• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制

    屈国颖 李民敬 郑剑涵 雷琨 毛瑶 刘涛 王亚芬 邢新丽

    屈国颖, 李民敬, 郑剑涵, 雷琨, 毛瑶, 刘涛, 王亚芬, 邢新丽, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095
    引用本文: 屈国颖, 李民敬, 郑剑涵, 雷琨, 毛瑶, 刘涛, 王亚芬, 邢新丽, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095
    Qu Guoying, Li Minjing, Zheng Jianhan, Lei Kun, Mao Yao, Liu Tao, Wang Yafen, Xing Xinli, 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661. doi: 10.3799/dqkx.2021.095
    Citation: Qu Guoying, Li Minjing, Zheng Jianhan, Lei Kun, Mao Yao, Liu Tao, Wang Yafen, Xing Xinli, 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661. doi: 10.3799/dqkx.2021.095

    受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制

    doi: 10.3799/dqkx.2021.095
    基金项目: 

    “地学长江计划”重点项目 CUGCJ1702

    详细信息
      作者简介:

      屈国颖(1997-), 女, 硕士研究生, 从事氮素生物地球化学过程的研究. ORCID: 0000-0002-7474-7874. E-mail: 1263394635@qq.com

      通讯作者:

      李民敬, ORCID: 0000-0001-7703-8718. E-mail: limj@cug.edu.cn

    • 中图分类号: P641

    The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants

    • 摘要: 目前有关硝化反应动力学及其共代谢降解有机污染物的研究多为实验室微生物纯培养体系,来源于野外环境样品的很少.以受污染湖泊严家湖1号塘沉积物为研究对象,野外钻探采样,并选取不同深度沉积物进行室内外加氮源的硝化实验.结果表明:表层土和钻井一处50~100 cm沉积物发生明显的硝化反应,同时有机污染物中六氯苯含量降低最多,分别降低36.6%和49.4%,可以考虑从这两处沉积物中筛选硝化反应和六氯苯共代谢微生物.钻井一处250~300 cm和钻井二处150~200 cm沉积物未检测到明显硝化过程,但存在氨氮吸附和作为氮源被利用等过程使氨氮浓度下降;γ-六六六、环氧七氯和异狄氏剂酮含量在钻井一处250~300 cm分别下降48.8%、90.2%和63.3%,在钻井二处150~200 cm分别下降55.8%、87.4%和32.1%,表明沉积物中外加氨氮可以促进有机污染物降解.

       

    • 图  1  采样点位置

      Fig.  1.  Location of sampling point

      图  2  沉积物pH、含水率和电导率

      Fig.  2.  pH, water content and electrical conductivity of sediments

      图  3  钻井一和钻井二沉积物三氮初始含量

      Fig.  3.  The initial contents of ammonia, nitrite and nitrate in the sediments of well 1 and well 2

      图  4  钻井一不同位点硝化动力学过程

      Fig.  4.  Nitrification kinetics at different sediments of well 1

      图  5  钻井二不同位点沉积物硝化动力学过程

      Fig.  5.  Nitrification kinetics at different sediments of well 2

      图  6  硝化实验结束后沉积物中NH3-N含量及硝化实验消耗NH3-N绝对量

      Fig.  6.  The content of NH3-N in sediments after the nitrification and the absolute amount of NH3-N consumed by the nitrification

      图  7  硝化反应结束后有机污染物含量变化

      Fig.  7.  Changes of organic pollutant content after the nitrification

    • [1] Baczynski, T. P., Pleissner, D., Grotenhuis, T, 2010. Anaerobic Biodegradation of Organochlorine Pesticides in Contaminated Soil: Significance of Temperature and Availability. Chemosphere, 78(1): 22-28. https://doi.org/10.1016/j.chemosphere.2009.09.058
      [2] Bashir, S., Fischer, A., Nijenhuis, I., et al., 2013. Enantioselective Carbon Stable Isotope Fractionation of Hexachlorocyclohexane during Aerobic Biodegradation by Sphingobium Spp. Environmental Science & Technology, 47(20): 11432-11439. https://doi.org/10.1021/es402197s
      [3] Chen, J., Wang, P. F., Wang, C., et al., 2018. Effects of Decabromodiphenyl Ether and Planting on the Abundance and Community Composition of Nitrogen-Fixing Bacteria and Ammonia Oxidizers in Mangrove Sediments: a Laboratory Microcosm Study. Science of the Total Environment, 616/617: 1045-1055. https://doi.org/10.1016/j.scitotenv.2017.10.214
      [4] Chen, Y., Lei, K., Du, Y., et al., 2021. Identification of Degradation Process of Chenhu Wetland in the Past 50 Years. Earth Science, 46(2): 661-670 (in Chinese with English abstract).
      [5] Cheng, N., Liu, L. S., Hou, Z. L., et al., 2021. Pollution Characteristics and Risk Assessment of Surface Sediments in the Urban Lakes. Environmental Science and Pollution Research, 28(17): 22022-22037. https://doi.org/10.1007/s11356-020-11831-8
      [6] Du, L., Li, W. B., Yang, X., et al., 2020. Differences in Vertical Variation Characteristics of Planktonic Bacterial Communities in the Water Body of Dalinuoer Lake in Summer. Earth Science, 45(5): 1818-1829 (in Chinese with English abstract).
      [7] Gelda, R. K., Brooks, C. M., Effler, S. W., et al., 2000. Interannual Variations in Nitrification in a Hypereutrophic Urban Lake: Occurrences and Implications. Water Research, 34(4): 1107-1118. https://doi.org/10.1016/S0043-1354(99)00265-1
      [8] Gwak, J. H., Jung, M. Y., Hong, H., et al., 2020. Archaeal Nitrification is Constrained by Copper Complexation with Organic Matter in Municipal Wastewater Treatment Plants. The ISME Journal, 14(2): 335-346. https://doi.org/10.1038/s41396-019-0538-1
      [9] Huang, X. F., Feng, Y., Hu, C., et al., 2016. Mechanistic Model for Interpreting the Toxic Effects of Sulfonamides on Nitrification. Journal of Hazardous Materials, 305: 123-129. https://doi.org/10.1016/j.jhazmat.2015.11.037
      [10] Huilinir, C., Fuentes, V., Esposito, G., et al., 2020. Nitrification in the Presence of Sulfide and Organic Matter in a Sequencing Moving Bed Biofilm Reactor (SMBBR) with Zeolite as Biomass Carrier. Journal of Chemical Technology & Biotechnology, 95(1): 173-182. https://doi.org/10.1002/jctb.6219
      [11] Keener, W. K., Arp, D. J, 1993. Kinetic Studies of Ammonia Monooxygenase Inhibition in Nitrosomonas Europaea by Hydrocarbons and Halogenated Hydrocarbons in an Optimized Whole-Cell Assay. Applied and Environmental Microbiology, 59(8): 2501-2510. https://doi.org/10.1128/aem.59.8.2501-2510.1993
      [12] Keener, W. K., Arp, D. J, 1994. Transformations of Aromatic Compounds by Nitrosomonas Europaea. Appl Environ Microbiol, 60(6): 1914-1920. https://doi.org/10.1128/aem.60.6.1914-1920.1994
      [13] Kim, Y. M., Park, D., Lee, D. S., et al., 2008. Inhibitory Effects of Toxic Compounds on Nitrification Process for Cokes Wastewater Treatment. Journal of Hazardous Materials, 152(3): 915-921. https://doi.org/10.1016/j.jhazmat.2007.07.065
      [14] Larose, C., Dommergue, A., Vogel, T. M., 2013. Microbial Nitrogen Cycling in Arctic Snowpacks. Environmental Research Letters, 8(3): 035004. https://doi.org/10.1088/1748-9326/8/3/035004
      [15] Lauchnor, E. G., Semprini, L, 2013. Inhibition of Phenol on the Rates of Ammonia Oxidation by Nitrosomonas Europaea Grown under Batch, Continuous Fed, and Biofilm Conditions. Water Research, 47(13): 4692-4700. https://doi.org/10.1016/j.watres.2013.04.052
      [16] Li, G., Han, Z. W., Shen, C. H., et al., 2019. Distribution Characteristics and Causes of Nitrate in Water Bodies of a Typical Karst Small Watershed: a Case Study of the HouZhai River Basin in Puding. Earth Science, 44(9): 2899-2908 (in Chinese with English abstract).
      [17] Li, X., Kapoor, V., Impelliteri, C., et al., 2016. Measuring Nitrification Inhibition by Metals in Wastewater Treatment Systems: Current State of Science and Fundamental Research Needs. Critical Reviews in Environmental Science and Technology, 46(3): 249-289. https://doi.org/10.1080/10643389.2015.1085234
      [18] Middeldorp, P. J. M., Doesburg, W., Schraa, G., et al., 2005. Reductive Dechlorination of Hexachlorocyclohexane (HCH) Isomers in Soil under Anaerobic Conditions. Biodegradation, 16(3): 283-290. https://doi.org/10.1007/s10532-004-1573-8
      [19] Niu, Y., Jiang, X., Wang, K., et al., 2020. Meta Analysis of Heavy Metal Pollution and Sources in Surface Sediments of Lake Taihu, China. Science of the Total Environment, 700: 134509. https://doi.org/10.1016/j.scitotenv.2019.134509
      [20] Perrin-Ganier, C., Schiavon, F., Morel, J. L., et al., 2001. Effect of Sludge-Amendment or Nutrient Addition on the Biodegradation of the Herbicide Isoproturon in Soil. Chemosphere, 44(4): 887-892. https://doi.org/10.1016/S0045-6535(00)00283-6
      [21] Skotnicka-Pitak, J., Khunjar, W. O., Love, N. G., et al., 2009. Characterization of Metabolites Formed during the Biotransformation of 17alpha-Ethinylestradiol by Nitrosomonas Europaea in Batch and Continuous Flow Bioreactors. Environmental Science & Technology, 43(10): 3549-3555. https://doi.org/10.1021/es8026659
      [22] Sun, M. M., Ye, M., Kengara, F. O., et al., 2014. Response Surface Methodology to Understand the Anaerobic Biodegradation of Organochlorine Pesticides (OCPs) in Contaminated Soil-Significance of Nitrate Concentration and Bioaccessibility. Journal of Soils and Sediments, 14(9): 1537-1548. https://doi.org/10.1007/s11368-014-0912-6
      [23] Sverdrup, L. E., Ekelund, F., Krogh, P. H., et al., 2002. Soil Microbial Toxicity of Eight Polycyclic Aromatic Compounds: Effects on Nitrification, the Genetic Diversity of Bacteria, and the Total Number of Protozoans. Environmental Toxicology and Chemistry, 21(8): 1644-1650. https://doi.org/10.1002/etc.5620210815
      [24] Tran, N. H., Hu, J. Y., Ong, S. L, 2013a. Simultaneous Determination of PPCPS, EDCs, and Artificial Sweeteners in Environmental Water Samples Using a Single-Step SPE Coupled with HPLC-MS/MS and Isotope Dilution. Talanta, 113: 82-92. https://doi.org/10.1016/j.talanta.2013.03.072
      [25] Tran, N. H., Urase, T., Ngo, H. H., et al., 2013b. Insight into Metabolic and Cometabolic Activities of Autotrophic and Heterotrophic Microorganisms in the Biodegradation of Emerging Trace Organic Contaminants. Bioresource Technology, 146: 721-731. https://doi.org/10.1016/j.biortech.2013.07.083
      [26] Wang, H. X., Cao, W., Zhu, X. E., 2013. Effect of new nitrogen fertilizer on the degradation of organic pollutants in soil. Jiangsu Agricultural Sciences, 41(10): 292-294 (in Chinese)
      [27] Xu, Y. F., Yuan, Z. G., Ni, B. J, 2016. Biotransformation of Pharmaceuticals by Ammonia Oxidizing Bacteria in Wastewater Treatment Processes. Science of the Total Environment, 566/567: 796-805. https://doi.org/10.1016/j.scitotenv.2016.05.118
      [28] Yan, F., Liu, C. L., Wei, B. W, 2019. Evaluation of Heavy Metal Pollution in the Sediment of Poyang Lake Based on Stochastic Geo-Accumulation Model (SGM). Science of the Total Environment, 659: 1-6. https://doi.org/10.1016/j.scitotenv.2018.12.311
      [29] Zhang, H. C., Yan, Z. S., Jiang, H. L., et al., 2016. Biodegradation of Polycyclic Aromatic Hydrocarbons in Lake Sediments and Its Influencing Factors. Environmental Science and Technology, 39(01): : 53-59+100 (in Chinese with English abstract).
      [30] Zhang, P., Pan, X. M., Wang, Q. Y., et al., 2020. Toxic Effects of Heavy Metals on the Freshwater Benthic Organisms in Sediments and Research on Quality Guidelines in Poyang Lake, China. Journal of Soils and Sediments, 20(10): 3779-3792. https://doi.org/10.1007/s11368-020-02700-5
      [31] Zhu, A. X., Liu, P. Y., Gong, Y. C., et al., 2020a. Residual Levels and Risk Assessment of Tetrabromobisphenol a in Baiyang Lake and Fuhe River, China. Ecotoxicology and Environmental Safety, 200: 110770. https://doi.org/10.1016/j.ecoenv.2020.110770
      [32] Zhu, T. T., Wang, X. P., Lin, H., et al., 2020b. Accumulation of Pollutants in Proglacial Lake Sediments: Impacts of Glacial Meltwater and Anthropogenic Activities. Environmental Science & Technology, 54(13): 7901-7910. https://doi.org/10.1021/acs.est.0c01849
      [33] 陈钰, 雷琨, 杜尧, 等, 2021. 沉湖湿地近50年退化过程识别. 地球科学, 46(2): 661-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202102021.htm
      [34] 杜蕾, 李文宝, 杨旭, 等, 2019. 达里诺尔湖夏季水体浮游细菌群落垂向变化特征差异. 地球科学, 45(5): 1818-1829. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005024.htm
      [35] 李耕, 韩志伟, 申春华, 等, 2019. 典型岩溶小流域水体中硝酸盐分布特征及成因: 以普定后寨河流域为例. 地球科学, 44(9): 2899-2908. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909008.htm
      [36] 王鸿显, 曹文, 朱星儿, 2013. 新型氮肥对土壤中有机污染物降解的影响. 江苏农业科学, 41(10): 292-294. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201310112.htm
      [37] 张海晨, 晏再生, 江和龙, 等, 2016. 湖泊沉积物中多环芳烃生物降解及其影响因素. 环境科学与技术, 39(1): 53-59+100. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201601009.htm
    • 加载中
    图(7)
    计量
    • 文章访问数:  384
    • HTML全文浏览量:  82
    • PDF下载量:  22
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-03-19
    • 刊出日期:  2022-02-25

    目录

      /

      返回文章
      返回