Dating Metallogenic Age of Jinding Pb-Zn Deposit in Yunnan: Evidence from Re-Os Isotope of Bitumen
-
摘要: MVT型铅锌矿由于成矿温度低,目前没有发现十分合适的定年矿物,此外,由于多期成矿作用叠加以及成矿物质存在多元混合,严重制约了对此类矿床成矿年代学研究.前人对云南金顶超大型MVT铅锌矿床成因、物质来源、成矿条件等方面研究取得了重要成果,但对其形成时代各有所云,至今仍未定论.笔者在总结了大量前人研究成果的基础上,通过对跑马坪和架崖山矿段沥青样品开展Re-Os同位素定年研究,表明古油藏形成于59.1 Ma,金顶铅锌矿床的形成时代可能为27.7 Ma.早期的油气藏为后期铅锌矿的形成提供了十分重要的条件,穹隆构造为金属成矿提供了储矿空间,由于遭受构造及热液作用的破坏,油气裂解释放大量的还原性物质,为Pb、Zn等成矿物质迁移、富集、沉淀提供了重要载体,进而形成了金顶超大型铅锌矿床.研究结果表明,沥青Re-Os同位素不仅能够为MVT型铅锌矿床成矿年龄的厘定提供一种有效的技术途径,同时还能够为油气藏的生成、破坏等事件发生时代提供有利依据.Abstract: Due to the low mineralization temperature, no suitable dating minerals have been found in the MVT type lead-zinc deposit at present. In addition, due to the superposition of multi-stage mineralization and the existence of multiple mixing of ore-forming materials, it seriously restricted the study on mineralization chronology of this type of deposit. Some achievements have been made on the genesis, material source and metallogenic conditions of the super-large MVT lead-zinc deposit in Jinding, Yunnan. However, the age of deposit formation is still uncertain. On the basis of summarizing a large number of previous study results and combining the Re-Os isotopic dating results of fresh bitumen samples taken from Paomaping and Jiayashan ore sections, it shows that the ancient oil reservoirs was formed at 59.1 Ma, and the formation age of Jinding lead-zinc deposit might be 27.7 Ma. Ancient reservoirs are of greatly important condition on formation of lead-zinc mine, the tectonic domes provided storage space for metal mineralization. On account of the structure and hydrothermal process in damage, cracking of oil and gas meantime release large amounts of reducing substances, which provides important carrier for Pb, zinc and other ore-forming materials migration, enrichment and precipitation, thus formed the Jinding super-large Pb-Zn deposit. The results confirm that asphalt Re-Os isotope can not only provide an effective technical way to determine the metallogenic age of MVT type lead-zinc deposit, but also provide a favorable basis for the generation and destruction age of the oil and gas reservoirs.
-
Key words:
- MVT type lead-zinc ore /
- Re-Os /
- metallogenic age /
- dynamic background /
- bitumen /
- deposits
-
图 1 西南三江(南段)地区大地构造图
Ⅰ.扬子陆块: Ⅰ1.龙门山逆冲带, Ⅰ2.巴颜喀拉前陆盆地, Ⅰ3.雅江残余盆地, Ⅰ4.盐源-丽江陆缘坳陷带, Ⅰ5.楚雄前陆盆地; Ⅱ.三江多岛弧盆系: Ⅱ1.甘孜-理塘结合带, Ⅱ2.徳格-乡城岛弧(义敦岛弧): Ⅱ2-1.雀儿山.稻城外弧带, Ⅱ2-2.结古-义敦弧后盆地带, Ⅱ3.中咱-香格里拉地块; Ⅱ4.金沙江-哀牢山结合带: Ⅱ4-1.金沙江蛇绿混杂带, Ⅱ4-2.哀牢山蛇绿混杂带, Ⅱ5.昌都-普洱地块: Ⅱ5-1.江达-几家顶-维西陆缘火山弧, Ⅱ5-2.昌都-芒康双向弧后前陆盆地, Ⅱ5-3.杂多-东达山陆缘火山弧, Ⅱ5-4.墨江-绿春陆缘火山弧, Ⅱ5-5.兰坪-普洱双向弧后前陆盆地, Ⅱ5-6.云县-景洪晚陆缘火山弧; Ⅱ6.澜沧江结合带; Ⅱ7.左贡地块; Ⅱ8.临沧岩浆弧; Ⅱ9.班公湖-怒江-昌宁-孟连结合带: Ⅱ9-1.班公湖-怒江结合带, Ⅱ9-2.昌宁-孟连结合带, Ⅱ9-3.嘉玉桥残余弧带, Ⅱ10.保山地块: Ⅲ.冈底斯-高黎贡山-腾冲弧盆系: Ⅲ1.沙丁.洛隆弧前盆地, Ⅲ2.波密-腾冲岩浆弧, Ⅲ3.下察隅岩浆弧, Ⅲ4.雅鲁藏布江结合带; 据李文昌等(2014)改编
Fig. 1. The geotectonic zoning map of the "three rivers" (south section) area in the Southwest China
图 2 金顶铅锌矿床矿区地质图
1.逆冲推覆断层; 2.正断层; 3.性质不明断层; 4.地层界限; 5.不整合面; 6.岩层产状; 7.倒转岩层产状; 8.Pb-Zn矿体; 9.勘探线及编号; 10.采样位置; Q.第四系; E2g.始新统果郎组; E1y.古新统云龙组; K1h.下白垩统虎头寺组; K1j.下白垩统景星族; J2h.中侏罗统花开佐组; T3m.上三叠统麦初箐组; T3w1.上三叠统挖鲁八组; T3s.上三叠统三合洞组.图据云南地质三队, 1989. 云南省兰坪县金顶铅锌矿详细勘探地质报告.云南省地质矿产局, 昆明
Fig. 2. Geological map of the Jinding lead-zinc ore district
图 7 金顶铅锌矿床穹隆构造剖面图
E1yb.云龙组上段角砾岩和砂岩; E1ya.云龙组下段粉砂泥岩; K1j.下白垩统景星组粗砂岩和岩屑石英砂岩; J2h.中侏罗统花开左组粉砂岩和泥岩; T3m.上三叠统麦初箐组含膏盐粉砂一细砂岩; T3s.上三叠统三合洞组灰岩夹白云岩; 1.角砾岩和砂岩; 2.粉砂质泥岩; 3.石英砂岩及粉砂岩; 4.粉砂岩和细砂岩; 5.粉砂岩和泥岩; 6.灰岩; 7.泥质灰岩; 8.金顶穹隆区的外来系统的逆冲推覆界面; 9.性质不明断层; 10.地层界线; 11.新近纪中低温热液矿床; 据曾普胜等(2016)改编
Fig. 7. Dome structure profile of Jinding lead-zinc deposit
表 1 云南金顶铅锌矿沥青Re-Os同位素数据
Table 1. Re-Os isotope data of bitumen from Jinding lead-zinc deposit in Yunnan
原样名 样重(g) Re (ng/g) 普Os(ng/g) 187Os(ng/g) 187Re/188Os 187Os/188Os 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 PMP-2-3 0.236 1 192 9.74 1.146 0 0.013 0 1.419 0 0.014 0 5 025 71 9.514 0.107 JYS-007-2 0.199 134.5 1.38 0.206 7 0.005 9 0.204 9 0.003 4 3 145 95 7.621 0.239 PMP-1-5 0.175 41.92 2.46 0.126 8 0.005 9 0.097 3 0.001 1 1 757 132 5.895 0.276 PMP-2-2 0.180 1 313 12.21 3.297 0 0.055 0 2.955 0 0.034 0 1 923 37 6.612 0.117 JYS-012-1 0.078 359.0 3.33 0.910 7 0.009 4 0.776 9 0.008 1 1 904 26 6.556 0.069 PMP-1 0.200 377.5 3.25 0.053 7 0.001 0 0.265 5 0.002 9 33 948 695 37.990 0.720 PMP-1-1 0.161 388.6 3.12 0.065 4 0.002 2 0.280 8 0.003 2 28 696 993 32.980 1.120 JYS-012-2 0.222 176.4 1.33 1.092 0 0.013 0 0.823 3 0.008 3 780.3 11.1 5.793 0.069 JYS-012-3 0.204 289.8 2.80 0.644 8 0.006 2 0.541 1 0.004 8 2 171 29 6.449 0.053 JYS-2 0.266 23.22 0.20 0.059 5 0.000 4 0.048 4 0.000 4 1 885 21 6.253 0.021 JYS-007 0.203 153.4 1.34 0.200 3 0.002 4 0.185 8 0.002 1 3 698 55 7.126 0.094 JYS007-3 0.218 82.1 0.60 0.232 4 0.002 1 0.187 3 0.001 8 1 707 20 6.193 0.050 表 2 金顶铅锌矿成矿年龄统计
Table 2. Metallogenic ages of Jinding lead-zinc deposit
定年方法 测试对象 年龄(Ma) 数据来源 裂变径迹 磷灰石 25.8~35.9 李小明等, 2000 Re-Os 黄铁矿 72.0±4.4 薛春纪等, 2003 锆石U-Pb 矿石和砂质胶结物 225.0±7.8(最年轻) 修群业等, 2006a 花粉分析 含泥质细砂岩 晚三叠世 修群业等, 2006b 铅同位素 黄铁矿、铅锌矿 235 修群业等, 2006b Rb-Sr 黄铁矿和闪锌矿 228±24 修群业, 2008 Re-Os 黄铁矿 65±10 唐永永等, 2013 Re-Os 沥青 68±5 高炳宇等, 2012 铅同位素 方铅矿、闪锌矿、黄铁矿 181~229 唐永永等, 2013 铅同位素 方铅矿、闪锌矿、黄铁矿 119.1~229.9 宋祥峰, 2015 -
[1] Anderson, G.M., 1991. Organic Maturation and Ore Precipitation in Southeast Missouri. Economic Geology, 86(5): 909-926. https://doi.org/10.2113/gsecongeo.86.5.909 [2] Basuki, N.I., Spooner, E.T.C., 2002. A Review of Fluid Inclusion Temperatures and Salinities in Mississippi Valley-Type Zn-Pb Deposits: Identifying Thresholds for Metal Transport. Exploration and Mining Geology, 11(1-4): 1-17. https://doi.org/10.2113/11.1-4.1 [3] Deng, J., Yang, L.Q., Wang, C.M., 2011. Research Advances of Superimposed Orogenesis and Metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2501-2509(in Chinese with English abstract). [4] Dong, S.L., Zhang, Z., Li, G.M., et al., 2019. Re-Os Dating of Molybdenite from Gangqiongla Quartz-Vein Type Mo-Cu Deposit in Tibet and Its Geological Significance. Earth Science, 44(7): 2265-2274(in Chinese with English abstract). [5] Fu, X.G., Lin, L., Pang, Y.C., et al., 2006. The Characteristics of Organic Matter and Its Mineralization in the Jinding Lead-Zinc Deposit, Yunnan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 33(6): 621-630(in Chinese with English abstract). [6] Gao, B.Y., Xue, C.J., Chi, G.X., et al., 2012. Re-Os Dating of Bitumen in the Giant Jinding Zn-Pb Deposit, Yunnan and Its Geological Significance. Acta Petrologica Sinica, 28(5): 1561-1567(in Chinese with English abstract). [7] Guo, B.J., Mao, J.W., Li, H.M., et al., 2006. Re-Os Dating of the Molybdenite from the Qiushuwan Cu-Mo Deposit in the East Qinling and Its Geological Significance. Acta Petrologica Sinica, 22(9): 2341-2348(in Chinese with English abstract). [8] Hou, Z.Q., Qu, X.M., Wang, S.X., et al., 2003. The Molybdenite Re-Os Isotopic Dating of the Tibetan Plateau Gangdise Porphyry Copper Belt: Mineralization Time Limit and Application of Dynamic Background. Science in China (Series D), 33(7): 609-618(in Chinese). [9] Hou, Z.Q., Wang, E.Q., Mo, X.X., et al., 2008. Orogeny and Related Metallogenesis by Continental Collision. Geological Publishing House, Beijing(in Chinese). [10] Hu, G.Y., Li, Y.H., Zeng, P.S., 2013. The Role of Halosalt in Mineralization of the Jinding Pb-Zn Deposit: Evidence from Sulfur and Strontium Isotopic Compositions. Acta Geologica Sinica, 87(11): 1694-1702(in Chinese with English abstract). [11] Huang, Y., Sun, X.M., Shi, G.Y., et al., 2015. Re-Os Dating of Sulphides from the Yushui Cu-Polymetallic Deposit in Eastern Guangdong Province, South China. Ore Geology Reviews, 70: 281-289. https://doi.org/10.1016/j.oregeorev.2015.04.018 [12] Jiang, S.Y., Yang, J.H., Zhao, K.D., et al., 2000. Re-Os Isotope Tracer and Dating Methods in Ore Deposits Research. Journal of Nanjing University (Natural Sciences), 36(6): 669-677(in Chinese with English abstract). [13] Jin, X.D., Li, W.J., Wu, H.Y., et al., 2010. Development of Re-Os Isotopic Dating Analytical Technique and Determination Know-How on ICP-MS Precise Dating for Molybdenite. Acta Petrologica Sinica, 26(5): 1617-1624(in Chinese with English abstract). [14] Leach, D.L., Bradley, D., Lewchuk, M.T., et al., 2001. Mississippi Valley-Type Lead-Zinc Deposits through Geological Time: Implications from Recent Age-Dating Research. Mineralium Deposita, 36(8): 711-740. https://doi.org/10.1007/s001260100208 [15] Leach, D.L., Sangster, D.F., 1993. Mississippi Valley-Type Lead-Zinc Deposits. Geological Association of Canada Special Paper, 40(3): 108-117. [16] Leach, D.L., Sangster, D.F., Kelley, K.D., et al., 2005. Sedement-Hosted Lead-Zinc Deposits: A Global Perspective. Economic Geology, 100(Anniversary Volume): 561-607. [17] Li, C., Pei, H.X., Wang, D.H., et al., 2016. Age and Source Constraints for Kongxintou Copper-Molybdenum Deposit Shandong from Re-Os Isotope in Molybdenite and Chalcopyrite. Acta Geologica Sinica, 90(2): 240-249(in Chinese with English abstract). [18] Li, C., Qu, W.J., Du, A.D., et al., 2012. Study on Re-Os Isotope in Molybdenite Containing Common Os. Acta Petrologica Sinica, 28(2): 702-708(in Chinese with English abstract). [19] Li, C., Qu, W.J., Zhou, L.M., et al., 2010. Rapid Separation of Osmium by Direct Distillation with Carius Tube. Rock and Mineral Analysis, 29(1): 14-16(in Chinese with English abstract). [20] Li, W.C., Xue, Y.X., Lu, Y.X., et al., 2014. Metallogenic Regularity for Porpyhry Copper Deposits in China and Its Prospecting Direction. Geological Publiishin House, Beijing(in Chinese). [21] Li, X.M., Tan, K.X., Gong, W.J., et al., 2000. Study on the Metallogenic Epoch of the Jinding Lead: Zinc Deposit with Apatite Fission Track Analysis. Geotectonica et Metallogenia, 24(3): 282-286(in Chinese with English abstract). [22] Li, X.Z., Liu, W.J., Wang, Y.Z., et al., 1999. Tectonic Evolution of the Tethys and Mineralization in the Sanjijsng Region, SW China. Geological Publishing House, Beijing(in Chinese). [23] Li, Y.H., Xie, G.Q., Duan, C., et al., 2013. Effect of Sulfate Evaporate Salt Layer over the Formation of Skarn-Type Iron Ores. Acta Geologica Sinica, 87(9): 1324-1334(in Chinese with English abstract). [24] Ludwig, K.R., 2003. Isoplot/Ex, A Geochronological Toolkit for Microsoft Excel, Version 3.00. Berkeley Geochronology Center, California. [25] Nier, A.O., 1940. A Mass Spectrometer for Routine Isotope Abundance Measurements. Review of Scientific Instruments, 11(7): 212-216. https://doi.org/10.1063/1.1751688 [26] Que, M.Y., Cheng, D.M., Zhang, L.S., et al., 1998. Copper Deposits in Lanping-Simao Basin. Geological Publishing House, Beijing(in Chinese). [27] Ren, S.L., Li, Y.H., Zeng, P.S., et al., 2018. Effect of Sulfate Evaporate Salt Layer in Mineralization of the Huize and Maoping Lead-Zinc Deposits in Yunnan: Evidence from Sulfur Isotope. Acta Geologica Sinica, 92(5): 1041-1055(in Chinese with English abstract). [28] Selby, D., Creaser, R.A., 2005. Direct Radiometric Dating of the Devonian-Mississippian Time-Scale Boundary Using the Re-Os Black Shale Geochronometer. Geology, 33(7): 545-548. https://doi.org/10.1130/g21324.1 [29] Selby, D., Creaser, R.A., Dewing, K., et al., 2005. Evaluation of Bitumen as a 187Re-187Os Geochronometer for Hydrocarbon Maturation and Migration: A Test Case from the Polaris MVT Deposit, Canada. Earth and Planetary Science Letters, 235(1-2): 1-15. https://doi.org/10.1016/j.epsl.2005.02.018 [30] Selby, D., Creaser, R.A., Fowler, M.G., 2007. Re-Os Elemental and Isotopic Systematics in Crude Oils. Geochimica et Cosmochimica Acta, 71(2): 378-386. https://doi.org/10.1016/j.gca.2006.09.005 [31] Shen, C.B., Ge, X., Bai, X.J., 2019. Re-Os Geochronology Constraints on the Neoproterozoic-Cambrian Hydrocarbon Accumulation in the Sichuan Basin. Earth Science, 44(3): 713-726(in Chinese with English abstract). [32] Shen, C.B., Liu, Z.Y., Xiao, F., et al., 2015. Advancements of the Research on Re-Os Isotope System in Petroleum System. Advances in Earth Science, 30(2): 187-195(in Chinese with English abstract). [33] Shen, C.B., Selby, D., Mei, L.F., et al., 2011. Advances in the Study of Re-Os Geochronology and Tracing of Hydrocarbon Generation and Accumulation. Journal of Mineralogy and Petrology, 31(4): 87-93(in Chinese with English abstract). [34] Song, X.F., 2015. Genesis Mechanism on Superimposed Mineralization by Mantle-Crust Mixture of Jinding Super-Large Pb-Zn Deposit in Western Yunnan, China (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract). [35] Song, Y.C., Hou, Z.Q., Yang, T.N., et al., 2011. Sediment-Hosted Himalayan Base Metal Deposits in Sanjiang Region: Characteristics and Genetic Types. Acta Petrologica et Mineralogica, 30(3): 355-380(in Chinese with English abstract). [36] Tang, J.X., Li, F.J., Li, Z.J., et al., 2010. Time Limit for Formation of Main Geological Bodies in Xiongcun Copper-Gold Deposit, Xietongmen County, Tibet: Evidence from Zircon U-Pb Ages and Re-Os Age of Molybdenite. Mineral Deposits, 29(3): 461-475(in Chinese with English abstract). [37] Tang, Y.Y., Bi, X.W., Wu, L.Y., et al., 2013. Re-Os Isotopic Dating of Pyrite from Jinding Zn-Pb Ore Deposit and Its Geological Significance. Acta Mineralogica Sinica, 33(3): 287-294(in Chinese with English abstract). [38] Wang, A.J., Cao, D.H., Gao, L., et al., 2009. A Probe into the Genesis of Jinding Super-Large Lead-Zinc Ore Deposit. Acta Geologica Sinica, 83(1): 43-54(in Chinese with English abstract). [39] Wang, C.M., Chen, J.Y., Yang, L.F., et al., 2017. Tectonic-Fluid-Mineral System in the Lanping Basin, Sanjiang Tethys. Acta Petrologica Sinica, 33(7): 1957-1977(in Chinese with English abstract). [40] Wang, C.M., Deng, J., Carranza, E.J.M., et al., 2014. Nature, Diversity and Temporal-Spatial Distributions of Sediment-Hosted Pb-Zn Deposits in China. Ore Geology Reviews, 56: 327-351. https://doi.org/10.1016/j.oregeorev.2013.06.004 [41] Wang, G.Z., Hu, R.Z., Wang, C.S., et al., 2001. Mineralization Geological Settiong of Jinding Superlarge Pb-Zn Deposit, Yunnan. Acta Mineralogica Sinica, 21(4): 571-577(in Chinese with English abstract). [42] Wang, X., Li, B., Xiang, Z.P., et al., 2020. Chemical Compositions of Sulfides in the Porphyry Cu Ores, Yangla Cu Deposit, Yunnan, China: Implication for Ore Genesis. Acta Geochimica, 39: 947-972. https://doi.org/10.1007/s11631-020-00433-3 [43] Xiu, Q.Y., 2008. Provenance Characteristics and Metallogenic Age of Jinding Deposit in Yunnan (Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract). [44] Xiu, Q.Y., Gao, L., Wang, A.J., et al., 2006a. Discovery of Paleoproterozoic Zircon SHRIMP Age from Jinding Deposit and Its Geological Implications. Acta Petrologica Sinica, 22(4): 1040-1048(in Chinese with English abstract). [45] Xiu, Q.Y., Wang, A.J., Gao, L., et al., 2006b. Discussion on the Geologic Time of Host Rocks of Jinding Superlarge Deposit and Its Geological Implications. Geological Survey and Research, 29(4): 294-302(in Chinese with English abstract). [46] Xue, C.J., Chen, Y.C., Wang, D.H., et al., 2003. Jinding and Baiyangping Deposits in NW Yunnan: Geology and He, Ne, Xe Isotopic Composition and Ore-Forming Time. Science in China (Series D), 33(4): 315-322(in Chinese). [47] Xue, C.J., Chen, Y.C., Yang, J.M., et al., 2002. Analysis of Ore-Forming Background and Tectonic System of Lanping Basin, Western Yunnan Province. Mineral Deposits, 21(1): 36-44(in Chinese with English abstract). [48] Xue, C.J., Gao, Y.B., Leach, D.L., 2009. Possible Former Oil-Gas Reservoir in the Giant Jinding Pb-Zn Deposit, Lanping, NW-Yunnan: The Role in the Ore Accumulation. Journal of Earth Sciences and Environment, 31(3): 221-229(in Chinese with English abstract). [49] Yang, T.N., Xue, C.D., Xin, D., et al., 2019. Paleotethyan Tectonic Evolution of the Sanjiang Orogenic Belt, SW China: Temporal and Spatial Distribution Pattern of Arc-Like Igneous Rocks. Acta Petrologica Sinica, 35(5): 1324-1340(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.05.02 [50] Yoshiro, Y., Yoshio, T., Hiromitsu, H., 2007. Comparison of Reductive Accumulation of Re and Os in Seawater-Sediment Systems. Geochimica et Cosmochimica Acta, 71: 3458-3475. doi: 10.1016/j.gca.2007.05.003 [51] Yu, J., 2016. The Mechanisms of Sulfate-Sulfide-Carbonate Intergrowth and Companion for the Paomaping Lead-Zinc Deposit of Jinding Orefield in Lanping, Northwestern Yunnan, SW China (Dissertation). Kunming University of Science and Technology, Kunming(in Chinese with English abstract). [52] Zeng, P.S., Li, H., Li, Y.H., et al., 2016. Asian Largest Lead-Zinc Ore Deposit: The Jinding Giant Pb-Zn Deposit by Three Stages Superimposed Mineralization. Acta Geologica Sinica, 90(9): 2384-2398(in Chinese with English abstract). [53] Zeng, R., Xue, C.J., Liu, S.W., et al., 2005. Formation Conditions of Jinding Giant Lead-Zinc Deposit. Journal of Earth Sciences and Enivronment, 27(2): 21-25(in Chinese with English abstract). [54] Zeng, Z.Y., Xue, C.D., Liu, J.K., 2020. Contribution of the Cretaceous Gypsum Sequence to Zinc-Lead Ore Formation: A Case Study of the Yunlong Formation at the Jinding Superlarge Zinc-Lead Deposit in Lanping Basin, Yunnan Province. Acta Geoscientica Sinica, 41(5): 723-738(in Chinese with English abstract). [55] Zhang, J.L., Chang, X.C., 2003. Geochemical Characteristics of Hydrocarbon-Bearing Area Pb-Zn Ore Deposits in Jinding and Their Metallogenic Role. Journal of Ocean University of Qingdao, 33(2): 264-274(in Chinese with English abstract). [56] Zhou, J.X., Xiang, Z.Z., Zhou, M.F., et al., 2018. The Giant Upper Yangtze Pb-Zn Province in SW China: Reviews, New Advances and a New Genetic Model. Journal of Asian Earth Sciences, 154: 280-315. https://doi.org/10.1016/j.jseaes.2017.12.032 [57] Zhou, J.Y., Wang, J.H., Horton, B.K., et al., 2011. The Closure of Paleogene Basins of East-Central Tibet in Response to Tectonic, Sedimentation, Magmatism and Paleoclimate. Acta Geologica Sinica, 85(2): 172-178(in Chinese with English abstract). [58] Zhu, C.W., Wen, H.J., Zhang, Y.X., et al., 2017. Cadmium Isotope Fractionation in the Fule Mississippi Valley-Type Deposit, Southwest China. Mineralium Deposita, 52(5): 675-686. https://doi.org/10.1007/s00126-016-0691-7 [59] Zhu, D.C., Zhu, L.D., Lin, L., et al., 2003. Organic Mineralization of Lead-Zinc Deposits in Devonian System, Xicheng Ore Field. Earth Science, 28(2): 201-208(in Chinese with English abstract). [60] 邓军, 杨立强, 王长明, 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 2501-2509. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109002.htm [61] 董随亮, 张志, 李光明, 等, 2019. 西藏岗穷拉石英脉型钼铜矿床辉钼矿Re-Os同位素定年及其地质意义. 地球科学, 44(7): 2265-2274. doi: 10.3799/dqkx.2019.099 [62] 付修根, 林丽, 庞艳春, 等, 2006. 云南金顶铅锌矿床中的有机质特征及成矿作用探讨. 成都理工大学学报(自然科学版), 33(6): 621-630. doi: 10.3969/j.issn.1671-9727.2006.06.013 [63] 高炳宇, 薛春纪, 池国祥, 等, 2012. 云南金顶超大型铅锌矿床沥青Re-Os法测年及地质意义. 岩石学报, 28(5): 1561-1567. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205020.htm [64] 郭保健, 毛景文, 李厚民, 等, 2006. 秦岭造山带秋树湾铜钼矿床辉钼矿Re-Os定年及其地质意义. 岩石学报, 22(9): 2341-2348. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609008.htm [65] 侯增谦, 曲晓明, 王淑贤, 等, 2003. 西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄: 成矿作用时限与动力学背景应用. 中国科学(D辑), 33(7): 609-618. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200307000.htm [66] 侯增谦, 王二七, 莫宣学, 等, 2008. 青藏高原碰撞造山与成矿作用. 北京: 地质出版社. [67] 胡古月, 李延河, 曾普胜, 2013. 膏盐在金顶铅锌矿成矿中的作用: 硫和锶同位素证据. 地质学报, 87(11): 1694-1702. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201311005.htm [68] 蒋少涌, 杨竞红, 赵葵东, 等, 2000. 金属矿床Re-Os同位素示踪与定年研究. 南京大学学报(自然科学), 36(6): 669-677. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200006001.htm [69] 靳新娣, 李文君, 吴华英, 等, 2010. Re-Os同位素定年方法进展及ICP-MS精确定年测试关键技术. 岩石学报, 26(5): 1617-1624. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005025.htm [70] 李超, 裴浩翔, 王登红, 等, 2016. 山东孔辛头铜钼矿成矿时代及物质来源: 来自黄铜矿、辉钼矿Re-Os同位素证据. 地质学报, 90(2): 240-249. doi: 10.3969/j.issn.0001-5717.2016.02.004 [71] 李超, 屈文俊, 杜安道, 等, 2012. 含有普通锇的辉钼矿Re-Os同位素定年研究. 岩石学报, 28(2): 702-708. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202028.htm [72] 李超, 屈文俊, 周利敏, 等, 2010. Carius管直接蒸馏快速分离锇方法研究. 岩矿测试, 29(1): 14-16. doi: 10.3969/j.issn.0254-5357.2010.01.004 [73] 李文昌, 薛迎春, 卢映祥, 等, 2014. 中国斑岩铜矿成矿规律及找矿方向. 北京: 地质出版社. [74] 李小明, 谭凯旋, 龚文君, 等, 2000. 利用磷灰石裂变径迹法研究金顶铅锌矿成矿时代. 大地构造与成矿学, 24(3): 282-286. doi: 10.3969/j.issn.1001-1552.2000.03.013 [75] 李兴振, 刘文均, 王文昭, 等, 1999. 西南三江地区特提斯构造演化与成矿(总论). 北京: 地质出版社. [76] 李延河, 谢桂青, 段超, 等, 2013. 膏盐层在矽卡岩型铁矿成矿中的作用. 地质学报, 87(9): 1324-1334. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309010.htm [77] 阙梅英, 程敦模, 张立生, 等, 1998. 兰坪-思茅盆地铜矿床. 北京: 地质出版社. [78] 任顺利, 李延河, 曾普胜, 等, 2018. 膏盐层在云南会泽和毛坪铅锌矿成矿中的作用: 硫同位素证据. 地质学报, 92(5): 1041-1055. doi: 10.3969/j.issn.0001-5717.2018.05.010 [79] 沈传波, 刘泽阳, 肖凡, 等, 2015. 石油系统Re-Os同位素体系封闭性研究进展. 地球科学进展, 30(2): 187-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201502001.htm [80] 沈传波, 葛翔, 白秀娟, 2019. 四川盆地震旦-寒武系油气成藏的Re-Os年代学约束. 地球科学, 44(3): 713-726. doi: 10.3799/dqkx.2018.383 [81] 沈传波, Selby, D., 梅廉夫, 等, 2011. 油气成藏定年的Re-Os同位素方法应用研究. 矿物岩石, 31(4): 87-93. doi: 10.3969/j.issn.1001-6872.2011.04.014 [82] 宋祥峰, 2015. 金顶超大型铅锌矿床壳幔混染叠加成矿机制研究(博士学位论文). 成都: 成都理工大学. [83] 宋玉财, 侯增谦, 杨天南, 等, 2011. "三江"喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型. 岩石矿物学杂志, 30(3): 355-380. doi: 10.3969/j.issn.1000-6524.2011.03.002 [84] 唐菊兴, 黎风佶, 李志军, 等, 2010. 西藏谢通门县雄村铜金矿主要地质体形成的时限: 锆石U-Pb、辉钼矿Re-Os年龄的证据. 矿床地质, 29(3): 461-475. doi: 10.3969/j.issn.0258-7106.2010.03.008 [85] 唐永永, 毕献武, 武丽艳, 等, 2013. 金顶铅锌矿黄铁矿Re-Os定年及其地质意义. 矿物学报, 33(3): 287-294. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201303004.htm [86] 王安建, 曹殿华, 高兰, 等, 2009. 论云南兰坪金顶超大型铅锌矿床的成因. 地质学报, 83(1): 43-54. doi: 10.3321/j.issn:0001-5717.2009.01.005 [87] 王长明, 陈晶源, 杨立飞, 等, 2017. 三江特提斯兰坪盆地构造-流体-成矿系统. 岩石学报, 33(7): 1957-1977. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201707001.htm [88] 王国芝, 胡瑞忠, 王成善, 等, 2001. 云南金顶超大型铅锌矿床的成矿地质背景. 矿物学报, 21(4): 571-577. doi: 10.3321/j.issn:1000-4734.2001.04.002 [89] 修群业, 2008. 云南金顶矿床物源特征及成矿年代探讨(博士学位论文). 北京: 中国地质科学院. [90] 修群业, 高兰, 王安建, 等, 2006a. 金顶矿床古元古锆石SHRIMP年龄的发现及其地质意义. 岩石学报, 22(4): 1040-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604028.htm [91] 修群业, 王安建, 高兰, 等, 2006b. 金顶超大型矿床容矿围岩时代探讨及地质意义. 地质调查与研究, 29(4): 294-302. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200604008.htm [92] 薛春纪, 陈毓川, 王登红, 等, 2003. 滇西北金顶和白秧坪矿床: 地质和He, Ne, Xe同位素组成及成矿时代. 中国科学(D辑), 33(4): 315-322. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304003.htm [93] 薛春纪, 陈毓川, 杨建民, 等, 2002. 滇西兰坪盆地构造体制和成矿背景分析. 矿床地质, 21(1): 36-44. doi: 10.3969/j.issn.0258-7106.2002.01.005 [94] 薛春纪, 高永宝, Leach, D.L., 2009. 滇西北兰坪金顶可能的古油气藏及对铅锌大规模成矿的作用. 地球科学与环境学报, 31(3): 221-229. doi: 10.3969/j.issn.1672-6561.2009.03.001 [95] 杨天南, 薛传东, 信迪, 等, 2019. 西南三江造山带古特提斯弧岩浆岩的时空分布及构造演化新模型. 岩石学报, 35(5): 1324-1340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201905003.htm [96] 余静, 2016. 兰坪金顶跑马坪铅锌矿床硫酸盐-碳酸盐-硫化物共(伴)生机制(博士学位论文). 昆明: 昆明理工大学. [97] 曾普胜, 李红, 李延河, 等, 2016. 亚洲最大铅锌矿: 三阶段叠加成矿的金顶巨型铅锌矿床. 地质学报, 90(9): 2384-2398. doi: 10.3969/j.issn.0001-5717.2016.09.018 [98] 曾荣, 薛春纪, 刘淑文, 等, 2005. 金顶超大型铅锌矿床成矿条件分析. 地球科学与环境学报, 27(2): 21-25. doi: 10.3969/j.issn.1672-6561.2005.02.005 [99] 曾招阳, 薛传东, 刘靖坤, 2020. 白垩系膏岩层序对铅锌矿床形成的贡献: 以云南兰坪金顶超大型铅锌矿床云龙组为例. 地球学报, 41(5): 723-738. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202005015.htm [100] 张金亮, 常象春, 2003. 金顶铅锌矿床油气地球化学特征及其成矿作用探讨. 青岛海洋大学学报(自然科学版), 33(2): 264-274. doi: 10.3969/j.issn.1672-5174.2003.02.015 [101] 周江羽, 王江海, Horton, B.K., 等, 2011. 青藏高原中东部古近纪盆地封闭的构造-沉积-岩浆活动和古气候响应. 地质学报, 85(2): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102003.htm [102] 朱弟成, 朱利东, 林丽, 等, 2003. 西成矿田泥盆系铅锌矿床中的有机成矿作用. 地球科学, 28(2): 201-208. doi: 10.3321/j.issn:1000-2383.2003.02.015