Research on Formation and Evolution of Early Paleozoic Bulhanbuda Arc in East Kunlun Orogen
-
摘要: 东昆仑布尔汗布达弧位于东昆中断裂南侧,不同于北昆仑晚古生代-中生代岩浆弧,是东昆仑早古生代岩浆岩广泛分布的地区,对研究原特提斯洋俯冲-增生过程具有重要意义.报道了布尔汗布达地区早古生代岩浆岩岩石学、地球化学、锆石U-Pb定年、Lu-Hf和Sr-Nd同位素资料,结合以往研究成果,推断布尔汗布达弧与增生造山作用相关的岩浆活动可以划分为寒武纪(515~482 Ma)、中奥陶世(465~463 Ma)和晚奥陶世-早志留世(454~438 Ma)3期.寒武纪岩浆岩是富铌镁铁-超镁铁质岩和偏铝质中高钾钙碱性闪长岩,中奥陶世为弱过铝质高钾钙碱性二长花岗岩,晚奥陶世岩浆岩主要是弱过铝质中高钾钙碱性花岗闪长岩和二长花岗岩,次为中钾钙碱性偏铝质石英闪长岩和拉斑玄武质辉绿岩.3期岩浆活动中酸性侵入岩微量元素组成与弧安山岩(CAA)相似,寒武纪闪长岩Sr/Y比值(22.6~30.0)低,中奥陶世二长花岗岩Sr/Y比值(34.4~37.1)中等,晚奥陶世花岗闪长岩和二长花岗岩Sr/Y比值(49.4)较高,并且均富集全岩放射性成因Sr、Nd同位素;寒武纪闪长岩(87Sr/86Sr)i为0.715 1~0.715 7,εNd(t)值为-7.4~-7.3;中奥陶世二长花岗岩(87Sr/86Sr)i是0.707 6~0.707 7,εNd(t)值是-2.5~-2.4;晚奥陶世花岗闪长岩和二长花岗岩(87Sr/86Sr)i是0.705 9~0.706 5,εNd(t)值是(-3.3~-1.7),闪长岩(87Sr/86Sr)i是0.706 9~0.708 5,εNd(t)值是-6.0~-5.6.锆石Hf同位素组成变化较大,寒武纪闪长岩εHf(t)为-6.8~-4.4,中奥陶世二长花岗岩εHf(t)是+0.13~+2.90,晚奥陶世花岗闪长岩和二长花岗岩εHf(t)为-2.7~9.2,闪长岩εHf(t)为-8.6~-2.1.综上所述,推断布尔汗布达弧是原特提斯洋向南俯冲形成的安第斯型陆缘弧,经历了3个重要的演化阶段,早期(515~482 Ma)俯冲带楔状地幔部分熔融形成基性岩浆,同时诱发古元古代下地壳重熔形成中酸性岩浆;中期(465~463 Ma)幔源基性岩浆底侵,下地壳加厚,地壳部分熔融形成小规模酸性岩浆,晚期(454~438 Ma)幔源基性岩浆底侵、加厚下地壳形成,下地壳部分熔融,形成大规模具有埃达克岩地球化学成分的中酸性岩浆岩.Abstract: The Bulhanbuda arc is located in the south of the central fault of East Kunlun orogen. Different from the Late Paleozoic-Mesozoic magmatic arc in the North Kunlun, Early Paleozoic magmatic rocks are widely exposed in the Bulhanbuda area and of great significance to the researches of subduction-accretion process of the Proto-Tethyan Ocean. In this study, it reports the petrology, geochemistry, zircon U-Pb ages, Lu-Hf and Sr-Nd isotopic compositions of the Early Paleozoic magmatic rocks from the Bulhanbuda area. This and previous studies indicate that the subduction-related magmatic activities can be divided into three stages: Cambrian (515-482 Ma), Middle Ordovician (465-463 Ma), and Late Ordovician-Early Silurian (454-438 Ma). The Cambrian magmatic rocks contain Nb-enriched mafic-ultramafic rocks and metaluminous high-K calc-alkaline diorite. The Ordovician magmatic rocks are weakly peraluminous high-K calc-alkaline monzogranites. The Late Ordovician magmatic rocks are dominated by weakly peraluminous medium- and high-K calc-alkaline diorite and monzogranite and contain some metaluminous calc-alkaline quartz diorite and tholeiitic dolerite. These three stage intrusive rocks show similar trace element compositions with those of continental arc andesite. The Sr/Y ratios of the Cambrian diorite are low (22.6-30.0), the Sr/Y ratios of the Middle Ordovician monzogranite are medium, and these of Late Ordovician granodiorite and monzogranite are high. All of these intrusive rocks are enriched in radiogenic Sr and Nd isotopes. The Cambrian diorites display high initial 87Sr/86Sr ratios of 0.715 1-0.715 7 and low εNd(t) values of -7.4 to -7.3. The Middle Ordovician monzogranite have initial 87Sr/86Sr ratios of 0.707 6-0.707 7 and εNd(t) values of -2.5 to -2.4. The Late Ordovician granodiorite and monzogranite have low initial 87Sr/86Sr ratios (0.705 9-0.706 5) and negative εNd(t) values (-3.3 to -1.7). However, the diorite shows relatively high initial 87Sr/86Sr ratios (0.706 9-0.708 5) and low εNd(t) values (-6.0 to -5.6). The three stage magmatic rocks show wide range of the zircon Hf isotopes. Cambrian diorites have negative εHf(t) values (-6.8 to -4.4). Middle Ordovician monzogranites display positive εHf(t) values (+0.13 to +2.90). Late Ordovician granidorite and monzogranite show wide range of εHf(t) values (-2.7 to +9.2). The diorites mainly yield negative εHf(t) values (-8.6 to -2.1). In conclusion, the Bulhanbuda arc is an Andean-type continental margin arc formed during the southward subduction of the Proto-Tethyan Ocean. It has undergone three significant evolutionary stages. In the early stage (515-482 Ma), partial melting of the mantle wedge generated the basic magma, which induced remelting of the Paleoproterozoic lower crust to form intermediate-acid magma. In the middle period (465-463 Ma), the mantle derived basic magma underpenetrated and the thickened lower crust was partially melted to form small-scale acid magma. In the late period (454-438 Ma), the mantle derived basic magma underpenetrated and the thickened lower crust was partially melted to form large-scale intermediate-acid magmatic rocks with adakitic geochemical composition.
-
Key words:
- East Kunlun /
- Bulhanbuda /
- Early Paleozoic /
- magmatic arc /
- petrology
-
图 1 东昆仑布尔汗布达弧及邻区地质略图
1.侏罗系;2.三叠系;3.石炭系-二叠系;4.石炭系;5.泥盆系;6.新元古界;7.古中元古界;8.三叠纪中酸性侵入岩;9.志留纪-泥盆纪中酸性侵入岩;10.奥陶纪中酸性侵入岩;11.寒武纪中酸性侵入岩;12.镁铁-超镁铁质杂岩;13.榴辉岩;14.一般断裂;15.区域性断裂及编号;16.同位素年龄采样点和来源;17.河流;18.布尔汗布达弧.Ⅰ.中南祁连地块;Ⅱ.宗务隆山裂谷;Ⅲ.全吉地块;Ⅳ.柴北缘俯冲-碰撞杂岩带;Ⅴ.柴达木地块;Ⅵ1祁漫塔格蛇绿混杂岩带;Ⅵ2.北昆仑岩浆弧;Ⅵ3.东昆仑南坡俯冲增生杂岩带;Ⅵ4.木孜塔格-西大滩-布青山蛇绿混杂岩带;Ⅶ.巴颜喀拉地块;Ⅷ.阿尔金构造带;F1.阿尔金断裂;F2.昆北断裂;F3.昆中断裂;F4.昆南断裂. 图 1a中文献:(1)Zhang et al.(2018);(2)Zhang et al.(2014);(3)刘彬等(2013);(4)Li et al.(2017b);(5)陈有炘等(2013);(6)张亚峰(2010);(7)冯建赟等(2010);(8)桑继镇等(2016);(9)任军虎等(2009);(10)Yang et al.(1996);(11)魏博(2015);(12)Li et al.(2019);(13)祁晓鹏等(2016);(14)Li et al.(2013a);(15)Li et al.(2013b);(16)赵菲菲等(2017);(17)Li et al.(2017a);(18)裴先治等(2018);(19)Li et al.(2014);(20)刘战庆等(2011);(21)Li et al.(2015)
Fig. 1. Geological sketch of the Bulhanbuda arc in the East Kunlun orogen and adjacent areas
图 2 东昆仑布尔汗布达弧智玉岩基地质略图
1.第四系;2.上三叠统;3.中下三叠统;4.格曲组;5.浩特洛哇组;6.哈拉郭勒组;7.契盖苏组;8.纳赤台群;9.万保沟群;10.古中元古界;11.三叠纪花岗岩;12.志留纪花岗岩;13.晚奥陶世花岗闪长岩;14.晚奥陶世闪长岩;15.晚奥陶世二长花岗岩;16.中奥陶世闪长岩;17.中奥陶世二长花岗岩;18.镁铁-超镁铁质岩;19.角度不整合地质界线;20.区域断裂和编号;21.一般断裂;22.同位素年龄采样点和来源:(1)Dong et al., 2018b;(2)陈加杰等,2016;(3)Zhou et al., 2016;①陕西省核工业地质调查院, 2016, 青海省都兰县尕日当地区I47E002011、I47E003011、I47E004011、I47E004012四幅1∶50 000区域地质调查报告
Fig. 2. Geological sketch of the Zhiyu batholit of Bulhanbuda arc in the East Kunlun orogen
图 5 布尔汗布达弧中酸性侵入岩地球化学判别图
a.硅碱图;b.SiO2-K2O图;c.ANK-A/CNK图解.1.寒武纪闪长岩(2020XKK1-1、2、3);2.寒武纪闪长岩(据张亚峰,2010);3.中奥陶世二长花岗岩(GL05GS1-1、2、3、4);4.晚奥陶世花岗闪长岩(GL06GS1-1、2、3、4);5.晚奥陶世花岗闪长岩和二长花岗岩(据陈加杰等,2016;Zhou et al., 2016;Dong et al., 2018b);6. 晚奥陶世闪长岩(据Dong et al., 2018b);(1)橄榄辉长岩;(2a)碱性辉长岩;(2b)亚碱性辉长岩;(3)辉长闪长岩;(4)闪长岩;(5)花岗闪长岩;(6)花岗岩;(7)硅英岩;(8)二长辉长岩;(9)二长闪长岩;(10)二长岩;(11)石英二长岩;(12)正长岩;(13)副长石辉长岩;(14)副长石二长闪长岩;(15)副长石二长正长岩
Fig. 5. Geochemical discrimination diagrams for the intermediate-acid intrusive rocks in Bulhanbuda arc
图 6 布尔汗布达弧中酸性侵入岩稀土元素球粒陨石标准化图解及微量元素原始地幔标准化蛛网图
球粒陨石和原始地幔标准化数据据文献Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns and primitive mantle-normalized trace elements spider diagrams for the intermediate-acid intrusive rocks in Bulhanbuda arc
图 7 布尔汗布达弧及邻区早古生代岩浆活动时空分布
(1)东昆中断裂带内的蛇绿岩(Yang et al., 1996;魏博,2015;祁晓鹏等,2016;Dong et al., 2018b;Li et al., 2017a, 2019);(2)清水泉辉绿岩和辉长岩(任军虎等,2009;桑继镇等,2016);(3)可可沙闪长岩(张亚峰,2010;本文);(4)可可沙镁铁-超镁铁质杂岩(冯建赟等,2010;Li et al., 2013b);(5)中奥陶世二长花岗岩(本文);(6)晚奥陶世花岗岩(陈加杰等,2016;Zhou et al., 2016;Dong et al., 2018b;本文);(7)胡晓钦辉绿岩体(刘彬等,2013);(8)早中志留世“A”型花岗岩和高钾钙碱性花岗岩(Li et al. 2013a;Dong et al., 2018b),(9~10)马尼特花岗闪长岩(赵菲菲等,2017;Li et al., 2017b);(11)白日切特花岗岩(Li et al., 2014);(12)亿科哈拉花岗岩(Li et al., 2015)
Fig. 7. Spatio-temporal map of the Bulhanbuda arc and adjacent areas
图 8 布尔汗布达弧中酸性侵入岩哈克图解
图例同图 5
Fig. 8. Hacker diagrams for the intermediate-acid intrusive rocks in Bulhanbuda arc
图 9 布尔汗布达弧中酸性侵入岩εNd(t)-(87Sr/86Sr)i(a)和εHf(t)-t(b)图解
(1)刘彬等;(2)Dong et al.(2018b);(3)Dong et al.(2018b);(4)Zhou et al.(2016);(5)GL06GS1-1;(6)Dong et al.(2018b);(7)陈加杰等(2016);(8)GL05 GS1-1;(9)2020XKK1
Fig. 9. εNd(t)-(87Sr/86Sr)i (a) and εHf(t)-t (b) diagram for the intermediate-acid intrusive rocks in Bulhanbuda arc
图 10 布尔汗布达弧中酸性侵入岩源岩组成判别图解(a)、Th-Th/V图解(b)和Th/Zr-Th图解(c)
图a据Sylvester(1998);图b,c据Schiano et al.(2010);图例同图 5
Fig. 10. Diagrams to discriminate the composition of source rocks(a), Th-Th/V(b)and Th-Th/V(c) for the intermediate-acid intrusive rocks in Bulhanbuda arc
图 11 布尔汗布达弧中酸性侵入岩Sr/Y-Y(a)和(La/Yb)N-(Yb)N(b)图解
图例同图 5
Fig. 11. Diagrams for Sr/Y-Y (a) and (La/Yb)N-(Yb)N (b)
-
[1] Bea, F., Arzamastsev, A., Montero, P., et al., 2001. Anomalous Alkaline Rocks of Soustov, Kola: Evidence of Mantle-Derived Metasomatic Fluids Affecting Crustal Materials. Contributions to Mineralogy and Petrology, 140(5): 554-566. https://doi.org/10.1007/s004100000211 [2] Bian, Q.T., Pospelov, I., Li, H.M., et al., 2007. Discovery of the End-Early Paleozoic Adakite in the Buqingshan Area, Qinghai Province, and Its Tectonic Implications. Acta Petrologica Sinica, 23(5): 925-934(in Chinese with English abstract). [3] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2020. Late Palaeozoic-Early Mesozoic Tectonic-Magmatic Evolution and Mineralization in the Eastern Section of the East Kunlun Orogenic Belt. Earth Science Frontiers, 27(4): 33-48(in Chinese with English abstract). [4] Chen, J.J., Fu, L.B., Wei, J.H., et al., 2016. Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province: Implications on the Evolution of Proto-Tethys Ocean. Earth Science, 41(11): 1863-1882(in Chinese with English abstract). [5] Chen, Y.X., Pei, X.Z., Li, R.B., et al., 2013. Zircon U-Pb Age, Geochemical Characteristics and Tectonic Significance of Metavolcanic Rocks from Naij Tal Group, East Section of East Kunlun. Earth Science Frontiers, 20(6): 240-254(in Chinese with English abstract). [6] Dong, G.C., Luo, M.F., Mo, X.X., et al., 2018a. Petrogenesis and Tectonic Implications of Early Paleozoic Granitoids in East Kunlun Belt: Evidences from Geochronology, Geochemistry and Isotopes. Geoscience Frontiers, 9(5): 1383-1397. https://doi.org/10.1016/j.gsf.2018.03.003 [7] Dong, Y.P., He, D.F., Sun, S.S., et al., 2018b. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006 [8] Feng, J.Y., Pei, X.Z., Yu, S.L., et al., 2010. The Discovery of the Mafic-Ultramafic Melange in Kekesha Area of Dulan County, East Kunlun Region, and Its LA-ICP-MS Zircon U-Pb Age. Geology in China, 37(1): 28-38(in Chinese with English abstract). [9] Li, H.K., Lu, S.N., Xiang, Z.Q., et al., 2006. SHRIMP U-Pb Zircon Age of the Granulite from the Qingshuiquan Area, Central Eastern Kunlun Suture Zone. Earth Science Frontiers, 13(6): 311-321(in Chinese with English abstract). [10] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2013a. Regional Tectonic Transformation in East Kunlun Orogenic Belt in Early Paleozoic: Constraints from the Geochronology and Geochemistry of Helegangnaren Alkali-Feldspar Granite. Acta Geologica Sinica, 87(2): 333-345. doi: 10.1111/1755-6724.12054 [11] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2013b. Geochemical Features, Age, and Tectonic Significance of the Kekekete Mafic-Ultramafic Rocks, East Kunlun Orogen, China. Acta Geologica Sinica, 87(5): 1319-1333. doi: 10.1111/1755-6724.12131 [12] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2015. Geochemistry and Zircon U-Pb Geochronology of Granitic Rocks in the Buqingshan Tectonic Mélange Belt, Northern Tibet Plateau, China and Its Implications for Prototethyan Evolution. Journal of Asian Earth Sciences, 105: 374-389. https://doi.org/10.1016/j.jseaes.2015.02.004 [13] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2017a. Cambrian(~510 Ma) Ophiolites of the East Kunlun Orogen, China: A Case Study from the Acite Ophiolitic Tectonic Mélange. International Geology Review, 60(16): 2063-2083. https://doi.org/10.1080/00206814.2017.1405366 [14] Li, Z.C., Pei, X.Z., Li, R.B., et al., 2017b. Early Ordovician Island-Arc-Type Manite Granodiorite Pluton from the Buqingshan Tectonic Mélange Belt in the Southern Margin of the East Kunlun Orogen: Constraints on Subduction of the Proto-Tethyan Ocean. Geological Journal, 52(3): 510-528. https://doi.org/10.1002/gj.2785 [15] Li, R.B., Pei, X.Z., Wei, B., et al., 2019. Constraints of Late Cambrian Mafic Rocks from the Qushi'ang Ophiolite on a Back-Arc System in a Continental Margin, East Kunlun Orogen, Western China. Journal of Asian Earth Sciences, 169: 117-129. https://doi.org/10.1016/j.jseaes.2018.08.006 [16] Li, Z.C., Pei, X.Z., Li, R.B., et al., 2014. Geochronology, Geochemistry and Tectonic Setting of the Bairiqiete Granodiorite Intrusion (Rock Mass) from the Buqingshan Tectonic Mélange Belt in the Southern Margin of East Kunlun. Acta Geologica Sinica, 88(2): 584-597. https://doi.org/10.1111/1755-6724.12216 [17] Liu, B., Ma, C.Q., Jiang, H.A., et al., 2013. Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region: Evidence from Huxiaoqin Mafic Rocks. Acta Petrologica Sinica, 29(6): 2093-2106(in Chinese with English abstract). [18] Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication. Acta Geologica Sinica, 85(2): 185-194(in Chinese with English abstract). [19] Moyen, J.F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3-4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001 [20] Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1-28(in Chinese with English abstract). [21] Pei, X.Z., Li, R.B., Li, Z.C., et al., 2018. Composition Feature and Formation Process of Buqingshan Composite Accretionary Mélange Belt in Southern Margin of East Kunlun Orogen. Earth Science, 43(12): 4498-4520(in Chinese with English abstract). [22] Qi, X.P., Yang, J., Fan, X.G., et al., 2016. Age, Geochemical Characteristics and Tectonic Significance of Changshishan Ophiolite in Central East Kunlun Tectonic Mélange Belt along the East Section of East Kunlun Mountains. Geology in China, 43(3): 797-816(in Chinese with English abstract). [23] Ren, J.H., Liu, Y.Q., Feng, Q., et al., 2009. LA-ICP-MS U-Pb Zircon Dating and Geochemical Characteristics of Diabase-Dykes from the Qingshuiquan Area, Eastern Kunlun Orogenic Belt. Acta Petrologica Sinica, 25(5): 1135-1145(in Chinese with English abstract). [24] Sajona, F.G., Maury, R.C., Bellon, H., et al., 1996. High Field Strength Element Enrichment of Pliocene-Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37(3): 693-726. https://doi.org/10.1093/petrology/37.3.693 [25] Sang, J.Z., Pei, X.Z., Li, R.B., et al., 2016. LA-ICP-MS Zircon U-Pb Dating of the Chahantaolegai Syenogranites in Xiangride Area of East Kunlun and Its Geological Significance. Geological Bulletin of China, 35(5): 700-710(in Chinese with English abstract). [26] Schiano, P., Monzier, M., Eissen, J.P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2 [27] Song, S.G., Bi, H.Z., Qi, S.S., et al., 2018. HP-UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent. Journal of Petrology, 59(11): 2043-2060. https://doi.org/10.1093/petrology/egy089 [28] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [29] Sylvester, P.J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/S0024-4937(98)00024-3 [30] Tatsumi, Y., 1982. Origin of High-Magnesian Andesites in the Setouchi Volcanic Belt, Southwest Japan, Ⅱ. Melting Phase Relations at High Pressures. Earth and Planetary Science Letters, 60(2): 305-317. https://doi.org/10.1016/0012-821X(82)90009-7 [31] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications, Oxford. [32] Wang, B.Z., Pan, T., Ren, H.D., et al., 2021. Cambrian Qimantagh Island Arc in the East Kunlun Orogen: Evidences from Zircon U-Pb Ages, Lithogeochemistry and Hf Isotopes of High-Mg Andesite/Diorite from the Lalinggaolihe Area. Earth Science Frontiers, 28(1): 318-333(in Chinese with English abstract). [33] Wang, K., Wang, L.X., Ma, C.Q., et al., 2020. Petrogenesis and Geological Implications of the Middle Triassic Garnet-Bearing Two-Mica Granite from Jialuhe Region, East Kunlun. Earth Science, 45(2): 400-418(in Chinese with English abstract). [34] Wang, Q., Hao, L.L., Zhang, X.Z., et al., 2020. Adakitic Rocks at Convergent Plate Boundaries: Compositions and Petrogenesis. Scientia Sinica (Terrae), 50(12): 1845-1873(in Chinese). doi: 10.1360/SSTe-2020-0034 [35] Wang, W., Xiong, F.H., Ma, C.Q., et al., 2021. Petrogenesis of Triassic Suolagou Sanukitoid-Like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887-2902(in Chinese with English abstract). [36] Wei, B., 2015. Study on the Geological Characteristic and Tectonic Attribute of the Ophiolite and Island-Arc-Type Igneous Rocks, Central Belt of East Kunlun (Eastern Section) (Dissertation). Chang'an University, Xi'an(in Chinese with English abstract). [37] Wolf, M.B., London, D., 1994. Apatite Dissolution into Peraluminous Haplogranitic Melts: An Experimental Study of Solubilities and Mechanisms. Geochimica et Cosmochimica Acta, 58(19): 4127-4145. https://doi.org/10.1016/0016-7037(94)90269-0 [38] Yang, J.S., Robinson, P.T., Jiang, C.F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258(1/2/3/4): 215-231. https://doi.org/10.1016/0040-1951(95)00199-9 [39] Zhang, J.Y., Ma, C.Q., Xiong, F.H., et al., 2014. Early Paleozoic High-Mg Diorite-Granodiorite in the Eastern Kunlun Orogen, Western China: Response to Continental Collision and Slab Break-off. Lithos, 210/211: 129-146. https://doi.org/10.1016/j.lithos.2014.10.003 [40] Zhang, Y.F., 2010. The Geological Characteristic, Age and Tectonic Setting of Kekesha Intrusive Rocks of Early Paleozoic in Dulan County of the East Kunlun Area (Dissertation). Chang'an University, Xi'an(in Chinese with English abstract). [41] Zhang, Z.W., Wang, Y.L., Qian, B., et al., 2018. Metallogeny and Tectonomagmatic Setting of Ni-Cu Magmatic Sulfide Mineralization, Number I Shitoukengde Mafic-Ultramafic Complex, East Kunlun Orogenic Belt, NW China. Ore Geology Reviews, 96: 236-246. https://doi.org/10.1016/j.oregeorev.2018.04.027 [42] Zhao, F.F., Sun, F.Y., Liu, J.L., 2017. Zircon U-Pb Geochronology and Geochemistry of the Gneissic Granodiorite in Manite Area from East Kunlun, with Implications for Geodynamic Setting. Earth Science, 42(6): 927-940, 1044(in Chinese with English abstract). [43] Zheng, Y.F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005 [44] Zhou, B., Dong, Y.P., Zhang, F.F., et al., 2016. Geochemistry and Zircon U-Pb Geochronology of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Origin and Tectonic Implications. Journal of Asian Earth Sciences, 130: 265-281. https://doi.org/10.1016/j.jseaes.2016.08.011 [45] 边千韬, Pospelov, I.I., 李惠民, 等, 2007. 青海省布青山早古生代末期埃达克岩的发现及其构造意义. 岩石学报, 23(5): 925-934. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705008.htm [46] 陈国超, 裴先治, 李瑞保, 等, 2020. 东昆仑造山带东段晚古生代: 早中生代构造岩浆演化与成矿作用. 地学前缘, 27(4): 33-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202004004.htm [47] 陈加杰, 付乐兵, 魏俊浩, 等, 2016. 东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约. 地球科学, 41(11): 1863-1882. doi: 10.3799/dqkx.2016.129 [48] 陈有炘, 裴先治, 李瑞保, 等, 2013. 东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义. 地学前缘, 20(6): 240-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201306032.htm [49] 冯建赟, 裴先治, 于书伦, 等, 2010. 东昆仑都兰可可沙地区镁铁-超镁铁质杂岩的发现及其LA-ICP-MS锆石U-Pb年龄. 中国地质, 37(1): 28-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201001006.htm [50] 李怀坤, 陆松年, 相振群, 等, 2006. 东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究. 地学前缘, 13(6): 311-321. doi: 10.3321/j.issn:1005-2321.2006.06.034 [51] 刘彬, 马昌前, 蒋红安, 等, 2013. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093-2106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306018.htm [52] 刘战庆, 裴先治, 李瑞保, 等, 2011. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义. 地质学报, 85(2): 185-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102005.htm [53] 潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901004.htm [54] 裴先治, 李瑞保, 李佐臣, 等, 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程. 地球科学, 43(12): 4498-4520. doi: 10.3799/dqkx.2018.124 [55] 祁晓鹏, 杨杰, 范显刚, 等, 2016. 东昆仑东段东昆中构造混杂岩带长石山蛇绿岩年代学、地球化学特征及其构造意义. 中国地质, 43(3): 797-816. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201603008.htm [56] 任军虎, 柳益群, 冯乔, 等, 2009. 东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年. 岩石学报, 25(5): 1135-1145. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200905008.htm [57] 桑继镇, 裴先治, 李瑞保, 等, 2016. 东昆仑东段清水泉辉长岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义. 地质通报, 35(5): 700-710. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201605007.htm [58] 王秉璋, 潘彤, 任海东, 等, 2021. 东昆仑祁漫塔格寒武纪岛弧: 来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U-Pb年代学、地球化学和Hf同位素证据. 地学前缘, 28(1): 318-333. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101032.htm [59] 王珂, 王连训, 马昌前, 等, 2020. 东昆仑加鲁河中三叠世含石榴石二云母花岗岩的成因及地质意义. 地球科学, 45(2): 400-418. doi: 10.3799/dqkx.2018.393 [60] 王强, 郝露露, 张修政, 等, 2020. 汇聚板块边缘的埃达克质岩: 成分和成因. 中国科学(地球科学), 50(12): 1845-1873. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012010.htm [61] 王巍, 熊富浩, 马昌前, 等, 2021. 东昆仑造山带索拉沟地区三叠纪赞岐质闪长岩的成因机制及其对古特提斯造山作用的启示. 地球科学, 46(8): 2887-2902. doi: 10.3799/dqkx.2020.270 [62] 魏博, 2015. 东昆中构造带(东段)蛇绿岩与岛弧型侵入岩地质特征及构造属性研究(硕士学位论文). 西安: 长安大学. [63] 张亚峰, 2010. 东昆仑都兰可可沙地区早古生代侵入岩体地质特征、形成时代及构造环境(硕士学位论文). 西安: 长安大学. [64] 赵菲菲, 孙丰月, 刘金龙, 2017. 东昆仑马尼特地区片麻状花岗闪长岩锆石U-Pb年代学、地球化学及其构造背景. 地球科学, 42(6): 927-940, 1044. doi: 10.3799/dqkx.2017.073 -
王秉章 附表1-4 锆石 U.doc