High-Resolution Stratigraphic Framework of Miocene Kora Volcano in Taranaki Basin, New Zealand
-
摘要: 建立埋藏火山的高精度地层格架对了解火山系统的演化、储层成因和资源潜力等具有重要意义.以新西兰Taranaki盆地中新世Kora火山为例,利用小波变换和井震联合对比等方法,开展火山地层高精度格架分析.在Kora火山识别出20个堆积单元,主要为火山碎屑堆积单元以及再搬运碎屑堆积单元,可合并为5个部分(相当于5个火山机构);整体上火山地层的建造与喷发中心的形成和迁移有关. 利用井和常规三维地震数据可以较为准确地识别出喷发间断不整合界面系统、可建立堆积单元尺度的高精度地层格架,利用常规三维地震数据只能识别出部分喷发间断不整合界面、只能建立火山机构尺度的地层格架. 相对年代的高精度地层格架是埋藏火山的更好选择.Abstract: Establishment of high-resolution volcano-stratigraphic frameworks (HRVF) of buried volcanoes is important for understanding the evolution of the volcanic system and its potential to form volcanic reservoirs. Taking Miocene Kora volcano in Taranaki Basin, New Zealand as an example, in this paper it uses wavelet transform and well-seismic correlation to analyze the HRVF. It mapped 20 units that include predominately deposits from pyroclastic eruptions, together with reworked debris deposits. The Kora Volcano can be divided into five parts according to major unconformities that are related with active and quiescent eruptive periods and with the formation and migration of distinctive eruptive centers. The outline framework can be built by using the conventional 3D seismic data, and the HRVF can be built by using the wells and conventional 3D seismic data. The better choice for building the HRVF of the buried volcano is in relative age.
-
图 1 研究区位置
a. Taranaki盆地的构造位置;b. Mohakatino火山带的位置(据Bischoff et al., 2017);c. Kora火山形态特征
Fig. 1. The location of study area
图 2 新西兰Taranaki盆地新近纪‒第四纪综合柱状图(据King and Thrasher, 1996修改)
Fig. 2. The Neogene- Quaternary composite column of Taranaki Basin in New Zealand(modified from King and Thrasher, 1996)
图 9 新西兰Taranaki盆地Kora火山的相对地质年代高分辨率地层格架
沉积岩年龄来自生物地层学研究(Bergman et al., 1992;Kutovaya et al., 2019),火山岩的年龄测定采用K-Ar和Ar-Ar测年方法(Bergman et al., 1992). 样品是明显蚀变的角闪石,火山岩的年龄数据精度不高,因此火山地层格架的年龄数据仅基于生物地层学数据
Fig. 9. The high-resolution volcano-stratigraphic framework in relative geologic age of Kora Volcano in Taranaki Basin, New Zealand
图 10 新西兰Taranaki盆地Kora火山各机构的测井密度特征和典型孔隙特征
f. 火山机构5,Kora-1井,1 798 m,凝灰岩;g. 火山机构4,Kora-2井,1 323 m,凝灰岩;h. 火山机构3,Kora-3井,1 804.8 m,沉火山角砾岩,强钙质胶结;i. 火山机构2,Kora-1井,1 990.1 m,晶屑凝灰岩,长石具有微裂缝;j. 火山机构1,Kora-1井,2 575 m,凝灰质砾岩,安山岩砾石. N为数据总数或样品数,图a~e中黄点为右侧典型照片对应的密度值,孔隙度数据据唐华风等(2021)
Fig. 10. Characteristics of density and void space of volcanic edifices in Kora Volcano, Taranaki Basin, New Zealand
-
[1] Andrews, G. D. M., Branney, M. J., Bonnichsen, B., et al., 2008. Rhyolitic Ignimbrites in the Rogerson Graben, Southern Snake River Plain Volcanic Province: Volcanic Stratigraphy, Eruption History and Basin Evolution. Bulletin of Volcanology, 70(3): 269-291. https://doi.org/10.1007/s00445-007-0139-0 [2] Bergman, S. C., Talbot, J. P., Thompson, P. R., 1992. The Kora Miocene Submarine Andesite Stratovolcano Hydrocarbon Reservoir, Northern Taranaki Basin, New Zealand. In: 1991 New Zealand Oil Exploration Conference. Society of Petroleum Engineers, New Zealand, 178-206. [3] Bischoff, A. P., 2019. Architectural Elements of Buried Volcanic Systems and Their Impact on Geoenergy Resources (Dissertation). University of Canterbury, Christchurch. [4] Bischoff, A. P., Nicol, A., Beggs, M., 2017. Stratigraphy of Architectural Elements in a Buried Volcanic System and Implications for Hydrocarbon Exploration. Interpretation, 5(3): 141-159. https://doi.org/10.1190/INT-2016-0201.1 [5] Chen, H. Z., Wu, X. J., 2003. Observation Records of the Eruption of Wudalianchi Volcanoes in 1720‒1721 AD. Seismology and Geology, 25(3): 491-500 (in Chinese with English abstract). [6] Chen, Q., Qian, G. B., Dang, Y., et al., 2008. A Study on Stratigraphic Sequences and Lithofacies of the Igneous Rocks in Ke Well-92 Region. Journal of Southwest Petroleum University (Science & Technology Edition), 30(4): 48-50 (in Chinese with English abstract). [7] Chen, S. H., Lin, C. L., Xu, W. G., et al., 2020. Age and Tectonic Significance of Volcanic Rocks in Cretaceous Red Beds in Fujian. Earth Science, 45(7): 2508-2523 (in Chinese with English abstract). [8] Chen, Y. Q., Li, B. G., 2004. Classification and Correlation of Permian Volcanic Rocks in Mid-Tarim Area. Journal of China University of Petroleum (Edition of Natural Sciences), 28(6): 6-10 (in Chinese with English abstract). [9] Dai, X. J., Tang, H. F., Zhang, T., et al., 2019. Facies Architecture Model of the Shimentan Formation Pyroclastic Rocks in the Block-T Units, Xihu Sag, East China Sea Basin, and Its Exploration Significance. Acta Geologica Sinica (English Edition), 93(4): 1076-1087. https://doi.org/10.1111/1755-6724.13807 [10] Giannetti, B., De Casa, G., 2000. Stratigraphy, Chronology, and Sedimentology of Ignimbrites from the White Trachytic Tuff, Roccamonfina Volcano, Italy. Journal of Volcanology and Geothermal Research, 96(3-4): 243-295. https://doi.org/10.1016/S0377-0273(99)00144-4 [11] Gu, L. X., Ren, Z. W., Wu, C. Z., et al., 2002. Hydrocarbon Reservoirs in a Trachyte Porphyry Intrusion in the Eastern Depression of the Liaohe Basin, Northeast China. AAPG Bulletin, 86(10): 1821-1832. https://doi.org/10.1306/61eedd8c-173e-11d7-8645000102c1865d [12] Holt, W. E., Stern, T. A., 1994. Subduction, Platform Subsidence, and Foreland Thrust Loading: The Late Tertiary Development of Taranaki Basin, New Zealand. Tectonics, 13(5): 1068-1092. https://doi.org/10.1029/94tc00454 [13] Hou, M. C., Jiang, W. J., Deng, M., et al., 2019. Characteristics of Ordovician Volcaniclastic Materials in Yanxia Area of Northern Tarim Basin and Their Geological Significance. Earth Science, 44(3): 822-832 (in Chinese with English abstract). [14] Infante-Paez, L., Marfurt, K. J., 2017. Seismic Expression and Geomorphology of Igneous Bodies: A Taranaki Basin, New Zealand, Case Study. Interpretation, 5(3): 121-140. https://doi.org/10.1190/INT-2016-0244.1 [15] Infante-Paez, L., Marfurt, K. J., 2018. In-Context Interpretation: Avoiding Pitfalls in Misidentification of Igneous Bodies in Seismic Data. Interpretation, 6(4): 29-42. https://doi.org/10.1190/ INT -2018-0076.1 doi: 10.1190/INT-2018-0076.1 [16] Kamp, P. J. J., 1984. Neocene and Quaternary Extent and Geometry of the Subducted Pacific Plate beneath North Island, New Zealand: Implications for Kaikoura Tectonics. Tectonophysics, 108(3-4): 241-266. https://doi.org/10.1016/0040-1951(84)90238-5 [17] King, P. R., Thrasher, G. P., 1996. Cretaceous-Cenozoic Geology and Petroleum Systems of the Taranaki Basin, New Zealand. Monograph - Institute of Geological and Nuclear Sciences (New Zealand), 13. [18] Kutovaya, A., Kroeger, K. F., Seebeck, H., et al., 2019. Thermal Effects of Magmatism on Surrounding Sediments and Petroleum Systems in the Northern Offshore Taranaki Basin, New Zealand. Geosciences, 9(7): 288. https://doi.org/10.3390/geosciences9070288 [19] Lockwood, J. P., Hazlett, R. W., 2010. Volcanoes: Global Perspectives. Wiley-Blackwell, New Jersey. [20] Lucchi, F., Tranne, C. A., De Astis, G., et al., 2008. Stratigraphy and Significance of Brown Tuffs on the Aeolian Islands (Southern Italy). Journal of Volcanology and Geothermal Research, 177(1): 49-70. https://doi.org/10.1016/j.jvolgeores.2007.11.006 [21] Nicol, A., Campbell, J. K., 1990. Late Cenozoic Thrust Tectonics, Picton, New Zealand. New Zealand Journal of Geology and Geophysics, 33(3): 485-494. https://doi.org/10.1080/00288306.1990.10425703 [22] Rey, S. S., Planke, S., Symonds, P. A., et al., 2008. Seismic Volcanostratigraphy of the Gascoyne Margin, Western Australia. Journal of Volcanology and Geothermal Research, 172(1-2): 112-131. https://doi.org/10.1016/j.jvolgeores.2006.11.013 [23] Rohrman, M., 2007. Prospectivity of Volcanic Basins: Trap Delineation and Acreage De-Risking. AAPG Bulletin, 91(6): 915-939. https://doi.org/10.1306/12150606017 [24] Seebeck, H., Nicol, A., Villamor, P., et al., 2014. Structure and Kinematics of the Taupo Rift, New Zealand. Tectonics, 33(6): 1178-1199. https://doi.org/10.1002/2014TC003569 [25] Sutherland, R., 1995. The Australia-Pacific Boundary and Cenozoic Plate Motions in the SW Pacific: Some Constraints from Geosat Data. Tectonics, 14(4): 819-831. https://doi.org/10.1029/95TC00930 [26] Tang, H. F., Bai, B., Bian, W. H., et al., 2012. Quantitative Models of Strata Texture within Volcanic Edifices of Yingcheng Formation in Songliao Basin, NE China. Acta Petrolei Sinica, 33(4): 541-550 (in Chinese with English abstract). [27] Tang, H. F., Li, R. L., Wu, Y. H., et al., 2011. Textural Characteristics of Volcanic Strata and Its Constraint to Impedance Inversion. Chinese Journal of Geophysics, 54(2): 620-627 (in Chinese with English abstract). [28] Tang, H. F., Phiri, C., Gao, Y. F., et al., 2015. Types and Characteristics of Volcanostratigraphic Boundaries and Their Oil-Gas Reservoir Significance. Acta Geologica Sinica (English Edition), 89(1): 163-174. https://doi.org/10.1111/1755-6724.12402 [29] Tang, H. F., Sun, H. B., Gao, Y. F., et al., 2013. Types and Characteristics of Volcanostratigraphic Boundary and Its Signification of Reservoirs. Journal of Jilin University (Earth Science Edition), 43(5): 1320-1329 (in Chinese with English abstract). [30] Tang, H. F., Wang, H. F., Kennedy, B., et al., 2021. Characteristics and Controlling Factors of Volcanic Reservoirs of Subaqueous Pyroclastic Rocks: An Analysis of the Miocene Kora Volcano in the Taranaki Basin, New Zealand. Earth Science Frontiers, 28(1): 375-387 (in Chinese with English abstract). [31] Tang, H. F., Zhao, P. J., Gao, Y. F., et al., 2017. Spatio-Temporal Attributes of Volcano Stratigraphy and Its Lithostratigraphic Units in a Basin. Journal of Jilin University (Earth Science Edition), 47(4): 949-973 (in Chinese with English abstract). [32] Tian, Z. H., Xu, W., Liu, L. S., et al., 2020. Paleoproterozoic Back-Arc Basin Opening and Closure: Evidence from the Structural Research of the Volcanic-Sedimentary Rocks in the Helan Town, Liaodong Peninsula. Earth Science, 45(9): 3217-3238 (in Chinese with English abstract). [33] Wang, P. J., Zhang, G. C., Meng, Q. A., et al., 2011. Applications of Seismic Volcanostratigraphy to the Volcanic Rifted Basins of China. Chinese Journal of Geophysics, 54(2): 597-610 (in Chinese with English abstract). [34] Wu, C. Z., Gu, L. X., Zhang, Z. Z., et al., 2006. Formation Mechanisms of Hydrocarbon Reservoirs Associated with Volcanic and Subvolcanic Intrusive Rocks: Examples in Mesozoic-Cenozoic Basins of Eastern China. AAPG Bulletin, 90(1): 137-147. https://doi.org/10.1306/04070505004 [35] Wu, X. Z., Guo, Q. L., Zhang, W., et al., 2021. Characteristics of Volcanic Reservoirs and Hydrocarbon Accumulation of Carboniferous System in Junggar Basin, China. Journal of Earth Science, 32(4): 972-985. https://doi.org/10.1007/s12583-020-1119-y [36] Yang, X. P., Jiang, B., Yang, Y. J., 2019. Spatial-Temporal Distribution Characteristics of Early Cretaceous Volcanic Rocks in Great Xing'an Range Area. Earth Science, 44(10): 3237-3251 (in Chinese with English abstract). [37] Zhao, P. F., Liu, P., Ming, J., et al., 2021. Distribution Characteristics of Volcanic Rock in CFD Oilfield and Its Controlling Effect on Reservoir. Earth Science, 46(7): 2466-2480 (in Chinese with English abstract). [38] Zhao, R. L., Wang, P. J., Zhao, H., et al., 2016. Reservoir Significance of Volcanostratigraphic Boundary: A Case Study of Huoshiling Formation, Southern Songliao Basin. Acta Petrolei Sinica, 37(4): 454-463 (in Chinese with English abstract). [39] 陈洪洲, 吴雪娟, 2003. 五大连池火山1720-1721年喷发观测记录. 地震地质, 25(3): 491-500. doi: 10.3969/j.issn.0253-4967.2003.03.015 [40] 陈庆, 钱根宝, 党艳, 等, 2008. 克92井区火山岩地层格架与岩相研究. 西南石油大学学报(自然科学版), 30(4): 48-50. doi: 10.3863/j.issn.1000-2634.2008.04.012 [41] 陈淑华, 林慈銮, 徐维光, 等, 2020. 福建白垩纪红层火山岩夹层时代及构造意义. 地球科学, 45(7): 2508-2523. doi: 10.3799/dqkx.2020.035 [42] 陈业全, 李宝刚, 2004. 塔里木盆地中部二叠系火山岩地层的划分与对比. 中国石油大学学报(自然科学版), 28(6): 6-10. doi: 10.3321/j.issn:1000-5870.2004.06.002 [43] 侯明才, 江文剑, 邓敏, 等, 2019. 塔里木盆地盐下地区奥陶系火山碎屑物质特征. 地球科学, 44(3): 822-832. doi: 10.3799/dqkx.2019.001 [44] 唐华风, 白冰, 边伟华, 等, 2012. 松辽盆地营城组火山机构地层结构定量模型. 石油学报, 33(4): 541-550. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201204003.htm [45] 唐华风, 李瑞磊, 吴艳辉, 等, 2011. 火山地层结构特征及其对波阻抗反演的约束. 地球物理学报, 54(2): 620-627. doi: 10.3969/j.issn.0001-5733.2011.02.041 [46] 唐华风, 孙海波, 高有峰, 等, 2013. 火山地层界面的类型、特征和储层意义. 吉林大学学报(地球科学版), 43(5): 1320-1329. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201305002.htm [47] 唐华风, 王寒非, Kennedy, B., 等, 2021. 水下喷发火山碎屑岩储层特征及主控因素: 以新西兰Taranaki盆地中新世Kora火山为例. 地学前缘, 28(1): 375-387. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101036.htm [48] 唐华风, 赵鹏九, 高有峰, 等, 2017. 盆地火山地层时空属性和岩石地层单位. 吉林大学学报(地球科学版), 47(4): 949-973. [49] 田忠华, 许王, 刘利双, 等, 2020. 辽东半岛河栏镇火山‒沉积岩构造研究: 对古元古代弧后盆地张裂与闭合的启示. 地球科学, 45(9): 3217-3238. doi: 10.3799/dqkx.2020.096 [50] 王璞珺, 张功成, 蒙启安, 等, 2011. 地震火山地层学及其在我国火山岩盆地中的应用. 地球物理学报, 54(2): 597-610. doi: 10.3969/j.issn.0001-5733.2011.02.039 [51] 杨晓平, 江斌, 杨雅军, 2019. 大兴安岭早白垩世火山岩的时空分布特征. 地球科学, 44(10): 3237-3251. doi: 10.3799/dqkx.2019.080 [52] 赵鹏飞, 刘朋, 明君, 等, 2021. CFD油田火山岩展布特征及其对油藏的控制作用. 地球科学, 46(7): 2466-2480. doi: 10.3799/dqkx.2020.238 [53] 赵然磊, 王璞珺, 赵慧, 等, 2016. 火山地层界面的储层意义: 以松辽盆地南部火石岭组为例. 石油学报, 37(4): 454-463. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201305002.htm