Detrital Zircon U-Pb Geochronology and Hf Isotopes of Mesoproterozoic Metasedimentary Rocks in Dabie Orogen and Its Geological Significance
-
摘要: 大别造山带位于扬子陆块北缘,近年来的研究显示其发育太古代-古元古代的结晶基底,但一直缺乏中元古代的物质信息.首次报道了大别造山带核部一套中元古代“变砂岩-大理岩”变沉积岩组合,通过对该套地层的3个样品碎屑锆石U-Pb年代学和Lu-Hf同位素特征分析,显示最年轻的锆石平均年龄分别为:1 556±13 Ma、1 541±20 Ma和1 584.3±24 Ma,在误差范围内基本一致,说明该套地层的形成时代为中元古代,锆石变质增生边记录该套地层经历了124.1±2.3 Ma的变质事件,碎屑锆石年龄频谱和Lu-Hf同位素特征显示该套地层物源特征与神农架群一致;碎屑锆石峰值年龄2 682 Ma,2 461 Ma记录了“大别陆块”结晶基底两期重要生长事件,峰值年龄2 043 Ma,1 803 Ma和1 572 Ma显示“大别地块”可能参与Columbia超大陆聚合-裂解事件,在新元古代早期与“黄陵陆核”拼合而成为扬子陆块统一基底的重要组成部分.Abstract: The Dabie orogen is located in the north margin of the Yangtze block. Recent studies show that the Dabie orogen has Archean-Paleoproterozoic crystalline base, but it has been lack of Mesoproterozoic material information all the time. In this article, it reports a set of Mesoproterozoic sedimentary rocks mainly composed of "metasandstone-marble" in the Dabie orogen for the first time. It analyzes the detrital zircon U-Pb chronology and Lu-Hf isotopic characteristics of the three samples in this strata, and the results show that the youngest average ages of three samples are: 1 556±13 Ma, 1 541±20 Ma and 1 584.3±24 Ma. This three ages are basically same within the error-range, which shows that the age of this strata should be the Mesoproterozoic. The metamorphic rims of detrital zircon record a metamorphic event at the age of 124.1±2.3 Ma, the U-Pb age histograms and Lu-Hf isotopes shows that the provenance characteristics of this strata are consistent with the Shennongjia Group. The main peaks of detrital zircon U-Pb ages of 2 682 Ma and 2 461 Ma record two important growth events of Dabie crystalline basement, and the peaks of 2 043 Ma, 1 803 Ma, 1 572 Ma implicate that the "Dabie block" may have participated in the aggregate event of Columbia supercontinent and become a part of it, and the "Dabie block" separated from the Columbia supercontinent during the breaking up event, and collided with the "Huangling continental nucleus" and became an important part of the basement of the Yangtze block during the Early Neoproterozoic.
-
图 1 大别造山带区域地质简图及采样点
据Wu et al.(2008);邱啸飞等(2020);郭盼等(2021)修改
Fig. 1. Sketch geological map for the Dabie orogen and sampling location
图 6 样品D247-2碎屑锆石U-Pb年龄与εHf(t)关系(神农架群数据肖志斌,2012)
Fig. 6. U-Pb age versus εHf(t) of detrital zircons from sample of D22247-2(after Xiao, 2012)
图 7 分类回归树图和“变砂岩-大理岩”组合中碎屑锆石的原岩分类回归结果(Belousova et al. 2002)
Fig. 7. Classification and regression tree(CART-tree) and source rock types of detrital zircons from the "metasandstone-marble"(after Belousova et al. 2002)
图 8 “变砂岩-大理岩”组合中不同峰值年龄碎屑锆石U/Yb-Hf和U/Yb-Y图解(Grimes et al., 2007)
Fig. 8. Plots of U/Yb-Hf and U/Yb-Y for different peak ages of detrital zircons from the "metasandstone-marble"
图 9 大别地区中元古代“变砂岩-大理岩”组合与神农架群、扬子陆块碎屑锆石频谱特征对比
数据引自:Yan et al.(2011)、Duan et al.(2012)、She et al.(2012)、Wu et al.(2010)、Xu et al.(2012)、肖志斌(2012)、李怀坤等(2013b)、Wang et al.(2013)
Fig. 9. Detrital zircon U-Pb age relative probability diagrams plotted for comparison from Mid-Proterozoic strata of Dabie orogen, Shennongjia Group and Yangtze block
图 10 大别地区中元古代“变砂岩-大理岩”组合与神农架群碎屑锆石Hf模式年龄TDM1和TDM2对比
神农架群数据肖志斌(2012)
Fig. 10. Distribution of detrital zircon Hf model ages of zircons from the Mesoproterozoic "metasandstone-marble" in Dabie area and Shennongjia Group
-
[1] Albarède, F., Scherer, E. E., Blichert-Toft, J., et al., 2006. Γ-Ray Irradiation in the Early Solar System and the Conundrum of the 176Lu Decay Constant. Geochimica et Cosmochimica Acta, 70(5): 1261-1270. https://doi.org/10.1016/j.gca.2005.09.027 [2] Bai, X., Ling, W.L., Duan, R.C., et al., 2011. Mesoproterozoic to Paleozoic Nd Isotope Stratigraphy of the South China Continental Nucleus and Its Geological Significance. Science China Earth Sciences, 41(7): 972-983(in Chinese). doi: 10.1007/s11430-011-4266-2 [3] Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7 [4] Berry, R.F., Jenner, G.A., Meffre, S., et al., 2001. A North American Provenance for Neoproterozoic to Cambrian Sandstones in Tasmania? Earth and Planetary Science Letters, 192(2): 207-222. https://doi.org/10.1016/S0012-821X(01)00436-8 [5] Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243-258. https://doi.org/10.1016/S0012-821X(97)00040-X [6] Chen, N.S., Liu, R., Sun, M., et al., 2006. LA-ICPMS U-Pb Zircon Dating for Felsic Granulite, Huangtuling Area, North Dabieshan: Constraints on Timing of Its Protolith and Granulite-Facies Metamorphism, and Thermal Events in Its Provenance. Earth Science, 31(3): 294-300(in Chinese with English abstract). [7] Chen, W.T., Zhou, M.F., Zhao, X.F., 2013. Late Paleoproterozoic Sedimentary and Mafic Rocks in the Hekou Area, SW China: Implication for the Reconstruction of the Yangtze Block in Columbia. Precambrian Research, 231: 61-77. https://doi.org/10.1016/j.precamres.2013.03.011 [8] Duan, L., Meng, Q.R., Wu, G.L., et al., 2012. Detrital Zircon Evidence for the Linkage of the South China Block with Gondwanaland in Early Palaeozoic Time. Geological Magazine, 149(6): 1124-1131. https://doi.org/10.1017/s0016756812000404 doi: 10.1017/S0016756812000404 [9] Geng, Y.S., Kuang, H.W., Du, L.L., et al., 2019. On the Paleo-Mesoproterozoic Boundary from the Breakup Event of the Columbia Supercontinent. Acta Petrologica Sinica, 35(8): 2299-2324(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.08.02 [10] Geng, Y.S., Liu, Y.Q., Gao, L.Z., et al., 2012. Geochronology of the Mesoproterozoic Tong'an Formation in Southwestern Margin of Yangtze Craton: New Evidence from Zircon LA-ICP-MS U-Pb Ages. Acta Geologica Sinica, 86(9): 1479-1490(in Chinese with English abstract). [11] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237-269. https://doi.org/10.1016/S0024-4937(02)00082-8 [12] Grimes, C.B., John, B.E., Kelemen, P.B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643. https://doi.org/10.1130/g23603a.1 doi: 10.1130/G23603A.1 [13] Guo, P., Chen, C., Wu, B., et al., 2021. The Discovery of ~2.0 Ga Metamorphosed Granite in Western Dabie Mountains and Its Hf Isotopic Characteristics. Geology in China, 48(4): 1267-1279(in Chinese with English abstract). [14] Huang, H.Y., Xu, Y., Yin, X.W., et al., 2021. Geochronology, Petrogenesis and Tectonic Implications of the Granite Porphyry from the Qiaodian Area in the Western Dabie Orogenic Belt, Central China. Earth Science Frontiers (in Chinese with English abstract). https://doi.org/10.13745/j.esf.sf.2020.12.9. [15] Huang, M.D., Cui, X.Z., Cheng, A.G., et al., 2019. Late Paleoproterozoic A-Type Granitic Rocks in the Northern Yangtze Block: Evidence for Breakup of the Columbia Supercontinent. Acta Geologica Sinica, 93(3): 565-584(in Chinese with English abstract). [16] Jian, P., Kröner, A., Zhou, G.Z., 2012. SHRIMP Zircon U-Pb Ages and REE Partition for High-Grade Metamorphic Rocks in the North Dabie Complex: Insight into Crustal Evolution with Respect to Triassic UHP Metamorphism in East-Central China. Chemical Geology, 328: 49-69. https://doi.org/10.1016/j.chemgeo.2012.01.015 [17] Jin, T.F., Li, Y.G., Fei, G.C., et al., 2017. Geochronology of Zircon U-Pb from Hongshan Formation in the Dahongshan Group in the Southwest Yangtze Block for the Redefinitions of the Forming Age of the Protolith and Metamorphic Age. Geological Review, 63(4): 894-910(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/0301926885900075 [18] Kong, L.Y., Mao, X.W., Chen, C., et al., 2017. Chronological Study on Detrital Zircons and Its Geological Significance from Mesoproterozoic Dagushi Group in the Dahongshan Area, North Margin of the Yangtze Block. Earth Science, 42(4): 485-501(in Chinese with English abstract). [19] Laurent, O., Martin, H., Moyen, J.F., et al., 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012 [20] Leier, A.L., Kapp, P., Gehrels, G.E., et al., 2007. Detrital Zircon Geochronology of Carboniferous?Cretaceous Strata in the Lhasa Terrane, Southern Tibet. Basin Research, 19(3): 361-378. https://doi.org/10.1111/j.1365-2117.2007.00330.x [21] Li, H.K., Zhang, C.L., Xiang, Z.Q., et al., 2013a. Zircon and Baddeleyite U-Pb Geochronology of the Shennongjia Group in the Yangtze Craton and Its Tectonic Significance. Acta Petrologica Sinica, 29(2): 673-697(in Chinese with English abstract). https://www.researchgate.net/publication/286123963_Zircon_and_baddeleyite_U-Pb_geochronology_of_the_Shennongjia_Group_in_the_Yangtze_Craton_and_its_tectonic_significance [22] Li, H.K., Zhang, C.L., Yao, C.Y., et al., 2013b. U-Pb Zircon Age and Hf Isotope Compositions of Mesoproterozoic Sedimentary Strata on the Western Margin of the Yangtze Massif. Science China Earth Sciences, 43(8): 1287-1298, 1-24(in Chinese). doi: 10.1007/s11430-013-4590-9 [23] Liu, H., Xu, D.L., Wei, Y.X., et al., 2017. Depositional Age of the Dagushi Group in the Dahong Mountain, Hubei Province: Evidence from U-Pb Ages of Detrital Zircons. Geological Bulletin of China, 36(5): 715-725(in Chinese with English abstract). [24] Liu, J.S., Hu, J.L., Liu, A.S., et al., 2016. Age and Origin of Muzidian Fine-Grained Monzogranite Dyke in Dabie Orogenic Belt: Zircon U-Pb Dating and Hf Isotopic Constraints. Geological Bulletin of China, 35(12): 2088-2099(in Chinese with English abstract). [25] Liu, X.C., Li, S.Z., Jiang, B.M., 2015. Tectonic Evolution of the Tongbai-Hong'an Orogen in Central China: From Oceanic Subduction/Accretion to Continent-Continent Collision. Science China Earth Sciences, 45(8): 1088-1108(in Chinese). doi: 10.1007/s11430-015-5145-z [26] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 [27] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [28] Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1/2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016 [29] Ludwig, K.R., 2003. ISOPLOT3.0: A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center, Berkeley, California). BGC Special Publication, Berkeley. [30] Neumann, N.L., Southgate, P.N., Gibson, G.M., et al., 2006. New SHRIMP Geochronology for the Western Fold Belt of the Mt Isa Inlier: Developing a 1 800-1 650 Ma Event Framework. Australian Journal of Earth Sciences, 53(6): 1023-1039. https://doi.org/10.1080/08120090600923287 [31] Page, R.W., Jackson, M.J., Krassay, A.A., 2000. Constraining Sequence Stratigraphy in North Australian Basins: SHRIMP U-Pb Zircon Geochronology between Mt Isa and McArthur River. Australian Journal of Earth Sciences, 47(3): 431-459. https://doi.org/10.1046/j.1440-0952.2000.00797.x [32] Qiu, X.F., Jiang, T., Wu, N.W., et al., 2020. Neoarchean Crustal Rocks and Paleoproterozoic Migmatization in the Dabie Orogen: Evidence from Zircon U-Pb Age and Hf Isotopes. Acta Geologica Sinica, 94(3): 729-738(in Chinese with English abstract). [33] Qiu, X.F., Ling, W.L., Liu, X.M., 2014. Correlation between the Mesoproterozoic Yangtze Continental Nucleus and the Shennongjia Area: Constraints from Zircon Geochronological and Hf Isotope. Geological Science and Technology Information, 33(2): 1-8(in Chinese with English abstract). https://www.researchgate.net/publication/312388443_Correlation_between_the_Mesoproterozoic_Yangtze_continental_nucleus_and_the_Shennongjia_area_Constraints_from_zircon_geochronological_and_Hf_isotope [34] Qiu, X.F., Tong, X.R., Jiang, T., et al., 2021. Reworking of Hadean Continental Crust in the Dabie Orogen: Evidence from the Muzidian Granitic Gneisses. Gondwana Research, 89: 119-130. https://doi.org/10.1016/j.gr.2020.08.014 [35] Qiu, X.F., Yang, H.M., Zhao, X.M., et al., 2019. Neoarchean Granitic Gneisses in the Kongling Complex, Yangtze Craton: Petrogenesis and Tectonic Implications. Earth Science, 44(2): 415-426(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0301926814002770 [36] She, Z.B., Ma, C.Q., Wan, Y.S., et al., 2012. An Early Mesozoic Transcontinental Palaeoriver in South China: Evidence from Detrital Zircon U-Pb Geochronology and Hf Isotopes. Journal of the Geological Society, 169(3): 353-362. https://doi.org/10.1144/0016-76492011-097 [37] Vervoort, J.D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3-4): 533-556. https://doi.org/10.1016/S0016-7037(98)00274-9 [38] Wang, J., Deng, Q., Wang, Z.J., et al., 2013. New Evidences for Sedimentary Attributes and Timing of the "Macaoyuan Conglomerates" on the Northern Margin of the Yangtze Block in Southern China. Precambrian Research, 235: 58-70. https://doi.org/10.1016/j.precamres.2013.06.003 [39] Wu, L., Jia, D., Li, H.B., et al., 2010. Provenance of Detrital Zircons from the Late Neoproterozoic to Ordovician Sandstones of South China: Implications for Its Continental Affinity. Geological Magazine, 147(6): 974-980. https://doi.org/10.1017/s0016756810000725 doi: 10.1017/S0016756810000725 [40] Wu, Y.B., Zheng, Y.F., 2004. The Study on Zircon Genetic Mineralogy and Its Restriction on Explaining of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589 [41] Wu, Y.B., Zheng, Y.F., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402-1428. https://doi.org/10.1016/j.gr.2012.09.007 [42] Wu, Y.B., Zheng, Y.F., Gao, S., et al., 2008. Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3/4): 308-322. https://doi.org/10.1016/j.lithos.2007.07.008 [43] Xiao, Z.B., 2012. Research of the Detrital Zircon from Mesoproterozoic Sedimentary Strata in the North Margin of Yangtze Craton, China (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [44] Xiong, Q., Zheng, J.P., Yu, C.M., et al., 2008. Zircon U-Pb Age and Hf Isotope of A-Type Granite from Qiyitang, Yichang and the Cratonization of Yangtze Continent in Paleoproterozoic. Chinese Science Bulletin, 53(22): 2782-2792(in Chinese). doi: 10.1360/csb2008-53-22-2782 [45] Xu, D.L., Liu, H., Wei, Y.X., et al., 2016. Detrial Zircon U-Pb Dating of Zhengjiaya Formation from the Shengnongjia Area in the Northern Yangtze Block and Its Tectonic Implications. Acta Geologica Sinica, 90(10): 2648-2660(in Chinese with English abstract). [46] Xu, Y., Yang, Z.N., Deng, X., et al., 2021. Identification of Indosinian Tectonic Mélange Belt in West Dabie Orogenic Belt and Its Geological Significance. Earth Science, 46(4): 1173-1198(in Chinese with English abstract). [47] Xu, Y.J., Du, Y.S., Cawood, P.A., et al., 2012. Detrital Zircon Provenance of Upper Ordovician and Silurian Strata in the Northeastern Yangtze Block: Response to Orogenesis in South China. Sedimentary Geology, 267/268: 63-72. https://doi.org/10.1016/j.sedgeo.2012.05.009 [48] Yan, Y., Hu, X.Q., Lin, G., et al., 2011. Sedimentary Provenance of the Hengyang and Mayang Basins, SE China, and Implications for the Mesozoic Topographic Change in South China Craton: Evidence from Detrital Zircon Geochronology. Journal of Asian Earth Sciences, 41(6): 494-503. https://doi.org/10.1016/j.jseaes.2011.03.012 [49] Yang, H., Liu, F.L., Du, L.L., et al., 2012. Zircon U-Pb Dating for Metavolcanites in the Laochanghe Formation of the Dahongshan Group in Southwestern Yangtze Block, and Its Geological Significance. Acta Petrologica Sinica, 28(9): 2994-3014(in Chinese with English abstract). [50] Yin, F.G., Sun, Z.M., Zhang, Z., 2011. Mesoproterozoic Stratigraphic-Structure Framework in Huili-Dongchuan Area. Geological Review, 57(6): 770-778(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201106003.htm [51] Zhang, C.H., Gao, L.Z., Wu, Z.J., et al., 2007. The Evidence from Tuff Zircon SHRIMP U-Pb Age of Kunyang Group on Middle Yunnan: The Greenwell Orogenic Event in South China. Chinese Science Bulletin, 52(7): 818-824(in Chinese). doi: 10.1360/csb2007-52-7-818 [52] Zhang, L.J., Ma, C.Q., Wang, L.X., et al., 2011. Discovery of Paleoproterozoic Rapakivi Granite on the Northern Margin of the Yangtze Block and Its Geological Significance. Chinese Science Bulletin, 56(1): 44-57(in Chinese). doi: 10.1360/csb2011-56-1-44 [53] Zhang, Z.Q., Zhang, G.W., Tang, S.H., et al., 2001. On the Age of Metamorphic Rocks of the Yudongzi Group and the Archean Crystalline Basement of the Qinling Orogen. Acta Geologica Sinica, 75(2): 198-204(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200102008.htm [54] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth-Science Reviews, 67(1-2): 91-123. https://doi.org/10.1016/j.earscirev.2004.02.003 [55] Zhou, G.Y., 2018. The Nature of Late Archean to Paleoproterozoic Basement in the Northern Yangtze and Its Geological Implication (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). [56] 白晓, 凌文黎, 段瑞春, 等, 2011. 扬子克拉通核部中元古代-古生代沉积地层Nd同位素演化特征及其地质意义. 中国科学(地球科学), 41(7): 972-983. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201107011.htm [57] 陈能松, 刘嵘, 孙敏, 等, 2006. 北大别黄土岭长英质麻粒岩的原岩、变质作用及源区热事件年龄的锆石LA-ICPMS U-Pb测年约束. 地球科学, 31(3): 294-300. doi: 10.3321/j.issn:1000-2383.2006.03.002 [58] 耿元生, 旷红伟, 杜利林, 等, 2019. 从哥伦比亚超大陆裂解事件论古/中元古代的界限. 岩石学报, 35(8): 2299-2324. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201908002.htm [59] 耿元生, 柳永清, 高林志, 等, 2012. 扬子克拉通西南缘中元古代通安组的形成时代: 锆石LA-ICPMS U-Pb年龄. 地质学报, 86(9): 1479-1490. doi: 10.3969/j.issn.0001-5717.2012.09.009 [60] 郭盼, 陈超, 吴波, 等, 2021. 西大别~2.0 Ga变质花岗岩的发现及其Hf同位素特征. 中国地质, 48(4): 1267-1279. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202104023.htm [61] 黄海永, 徐扬, 尹须伟, 等, 2021. 西大别桥店花岗斑岩脉的形成时代、岩石成因及其大地构造意义. 地学前缘. 网络版. https://doi.org/10.13745/j.esf.sf.2020.12.9 [62] 黄明达, 崔晓庄, 程爱国, 等, 2019. 扬子北缘晚古元古代A型花岗质岩: Columbia超大陆裂解的证据. 地质学报, 93(3): 565-584. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201903004.htm [63] 金廷福, 李佑国, 费光春, 等, 2017. 扬子地台西南缘大红山群红山组的锆石U-Pb年代学研究: 对其原岩形成时代和变质时代的再限定. 地质论评, 63(4): 894-910. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201704005.htm [64] 孔令耀, 毛新武, 陈超, 等, 2017. 扬子北缘大洪山地区中元古代打鼓石群碎屑锆石年代学及其地质意义. 地球科学, 42(4): 485-501. doi: 10.3799/dqkx.2017.039 [65] 李怀坤, 张传林, 相振群, 等, 2013a. 扬子克拉通神农架群锆石和斜锆石U-Pb年代学及其构造意义. 岩石学报, 29(2): 673-697. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302023.htm [66] 李怀坤, 张传林, 姚春彦, 等, 2013b. 扬子西缘中元古代沉积地层锆石U-Pb年龄及Hf同位素组成. 中国科学: 地球科学, 43(8): 1287-1298, 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201308005.htm [67] 刘浩, 徐大良, 魏运许, 等, 2017. 湖北大洪山打鼓石群沉积时限: 来自碎屑锆石U-Pb年龄的证据. 地质通报, 36(5): 715-725. doi: 10.3969/j.issn.1671-2552.2017.05.004 [68] 刘劲松, 胡俊良, 刘阿睢, 等, 2016. 大别山木子店地区细粒二长花岗岩脉的年龄和成因: 锆石U-Pb年龄和Hf同位素制约. 地质通报, 35(12): 2088-2099. doi: 10.3969/j.issn.1671-2552.2016.12.017 [69] 刘晓春, 李三忠, 江博明, 2015. 桐柏-红安造山带的构造演化: 从大洋俯冲/增生到陆陆碰撞. 中国科学: 地球科学, 45(8): 1088-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508002.htm [70] 邱啸飞, 江拓, 吴年文, 等, 2020. 大别造山带新太古代地壳岩石和古元古代混合岩化作用: 来自锆石U-Pb年代学和Hf同位素证据. 地质学报, 94(3): 729-738. doi: 10.3969/j.issn.0001-5717.2020.03.005 [71] 邱啸飞, 凌文黎, 柳小明, 2014. 扬子陆核与神农架地块中元古代相互关系: 来自锆石U-Pb年代学和Hf同位素的约束. 地质科技情报, 33(2): 1-8. doi: 10.3969/j.issn.1009-6248.2014.02.002 [72] 邱啸飞, 杨红梅, 赵小明, 等, 2019. 扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义. 地球科学, 44(2): 415-426. doi: 10.3799/dqkx.2018.198 [73] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [74] 肖志斌, 2012. 中元古代扬子北缘神龙架地区沉积岩碎屑锆石研究(硕士学位论文). 西安: 西北大学. [75] 熊庆, 郑建平, 余淳梅, 等, 2008. 宜昌圈椅A型花岗岩锆石U-Pb年龄和Hf同位素与扬子大陆古元古代克拉通化作用. 科学通报, 53(22): 2782-2792. doi: 10.3321/j.issn:0023-074X.2008.22.017 [76] 徐大良, 刘浩, 魏运许, 等, 2016. 扬子北缘神农架地区郑家垭组碎屑锆石年代学及其构造意义. 地质学报, 90(10): 2648-2660. doi: 10.3969/j.issn.0001-5717.2016.10.008 [77] 徐扬, 杨振宁, 邓新, 等, 2021. 西大别南缘印支期吕王-高桥-永佳河构造混杂岩带的厘定及其构造意义. 地球科学, 46(4): 1173-1198. doi: 10.3799/dqkx.2020.311 [78] 杨红, 刘福来, 杜利林, 等, 2012. 扬子地块西南缘大红山群老厂河组变质火山岩的锆石U-Pb定年及其地质意义. 岩石学报, 28(9): 2994-3014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201209026.htm [79] 尹福光, 孙志明, 张璋, 2011. 会理-东川地区中元古代地层-构造格架. 地质论评, 57(6): 770-778. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201106003.htm [80] 翟明国, 2013. 中国主要古陆与联合大陆的形成: 综述与展望. 中国科学: 地球科学, 43(10): 1583-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310004.htm [81] 张传恒, 高林志, 武振杰, 等, 2007. 滇中昆阳群凝灰岩锆石SHRIMP U-Pb年龄: 华南格林威尔期造山的证据. 科学通报, 52(7): 818-824. doi: 10.3321/j.issn:0023-074X.2007.07.016 [82] 张丽娟, 马昌前, 王连训, 等, 2011. 扬子地块北缘古元古代环斑花岗岩的发现及其意义. 科学通报, 56(1): 44-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201101008.htm [83] 张宗清, 张国伟, 唐索寒, 等, 2001. 鱼洞子群变质岩年龄及秦岭造山带太古宙基底. 地质学报, 75(2): 198-204. doi: 10.3321/j.issn:0001-5717.2001.02.008 [84] 周光颜, 2018. 扬子北缘晚太古代至古元古代基底性质及其地质意义(博士学位论文). 武汉: 中国地质大学. -
孔令耀 附表1-2.doc