[1] |
Baczynski, T. P., Pleissner, D., Grotenhuis, T, 2010. Anaerobic Biodegradation of Organochlorine Pesticides in Contaminated Soil: Significance of Temperature and Availability. Chemosphere, 78(1): 22-28. https://doi.org/10.1016/j.chemosphere.2009.09.058
|
[2] |
Bashir, S., Fischer, A., Nijenhuis, I., et al., 2013. Enantioselective Carbon Stable Isotope Fractionation of Hexachlorocyclohexane during Aerobic Biodegradation by Sphingobium Spp. Environmental Science & Technology, 47(20): 11432-11439. https://doi.org/10.1021/es402197s
|
[3] |
Chen, J., Wang, P. F., Wang, C., et al., 2018. Effects of Decabromodiphenyl Ether and Planting on the Abundance and Community Composition of Nitrogen-Fixing Bacteria and Ammonia Oxidizers in Mangrove Sediments: a Laboratory Microcosm Study. Science of the Total Environment, 616/617: 1045-1055. https://doi.org/10.1016/j.scitotenv.2017.10.214
|
[4] |
Chen, Y., Lei, K., Du, Y., et al., 2021. Identification of Degradation Process of Chenhu Wetland in the Past 50 Years. Earth Science, 46(2): 661-670 (in Chinese with English abstract).
|
[5] |
Cheng, N., Liu, L. S., Hou, Z. L., et al., 2021. Pollution Characteristics and Risk Assessment of Surface Sediments in the Urban Lakes. Environmental Science and Pollution Research, 28(17): 22022-22037. https://doi.org/10.1007/s11356-020-11831-8
|
[6] |
Du, L., Li, W. B., Yang, X., et al., 2020. Differences in Vertical Variation Characteristics of Planktonic Bacterial Communities in the Water Body of Dalinuoer Lake in Summer. Earth Science, 45(5): 1818-1829 (in Chinese with English abstract).
|
[7] |
Gelda, R. K., Brooks, C. M., Effler, S. W., et al., 2000. Interannual Variations in Nitrification in a Hypereutrophic Urban Lake: Occurrences and Implications. Water Research, 34(4): 1107-1118. https://doi.org/10.1016/S0043-1354(99)00265-1
|
[8] |
Gwak, J. H., Jung, M. Y., Hong, H., et al., 2020. Archaeal Nitrification is Constrained by Copper Complexation with Organic Matter in Municipal Wastewater Treatment Plants. The ISME Journal, 14(2): 335-346. https://doi.org/10.1038/s41396-019-0538-1
|
[9] |
Huang, X. F., Feng, Y., Hu, C., et al., 2016. Mechanistic Model for Interpreting the Toxic Effects of Sulfonamides on Nitrification. Journal of Hazardous Materials, 305: 123-129. https://doi.org/10.1016/j.jhazmat.2015.11.037
|
[10] |
Huilinir, C., Fuentes, V., Esposito, G., et al., 2020. Nitrification in the Presence of Sulfide and Organic Matter in a Sequencing Moving Bed Biofilm Reactor (SMBBR) with Zeolite as Biomass Carrier. Journal of Chemical Technology & Biotechnology, 95(1): 173-182. https://doi.org/10.1002/jctb.6219
|
[11] |
Keener, W. K., Arp, D. J, 1993. Kinetic Studies of Ammonia Monooxygenase Inhibition in Nitrosomonas Europaea by Hydrocarbons and Halogenated Hydrocarbons in an Optimized Whole-Cell Assay. Applied and Environmental Microbiology, 59(8): 2501-2510. https://doi.org/10.1128/aem.59.8.2501-2510.1993
|
[12] |
Keener, W. K., Arp, D. J, 1994. Transformations of Aromatic Compounds by Nitrosomonas Europaea. Appl Environ Microbiol, 60(6): 1914-1920. https://doi.org/10.1128/aem.60.6.1914-1920.1994
|
[13] |
Kim, Y. M., Park, D., Lee, D. S., et al., 2008. Inhibitory Effects of Toxic Compounds on Nitrification Process for Cokes Wastewater Treatment. Journal of Hazardous Materials, 152(3): 915-921. https://doi.org/10.1016/j.jhazmat.2007.07.065
|
[14] |
Larose, C., Dommergue, A., Vogel, T. M., 2013. Microbial Nitrogen Cycling in Arctic Snowpacks. Environmental Research Letters, 8(3): 035004. https://doi.org/10.1088/1748-9326/8/3/035004
|
[15] |
Lauchnor, E. G., Semprini, L, 2013. Inhibition of Phenol on the Rates of Ammonia Oxidation by Nitrosomonas Europaea Grown under Batch, Continuous Fed, and Biofilm Conditions. Water Research, 47(13): 4692-4700. https://doi.org/10.1016/j.watres.2013.04.052
|
[16] |
Li, G., Han, Z. W., Shen, C. H., et al., 2019. Distribution Characteristics and Causes of Nitrate in Water Bodies of a Typical Karst Small Watershed: a Case Study of the HouZhai River Basin in Puding. Earth Science, 44(9): 2899-2908 (in Chinese with English abstract).
|
[17] |
Li, X., Kapoor, V., Impelliteri, C., et al., 2016. Measuring Nitrification Inhibition by Metals in Wastewater Treatment Systems: Current State of Science and Fundamental Research Needs. Critical Reviews in Environmental Science and Technology, 46(3): 249-289. https://doi.org/10.1080/10643389.2015.1085234
|
[18] |
Middeldorp, P. J. M., Doesburg, W., Schraa, G., et al., 2005. Reductive Dechlorination of Hexachlorocyclohexane (HCH) Isomers in Soil under Anaerobic Conditions. Biodegradation, 16(3): 283-290. https://doi.org/10.1007/s10532-004-1573-8
|
[19] |
Niu, Y., Jiang, X., Wang, K., et al., 2020. Meta Analysis of Heavy Metal Pollution and Sources in Surface Sediments of Lake Taihu, China. Science of the Total Environment, 700: 134509. https://doi.org/10.1016/j.scitotenv.2019.134509
|
[20] |
Perrin-Ganier, C., Schiavon, F., Morel, J. L., et al., 2001. Effect of Sludge-Amendment or Nutrient Addition on the Biodegradation of the Herbicide Isoproturon in Soil. Chemosphere, 44(4): 887-892. https://doi.org/10.1016/S0045-6535(00)00283-6
|
[21] |
Skotnicka-Pitak, J., Khunjar, W. O., Love, N. G., et al., 2009. Characterization of Metabolites Formed during the Biotransformation of 17alpha-Ethinylestradiol by Nitrosomonas Europaea in Batch and Continuous Flow Bioreactors. Environmental Science & Technology, 43(10): 3549-3555. https://doi.org/10.1021/es8026659
|
[22] |
Sun, M. M., Ye, M., Kengara, F. O., et al., 2014. Response Surface Methodology to Understand the Anaerobic Biodegradation of Organochlorine Pesticides (OCPs) in Contaminated Soil-Significance of Nitrate Concentration and Bioaccessibility. Journal of Soils and Sediments, 14(9): 1537-1548. https://doi.org/10.1007/s11368-014-0912-6
|
[23] |
Sverdrup, L. E., Ekelund, F., Krogh, P. H., et al., 2002. Soil Microbial Toxicity of Eight Polycyclic Aromatic Compounds: Effects on Nitrification, the Genetic Diversity of Bacteria, and the Total Number of Protozoans. Environmental Toxicology and Chemistry, 21(8): 1644-1650. https://doi.org/10.1002/etc.5620210815
|
[24] |
Tran, N. H., Hu, J. Y., Ong, S. L, 2013a. Simultaneous Determination of PPCPS, EDCs, and Artificial Sweeteners in Environmental Water Samples Using a Single-Step SPE Coupled with HPLC-MS/MS and Isotope Dilution. Talanta, 113: 82-92. https://doi.org/10.1016/j.talanta.2013.03.072
|
[25] |
Tran, N. H., Urase, T., Ngo, H. H., et al., 2013b. Insight into Metabolic and Cometabolic Activities of Autotrophic and Heterotrophic Microorganisms in the Biodegradation of Emerging Trace Organic Contaminants. Bioresource Technology, 146: 721-731. https://doi.org/10.1016/j.biortech.2013.07.083
|
[26] |
Wang, H. X., Cao, W., Zhu, X. E., 2013. Effect of new nitrogen fertilizer on the degradation of organic pollutants in soil. Jiangsu Agricultural Sciences, 41(10): 292-294 (in Chinese)
|
[27] |
Xu, Y. F., Yuan, Z. G., Ni, B. J, 2016. Biotransformation of Pharmaceuticals by Ammonia Oxidizing Bacteria in Wastewater Treatment Processes. Science of the Total Environment, 566/567: 796-805. https://doi.org/10.1016/j.scitotenv.2016.05.118
|
[28] |
Yan, F., Liu, C. L., Wei, B. W, 2019. Evaluation of Heavy Metal Pollution in the Sediment of Poyang Lake Based on Stochastic Geo-Accumulation Model (SGM). Science of the Total Environment, 659: 1-6. https://doi.org/10.1016/j.scitotenv.2018.12.311
|
[29] |
Zhang, H. C., Yan, Z. S., Jiang, H. L., et al., 2016. Biodegradation of Polycyclic Aromatic Hydrocarbons in Lake Sediments and Its Influencing Factors. Environmental Science and Technology, 39(01): : 53-59+100 (in Chinese with English abstract).
|
[30] |
Zhang, P., Pan, X. M., Wang, Q. Y., et al., 2020. Toxic Effects of Heavy Metals on the Freshwater Benthic Organisms in Sediments and Research on Quality Guidelines in Poyang Lake, China. Journal of Soils and Sediments, 20(10): 3779-3792. https://doi.org/10.1007/s11368-020-02700-5
|
[31] |
Zhu, A. X., Liu, P. Y., Gong, Y. C., et al., 2020a. Residual Levels and Risk Assessment of Tetrabromobisphenol a in Baiyang Lake and Fuhe River, China. Ecotoxicology and Environmental Safety, 200: 110770. https://doi.org/10.1016/j.ecoenv.2020.110770
|
[32] |
Zhu, T. T., Wang, X. P., Lin, H., et al., 2020b. Accumulation of Pollutants in Proglacial Lake Sediments: Impacts of Glacial Meltwater and Anthropogenic Activities. Environmental Science & Technology, 54(13): 7901-7910. https://doi.org/10.1021/acs.est.0c01849
|
[33] |
陈钰, 雷琨, 杜尧, 等, 2021. 沉湖湿地近50年退化过程识别. 地球科学, 46(2): 661-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202102021.htm
|
[34] |
杜蕾, 李文宝, 杨旭, 等, 2019. 达里诺尔湖夏季水体浮游细菌群落垂向变化特征差异. 地球科学, 45(5): 1818-1829. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005024.htm
|
[35] |
李耕, 韩志伟, 申春华, 等, 2019. 典型岩溶小流域水体中硝酸盐分布特征及成因: 以普定后寨河流域为例. 地球科学, 44(9): 2899-2908. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909008.htm
|
[36] |
王鸿显, 曹文, 朱星儿, 2013. 新型氮肥对土壤中有机污染物降解的影响. 江苏农业科学, 41(10): 292-294. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201310112.htm
|
[37] |
张海晨, 晏再生, 江和龙, 等, 2016. 湖泊沉积物中多环芳烃生物降解及其影响因素. 环境科学与技术, 39(1): 53-59+100. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201601009.htm
|