南海岩石圈破裂方式与扩张过程的三维物理模拟. 地球科学, 34(3): 435-447. doi: 10.3321/j.issn:1000-2383.2009.03.008
      [70] 唐武, 王英民, 杨彩虹, 等, 2013. 琼东南盆地南部深水区生物礁演化规律及主控因素. 天然气地球科学, 24(5): 965-974. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201305012.htm
      [71] 王崇友, 何希贤, 裘松余, 1979. 西沙群岛西永-井碳酸盐岩地层与微体古生物的初步研究. 石油实验地质, 1: 23-38. doi: 10.11781/sysydz197900023
      [72] 王强, 赵明辉, 张浩宇, 等, 2020. 基于重处理数据的南海西北次海盆地壳速度结构. 中国科学(D辑), 50(11): 1553-1568. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202011003.htm
      [73] 姚伯初, 1995. 中南-礼乐断裂的特征及其构造意义. 南海地质研究, 1-14.
      [74] 袁野, 赵明辉, 贺恩远, 等, 2021. 张裂陆缘地壳结构特征与张裂模式. 地球科学, 46(3): 801-816. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202103004.htm
      [75] 岳军培, 张艳, 沈怀磊, 等, 2013. 华南陆缘地质特征对南海北部盆地基底的约束. 石油学报, 34(S2): 120-128. doi: 10.7623/syxb2013S2014
      [76] 张功成, 贾庆军, 王万银, 等, 2018. 南海构造格局及其演化. 地球物理学报, 61(10): 4194-4215. doi: 10.6038/cjg2018L0698
      [77] 周蒂, 王万银, 庞雄, 等, 2006. 地球物理资料所揭示的南海东北部中生代俯冲增生带. 中国科学(D辑), 36(3): 209-218. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200603000.htm
      [78] 朱伟林, 米立军, 2010. 中国海域含油气盆地图集. 北京: 石油工业出版社.
      [79] 邹和平, 2001. 南海北部陆缘张裂——岩石圈拆沉的地壳响应. 海洋地质与第四纪地质, 21(1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200101007.htm
    • 加载中
    图(10)
    计量
    • 文章访问数:  367
    • HTML全文浏览量:  280
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-12-10
    • 网络出版日期:  2021-10-14
    • 刊出日期:  2021-10-14

    目录

      /

      返回文章
      返回