• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大同盆地地下水中碳硫同位素组成特征及其对碘迁移富集的指示

    朱沉静 李俊霞 谢先军

    朱沉静, 李俊霞, 谢先军, 2021. 大同盆地地下水中碳硫同位素组成特征及其对碘迁移富集的指示. 地球科学, 46(12): 4480-4491. doi: 10.3799/dqkx.2021.090
    引用本文: 朱沉静, 李俊霞, 谢先军, 2021. 大同盆地地下水中碳硫同位素组成特征及其对碘迁移富集的指示. 地球科学, 46(12): 4480-4491. doi: 10.3799/dqkx.2021.090
    Zhu Chenjing, Li Junxia, Xie Xianjun, 2021. Carbon and Sulfur Isotopic Features and Its Implications for Iodine Mobilization in Groundwater System at Datong Basin, Northern China. Earth Science, 46(12): 4480-4491. doi: 10.3799/dqkx.2021.090
    Citation: Zhu Chenjing, Li Junxia, Xie Xianjun, 2021. Carbon and Sulfur Isotopic Features and Its Implications for Iodine Mobilization in Groundwater System at Datong Basin, Northern China. Earth Science, 46(12): 4480-4491. doi: 10.3799/dqkx.2021.090

    大同盆地地下水中碳硫同位素组成特征及其对碘迁移富集的指示

    doi: 10.3799/dqkx.2021.090
    基金项目: 

    国家自然科学基金项目 42020104005

    国家自然科学基金项目 41502230

    详细信息
      作者简介:

      朱沉静(1997-), 硕士研究生, 主要从事地下水污染与防治等方面的研究工作.ORCID: 0000-0002-3234-4153.E-mail: chenj_zhu@cug.edu.cn

      通讯作者:

      李俊霞, ORCID: 0000-0001-5191-3166.E-mail: jxli@cug.edu.cn

    • 中图分类号: P641

    Carbon and Sulfur Isotopic Features and Its Implications for Iodine Mobilization in Groundwater System at Datong Basin, Northern China

    • 摘要: 为深入探究地下水系统中影响碘迁移转化的主控水文生物地球化学过程,对大同盆地典型高碘地下水区完成样品采集,分析地下水样品基础理化性质及碳硫同位素组成特征.结果表明,大同盆地地下水碘含量变化范围为14.40~1 030.00 μg/L,高碘地下水(I>100 μg/L)主要分布在盆地中心排泄区.地下水中溶解性无机碳的δ13CDIC值变化范围为-12.11‰~-9.79‰,硫酸盐δ34SSO4值介于4.04‰~16.63‰.δ13CDIC和DOC之间存在较明显的正相关关系,表明有机质的微生物降解过程是区域地下水无机碳的重要来源之一.同时,δ13CDIC与δ34SSO4一定的负相关关系表明硫酸盐是有机质微生物降解过程中潜在电子受体之一,且地下水水环境以偏还原环境为主.高碘地下水表现出低δ13CDIC、高δ34SSO4的同位素特征,表明有机质的微生物降解过程是控制地下水中碘迁移释放的主要过程之一,与该过程相伴而生的碘形态转化进一步促使碘以碘离子的形式在偏还原的地下水环境中发生富集.

       

    • 图  1  大同盆地研究区采样点位置与地下水碘含量概况

      绿色线表示河流

      Fig.  1.  Sampling location of groundwater samples from Datong basin

      图  2  Piper三线图

      Fig.  2.  Piper diagram of groundwater samples from Datong basin

      图  3  地下水碘含量垂向分布图

      Fig.  3.  Depth profile of iodine concentrations in groundwater samples

      图  4  地下水DOC与δ13CDIC(a)、HCO3-(b)关系图

      Fig.  4.  The plots of groundwater DOC vs. δ13CDIC(a), DOC vs. HCO3-(b)

      图  5  地下水δ34S$ {}_{\mathrm{S}{\mathrm{O}}_{4}} $与SO42-/ Cl-(a)、δ13CDIC (b)关系图

      Fig.  5.  The plots of groundwater δ34S$ {}_{\mathrm{S}{\mathrm{O}}_{4}} $ vs. SO42-/Cl-(a), δ34S$ {}_{\mathrm{S}{\mathrm{O}}_{4}} $ vs. δ13CDIC (b)

      图  6  碘含量I与δ13CDIC(a)、δ34S$ {}_{\mathrm{S}{\mathrm{O}}_{4}} $(b)关系图

      Fig.  6.  The plots of groundwater iodine I vs. δ13CDIC(a), I vs. δ34S$ {}_{\mathrm{S}{\mathrm{O}}_{4}} $(b)

      表  1  研究区地下水主要水化学组分统计

      Table  1.   Statistics of groundwater chemistry compositions in the study area

      样品编号 深度(m) 总碘(μg/L) δ13CDIC (‰) δ34S$ {}_{\mathrm{S}{\mathrm{O}}_{4}} $ (‰) pH Eh (mV) 方解石SI 白云石SI 石膏SI DOC (mg/L) Fetot (mg/L) K++Na+ (mg/L) Ca2+ (mg/L) Mg2+ (mg/L) HCO3- (mg/L) SO42- (mg/L) Cl- (mg/L) EC (μS/cm)
      Ⅰ区 DT13-01 - 17.50 -9.79 4.41 8.59 37.70 1.19 2.19 -1.61 3.15 2.17 13.57 68.22 13.39 221.2 110.7 11.46 537
      DT13-02 - 75.90 -10.75 10.12 7.30 -34.60 0.65 1.09 -0.83 2.67 1.59 30.59 221.5 61.62 543.2 404.4 123.4 1 542
      DT13-22 30 21.10 -12.11 4.30 7.81 12.90 0.46 1.02 -1.53 3.09 0.04 35.12 104.5 53.51 316.3 137.8 170.8 1 046
      DT13-23 60 14.40 -11.77 4.04 7.75 -10.10 0.55 1.13 -2.13 1.53 0.04 22.29 58.21 27.14 456.3 44.32 18.14 540
      Ⅱ区 DT13-08 60 1 030 -7.59 9.42 7.44 -16.40 0.51 2.09 -1.07 15.6 0.07 1 016 124.8 633.9 878.7 1 677 2 398 9 231
      DT13-13 48 201.0 -14.20 11.21 7.88 -53.00 0.68 1.82 -1.91 4.52 0.48 400.8 30.13 39.27 1 014 246.3 178.0 2 151
      DT13-14 50 96.10 -13.13 11.15 7.76 -11.00 0.64 1.63 -1.74 3.43 0.22 185.9 49.66 48.65 755.8 191.3 104.4 1 340
      DT13-15 70 637.0 -12.36 11.09 8.01 -138.4 0.73 2.15 -1.64 4.36 0.90 516.3 37.11 80.01 804.2 514.2 501.5 3 117
      DT13-16 18 50.10 -10.37 8.96 8.13 -33.40 0.56 1.92 -2.07 7.29 0.17 561.6 14.30 39.27 1 093 447.9 313.2 3 009
      DT13-21 25 151.0 -13.26 6.89 8.03 29.30 0.63 1.89 -2.33 2.79 0.48 156.1 26.94 51.37 641.7 86.41 105.0 1 200
      DT13-24 30 17.40 -9.70 12.09 7.26 46.30 0.32 1.26 -1.41 4.43 0.02 190.2 95.42 177.4 654.8 383.9 358.9 2 649
      DT13-25 - 158.0 -8.61 16.63 8.93 16.50 0.95 2.54 -1.55 2.02 0.07 545.0 25.82 49.55 298.9 783.8 566.1 3 034
      Ⅲ区 DT13-04 75 934.0 -16.93 - 8.30 -102.0 0.20 1.43 -4.11 38.1 0.36 366.7 3.30 15.11 1 305 12.01 170.8 1 689
      DT13-10 19 479.0 -13.60 13.28 8.28 -2.70 0.52 1.71 -2.58 7.56 0.03 418.7 8.23 16.57 1 230 178.8 173.0 1 940
      DT13-12 52 151.0 -9.09 - 8.53 -38.50 0.28 1.66 -4.06 27.0 0.28 297.6 2.86 14.81 1 080 13.22 112.6 1 505
      DT13-17 20 143.0 -10.77 13.01 7.28 28.10 0.66 1.71 -0.13 12.9 0.09 1 066 453.6 514.9 570.7 4 206 1 142 8 812
      DT13-19 35 31.10 -13.90 11.35 7.70 72.50 0.44 1.66 -2.13 3.70 0.02 106.5 48.97 131.7 513.9 113.7 194.9 1 715
      DT13-26 16 125.0 -8.42 11.66 8.10 3.80 0.45 1.53 -2.15 2.22 0.05 152.0 23.08 43.70 383.1 148.4 114.7 1 164
      DT13-27 30 439.0 -12.97 15.48 7.63 -88.70 0.87 2.61 -0.56 17.2 - 1 974 227.9 750.9 755.4 3 521 3 301 10 339
      DT13-29 - 18.80 -7.36 - 8.29 - 0.42 1.68 -2.48 2.71 - 75.53 13.58 41.22 409.3 101.7 24.07 838
      DT13-30 28 30.90 -7.85 - 7.91 -35.60 0.31 1.15 -2.51 2.19 0.06 156.8 33.71 50.45 301.5 47.72 144.1 1 409
      注:-.水样的浓度低于检测限;SI.正值表示处于过饱和状态,负值表示处于未饱和状态.
      下载: 导出CSV
    • [1] Aucour, A.M., Sheppard, S.M.F., Guyomar, O., et al., 1999. Use of 13C to Trace Origin and Cycling of Inorganic Carbon in the Rhône River System. Chemical Geology, 159(1-4): 87-105. https://doi.org/10.1016/s0009-2541(99)00035-2
      [2] Barth, J.A.C., Cronin, A.A., Dunlop, J., et al., 2003. Influence of Carbonates on the Riverine Carbon Cycle in an Anthropogenically Dominated Catchment Basin: Evidence from Major Elements and Stable Carbon Isotopes in the Lagan River (N. Ireland). Chemical Geology, 200(3-4): 203-216. https://doi.org/10.1016/s0009-2541(03)00193-1
      [3] Cerling, T.E., Solomon, D.K., Quade, J., et al., 1991. On the Isotopic Composition of Carbon in Soil Carbon Dioxide. Pergamon, Geochimica et Cosmochimica Acta, 55(11): 3403-3405. https://doi.org/10.1016/0016-7037(91)90498-t
      [4] Clark, I.D., Fritz, P., 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, New York. https://doi.org/10.1201/9781482242911
      [5] Dai, J.L., Zhang, M., Hu, Q.H., et al., 2009. Adsorption and Desorption of Iodine by Various Chinese Soils: Ⅱ. Iodide and Iodate. Geoderma, 153(1-2): 130-135. https://doi.org/10.1016/j.geoderma.2009.07.020
      [6] Duan, L., Wang., W.K., Sun, Y.B., et al., 2020. Hydrogeochemical Characteristics and Health Effects of Iodine in Groundwater in Wei River Basin. Exposure and Health, 12(3): 369-383. https://doi.org/10.1007/s12403-020-00348-7
      [7] Guo, H.M., Wang, Y.X., 2005. Geochemical Characteristics of Shallow Groundwater in Datong Basin, Northwestern China. Journal of Geochemical Exploration, 87(3): 109-120. https://doi.org/10.1016/j.gexplo.2005.08.002
      [8] Hou, X.L., Hansen, V., Aldahan, A., et al., 2009. A Review on Speciation of Iodine-129 in the Environmental and Biological Samples. Analytica Chimica Acta, 632(2): 181-196. https://doi.org/10.1016/j.aca.2008.11.013
      [9] Hansen, V., Roos, P., Aldahan, A., et al., 2011. Partition of Iodine (129I and 127I) Isotopes in Soils and Marine Sediments. Journal of Environmental Radioactivity, 102(12): 1096-1104. https://doi.org/10.1016/j.jenvrad.2011.07.005
      [10] Kao, Y.H., Liu, C.W., Wang, P.L., et al., 2015. Effect of Sulfidogenesis Cycling on the Biogeochemical Process in Arsenic-Enriched Aquifers in the Lanyang Plain of Taiwan: Evidence from a Sulfur Isotope Study. Journal of Hydrology, 528: 523-536. https://doi.org/10.1016/j.jhydrol.2015.06.033
      [11] Li, J.X., Su, C.L., Xie, X.J., et al., 2010. Application of Multivariate Statistical Analysis to Research the Environment of Groundwater: A Case Study at Datong Basin, Northern China. Bulletin of Geological Science and Technology, 29(6): 94-100(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201006016.htm
      [12] Li, J.X., Wang, Y.X., Xie, X.J., et al., 2013. Hydrogeochemistry of High Iodine Groundwater: A Case Study at the Datong Basin, Northern China. Environmental Science. Processes & Impacts, 15(4): 848-859. https://doi.org/10.1039/c3em30841c
      [13] Li, J.X., Wang, Y.T., Xue, X.B., et al., 2020. Mechanistic Insights into Iodine Enrichment in Groundwater during the Transformation of Iron Minerals in Aquifer Sediments. Science of the Total Environment, 745: 140922. https://doi.org/10.1016/j.scitotenv.2020.140922
      [14] Li, J.X., Zhou, H.L., Wang, Y.X., et al., 2017. Sorption and Speciation of Iodine in Groundwater System: The Roles of Organic Matter and Organic-Mineral Complexes. Journal of Contaminant Hydrology, 201: 39-47. https://doi.org/10.1016/j.jconhyd.2017.04.008
      [15] Li, X., Tang, C.Y., Cao, Y.J., et al., 2019. Carbon, Nitrogen and Sulfur Isotopic Features and the Associated Geochemical Processes in a Coastal Aquifer System of the Pearl River Delta, China. Journal of Hydrology, 575: 986-998. https://doi.org/10.1016/j.jhydrol.2019.05.092
      [16] Li, X.Q., Zhou, A.G., Gan, Y.Q., et al., 2011. Controls on the δ34S and δ18O of Dissolved Sulfate in the Quaternary Aquifers of the North China Plain. Journal of Hydrology, 400(3-4): 312-322. https://doi.org/10.1016/j.jhydrol.2011.01.034
      [17] Nagata, T., Fukushi, K., 2010. Prediction of Iodate Adsorption and Surface Speciation on Oxides by Surface Complexation Modeling. Geochimica et Cosmochimica Acta, 74(21): 6000-6013. https://doi.org/10.1016/j.gca.2010.08.002
      [18] Otosaka, S., Schwehr, K.A., Kaplan, D.L., et al., 2011. Factors Controlling Mobility of 127I and 129I Species in an Acidic Groundwater Plume at the Savannah River Site. Science of the Total Environment, 409(19): 3857-3865. https://doi.org/10.1016/j.scitotenv.2011.05.018
      [19] Qian, K., Li, J.X., Xie, X.J., et al., 2017. Organic and Inorganic Colloids Impacting Total Iodine Behavior in Groundwater from the Datong Basin, China. Science of the Total Environment, 601-602: 380-390. https://doi.org/10.1016/j.scitotenv.2017.05.127
      [20] Robinove, C.J., Langford, R.H., Brookhart, J.W., 1958. Saline-Water Resources of North Dakota. U.S. Government Printing Office, Washington, D.C., 1428. https://doi.org/10.3133/wsp1428
      [21] Su, C.L., Wang, Y.X., 2008. A Study of Zonality of Hydrochemistry of Groundwater in Unconsolidated Sediments in Datong Basin. Hydrogeology & Engineering Geology, 35(1): 83-89(in Chinese with English abstract). http://www.researchgate.net/publication/288911610_A_study_of_zonality_of_hydrochemistry_of_groundwater_in_unconsolidated_sediments_in_Datong_basin
      [22] Schwehr, K.A., Santschi, P.H., Kaplan, D.I., et al., 2009. Organo-Iodine Formation in Soils and Aquifer Sediments at Ambient Concentrations. Environmental Science & Technology, 43(19): 7258-7264. https://doi.org/10.1021/es900795k
      [23] Shimamoto, Y.S., Takahashi, Y., Terada, Y., et al., 2011. Formation of Organic Iodine Supplied as Iodide in a Soil-Water System in Chiba, Japan. Environmental Science & Technology, 45(6): 2086-2092. https://doi.org/10.1021/es1032162
      [24] Truesdell, A.H., Hulston, J.R., 1980. Isotopic Evidence on Environments of Geothermal Systems, Handbook of Environmental Isotope Geochemistry, The Terrestrial Environment, A. 1: 179-226. https://doi.org/10.1016/B978-0-444-41780-0.50011-0
      [25] Tuttle, M.L.W., Breit, G.N., Cozzarelli, I.M., 2009. Processes Affecting δ34S and δ18O Values of Dissolved Sulfate in Alluvium along the Canadian River, Central Oklahoma, USA. Chemical Geology, 265(3-4): 455-467. https://doi.org/10.1016/j.chemgeo.2009.05.009
      [26] Wachniew, P., 2006. Isotopic Composition of Dissolved Inorganic Carbon in a Large Polluted River: The Vistula, Poland. Chemical Geology, 233(3-4): 293-308. https://doi.org/10.1016/j.chemgeo.2006.03.012
      [27] Wang, M.Y., Zhang, S., Li, X.Z., 1983. Iodine in Environment and Endemic Goiter. Acta Scientiae Circumstantiae, (4): 283-288(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXX198304000.htm
      [28] Wang, Y.X., Li, J.X., Ma, T., et al., 2020. Genesis of Geogenic Contaminated Groundwater: As, F and I. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643389.2020.1807452
      [29] Wang, Y.X., Shvartsev, S.L., Su, C.L., 2009. Genesis of Arsenic/Fluoride-Enriched Soda Water: A Case Study at Datong, Northern China. Applied Geochemistry, 24(4): 641-649. https://doi.org/10.1016/j.apgeochem.2008.12.015
      [30] Wang, Y.X., Xie, X.J., Johnson, T.M., et al., 2014. Coupled Iron, Sulfur and Carbon Isotope Evidences for Arsenic Enrichment in Groundwater. Journal of Hydrology, 519: 414-422. https://doi.org/10.1016/j.jhydrol.2014.07.028
      [31] Wang, Y.T., Li, J.X., Xue, X.B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320(in Chinese with English abstract). http://www.mdpi.com/2073-4441/13/19/2724
      [32] Wen, J., Tang, C.Y., Cao, Y.J., et al., 2020. Understanding the Inorganic Carbon Transport and Carbon Dioxide Evasion in Groundwater with Multiple Sulfate Sources during Different Seasons Using Isotope Records. Science of the Total Environment, 710: 134480. https://doi.org/10.1016/j.scitotenv.2019.134480
      [33] Xie, X.J., Ellis, A., Wang, Y.X., et al., 2009. Geochemistry of Redox-Sensitive Elements and Sulfur Isotopes in the High Arsenic Groundwater System of Datong Basin, China. Science of the Total Environment, 407(12): 3823-3835. https://doi.org/10.1016/j.scitotenv.2009.01.041
      [34] Xie, X.J., Wang, Y.X., Ellis, A., et al., 2013. Multiple Isotope (O, S and C) Approach Elucidates the Enrichment of Arsenic in the Groundwater from the Datong Basin, Northern China. Journal of Hydrology, 498: 103-112. https://doi.org/10.1016/j.jhydrol.2013.06.024
      [35] Xu, C., Zhong, J.Y., Hatcher, P.G., et al., 2012. Molecular Environment of Stable Iodine and Radioiodine(I-129) in Natural Organic Matter: Evidence Inferred from NMR and Binding Experiments at Environmentally Relevant Concentrations. Geochimica et Cosmochimica Acta, 97: 166-182. https://doi.org/10.1016/j.gca.2012.08.030
      [36] Xue, X.B., Li, J.X., Xie, X.J., et al., 2019. Effects of Depositional Environment and Organic Matter Degradation on the Enrichment and Mobilization of Iodine in the Groundwater of the North China Plain. Science of the Total Environment, 686: 50-62. https://doi.org/10.1016/j.scitotenv.2019.05.391
      [37] Xue, J.K., Deng, Y.M., Du, Y., et al., 2021. Molecular Characterization of Dissolved Organic Matter (DOM) in Shallow Aquifer along the Middle Reaches of Yangtze River and Its Implications for Iodine Enrichment. Earth Science, 42(2): 298-306(in Chinese with English abstract).
      [38] Yuan, F.S., Mayer, B., 2012. Chemical and Isotopic Evaluation of Sulfur Sources and Cycling in the Pecos River, New Mexico, USA. Chemical Geology, 291: 13-22. https://doi.org/10.1016/j.chemgeo.2011.11.014
      [39] Yang, Y.J., Yuan, X.F., Deng, Y.M., et al., 2020. Seasonal Dynamics of Dissolved Organic Matter in High Arsenic Shallow Groundwater Systems. Journal of Hydrology, 589: 125120. https://doi.org/10.1016/j.jhydrol.2020.125120
      [40] Zhou, H.L., 2018. Study on the Migration and Enrichment of Iodine and the Impact of Exogenous Organic Carbon in the Groundwater System of Datong Basin, China (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      [41] Zhang, Y.J., Chen, L.N., Cao, S.W., et al., 2021. Iodine Enrichment and the Underlying Mechanism in Deep Groundwater in the Cangzhou Region, North China. Environmental Science and Pollution Research, 28(9): 10552-10563. https://doi.org/10.1007/s11356-020-11159-3
      [42] 李俊霞, 苏春利, 谢先军, 等, 2010. 多元统计方法在地下水环境研究中的应用: 以山西大同盆地为例. 地质科技情报, 29(6): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201006016.htm
      [43] 苏春利, 王焰新, 2008. 大同盆地孔隙地下水化学场的分带规律性研究. 水文地质工程地质, 35(1): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200801021.htm
      [44] 王明远, 章申, 李象志, 1983. 环境中的碘与地方性甲状腺肿. 环境科学学报, 3(4): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX198304000.htm
      [45] 王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320. doi: 10.3799/dqkx.2019.261
      [46] 薛江凯, 邓娅敏, 杜尧, 等, 2021. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示. 地球科学, 42(2): 298-306. doi: 10.3799/dqkx.2020.398
      [47] 周海玲, 2018. 大同盆地地下水系统中碘的迁移富集过程和外源有机碳输入的影响(硕士学位论文). 武汉: 中国地质大学.
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  416
    • HTML全文浏览量:  84
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-04-08
    • 刊出日期:  2021-12-15

    目录

      /

      返回文章
      返回