• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    苏鲁造山带东段新生代两阶段剥露事件的磷灰石(U-Th)/He热年代学证据

    林旭 吴林 MarcJolivet 李长安 刘海金

    林旭, 吴林, MarcJolivet, 李长安, 刘海金, 2022. 苏鲁造山带东段新生代两阶段剥露事件的磷灰石(U-Th)/He热年代学证据. 地球科学, 47(4): 1162-1176. doi: 10.3799/dqkx.2021.083
    引用本文: 林旭, 吴林, MarcJolivet, 李长安, 刘海金, 2022. 苏鲁造山带东段新生代两阶段剥露事件的磷灰石(U-Th)/He热年代学证据. 地球科学, 47(4): 1162-1176. doi: 10.3799/dqkx.2021.083
    Lin Xu, Wu Lin, Marc Jolivet, Li Chang’an, Liu Haijin, 2022. Apatite (U-Th)/He Thermochronology Evidence for Two Cenozoic Denudation Events in Eastern Part of Sulu Orogenic Belt. Earth Science, 47(4): 1162-1176. doi: 10.3799/dqkx.2021.083
    Citation: Lin Xu, Wu Lin, Marc Jolivet, Li Chang’an, Liu Haijin, 2022. Apatite (U-Th)/He Thermochronology Evidence for Two Cenozoic Denudation Events in Eastern Part of Sulu Orogenic Belt. Earth Science, 47(4): 1162-1176. doi: 10.3799/dqkx.2021.083

    苏鲁造山带东段新生代两阶段剥露事件的磷灰石(U-Th)/He热年代学证据

    doi: 10.3799/dqkx.2021.083
    基金项目: 

    国家自然科学基金 41972212

    湖南省自然科学基金项目 2019JJ40198

    详细信息
      作者简介:

      林旭(1984-),男,副教授,主要从事造山带隆升和中国大河演化研究.ORCID:0000-0001-7022-6708. E-mail:hanwuji-life@163.com

      通讯作者:

      李长安,E-mail:chanli@cug.edu.cn

    • 中图分类号: P542

    Apatite (U-Th)/He Thermochronology Evidence for Two Cenozoic Denudation Events in Eastern Part of Sulu Orogenic Belt

    • 摘要: 苏鲁造山带位于华北和华南板块之间,是中国东部最显著的陆内造山带之一,约束其新生代剥露过程对于理解中国东部盆山格局分布及其动力学机制具有重要意义.低温热年代学方法由于封闭温度较低,能更准确地约束上地壳地质体的剥露过程.利用磷灰石(U-Th)/He方法,对苏鲁造山带东部的多福山和锯齿山开展研究.磷灰石(U-Th)/He年龄-高程和热历史模拟结果显示,多福山和锯齿山在早-中始新世(54~43 Ma)和渐新世(35~27 Ma)发生剥露.这与苏鲁造山带西段的剥露时间同步.结合区域内已报道的研究结果,表明中国东部造山带受太平洋板块、印度板块向欧亚大陆俯冲的影响,在早新生代出现广泛的阶段性剥露过程,从而奠定了中国东部的盆山分布格局.

       

    • 图  1  苏鲁造山带位置图(a),胶东半岛地质简图(b),地震反射剖面(c)

      图a底图据自然资源部标准地图无修改(审图号:GS(2016)1600号),造山带位置修改自潘桂棠等(2017);图b修改自马丽芳等(2002);图c中AA’代表渤海湾盆地地震反射剖面,据Qi and Yang(2010),BB’代表南黄海盆地地震反射剖面,据Qi and Yang(2010)和Zhu et al.(2020

      Fig.  1.  Location map of Sulu orogenic belt (a), geological map of Jiaodong Peninsula (b); seismic reflection profiles (c)

      图  2  多福山和锯齿山地质图(a)和样品野外采集点照片(b~c)

      图a底图修改自郭敬辉等(2005

      Fig.  2.  Geological map of Duofu and Juchi mountains (a) and photos of sample collection sites in field (b-c)

      图  3  磷灰石He年龄和颗粒半径(Rs) (a)、有效铀浓度(eU) (b) 二维散点图

      Fig.  3.  Scatter diagram of apatite He age, grain radius (Rs) (a) and effective uranium concentration (eU) (b)

      图  4  年龄-海拔关系

      a.多福山剖面;b.锯齿山剖面

      Fig.  4.  Age-elevation relationship

      图  5  多福山(D1~D3)和锯齿山(L1~L5)单颗粒磷灰石(U-Th)/He年龄模拟结果

      Fig.  5.  The modeled thermal histories of samples from Duofu (D1—D3) and Juchi (L1—L5) mountains

      图  6  苏鲁造山带及其邻近区域早新生代构造隆升事件位置分布(a)和时间汇总图(b)

      图a中数字代表研究位置:(1)Wu et al.(2016);(2)Zhao et al.(2018);(3)胡圣标等(2005);(4)Liu et al.(2009);(5)Liu et al.(2009);(6)唐智博等(2011);(7)李理等(2018);(8)许立青等(2016);(9)Liu et al.(2013);(10)Wang et al.(2013);(11)Zhang et al.(2020);(12)Yang et al.(2017);(13)Hu et al.(2006);(14)Cao et al.(2015),Chang et al.(2019),Zhang et al.(2021);(15)Wu et al.(2020);(16)Clinkscaleset al.(2021);(17)吴中海和吴珍汉(2003);(18)Wang et al.(2018);(19)Chang et al.(2018),Xu et al.(2020

      Fig.  6.  Location distribution (a) and time summary map (b) of Early Cenozoic tectonic uplifting events in Sulu orogenic belt and its adjacent areas (the numbers represent research locations)

      图  7  南黄海盆地(a)和渤海湾盆地(b)沉积柱状图(修改自邱燕等, 2016)

      Fig.  7.  Sedimentary columnar map of South Yellow Sea basin (a) and Bohai Bay basin (b) (modified from Qiu et al., 2016)

      图  8  早新生代中国东部盆山分布复原图

      Fig.  8.  Reconstruction map of basin and mountain distribution in eastern China in Early Cenozoic

      表  1  采样位置、高程、岩性数据

      Table  1.   Data of sample location, elevation, and lithologic character

      样品号 海拔(m) 经度 纬度 岩性
      D1 350 36°53′03″ 121°43′12″ 闪长岩
      D2 253 36°52′59″ 121°43′06″ 闪长岩
      D3 126 36°52′51″ 121°43′02″ 闪长岩
      L1 383 36°56′14″ 121°40′09″ 花岗岩
      L2 293 36°55′53″ 121°40′08″ 花岗岩
      L3 179 36°55′47″ 121°39′53″ 花岗岩
      L4 123 36°55′32″ 121°39′40″ 花岗岩
      L5 65 36°55′22″ 121°39′20″ 花岗岩
      下载: 导出CSV

      表  2  多福山和锯齿山垂直剖面磷灰石(U-Th)/He年龄结果

      Table  2.   (U-Th)/He analytical results for samples in the vertical transect in the Duofu and Juchi mountains

      样品号 质量(μg) Rs(μm) U(10-6) Th(10-6) [eU] (10-6) 初始年龄(Ma) ± σ (Ma) FT 校正年龄(Ma) ± σ (Ma)
      D1-A1 8.31 70.1 6.0 1.8 6.4 35.57 1.89 0.805 44.19 3.22
      D1-A2 15.12 84.8 2.2 2.0 2.7 37.76 1.76 0.834 45.28 3.09
      D1-A3 9.40 72.7 9.3 2.0 9.8 39.68 2.12 0.812 48.87 3.58
      平均年龄 45.90 3.80
      D2-A1 3.31 50.3 2.0 1.2 2.3 38.77 1.98 0.730 53.11 3.80
      D2-A2 2.74 48.9 3.8 5.0 5.0 27.78 1.60 0.720 38.58 2.94
      D2-A3 4.02 54.7 3.0 2.0 3.5 34.78 1.82 0.750 46.37 3.36
      D2-A4 4.58 56.2 3.8 2.2 4.3 34.02 1.72 0.756 45.00 3.20
      平均年龄 44.80 3.30
      D3-A2 22.29 97.3 2.4 0.5 2.5 47.07 2.53 0.857 54.92 4.03
      D3-A3 17.89 87.2 10.5 2.5 11.0 36.10 1.92 0.842 42.87 3.13
      D3-A4 15.38 85.8 16.5 1.6 16.9 30.90 1.67 0.840 36.79 2.71
      平均年龄 42.60 3.70
      L1-A1 1.83 41.1 14.2 91.7 35.7 35.84 1.16 0.650 55.14 3.28
      L1-A4 3.49 50.8 13.3 83.1 32.8 46.02 1.49 0.713 64.54 3.84
      L1-A5 1.54 40.0 10.3 60.2 24.5 30.52 1.01 0.645 47.32 2.84
      平均年龄 54.00 3.70
      L2-A1 2.58 46.6 8.0 46.9 19.0 31.00 1.02 0.690 44.93 2.69
      L2-A2 2.54 46.5 12.7 85.2 32.7 36.90 1.19 0.688 53.63 3.19
      L2-A4 4.20 55.6 12.6 80.8 31.6 42.65 1.37 0.736 57.95 3.44
      平均年龄 51.00 3.50
      L3-A1 5.99 61.5 11.6 75.2 29.3 31.17 1.00 0.759 41.07 2.44
      L3-A2 7.54 65.6 10.9 61.1 25.2 35.21 1.15 0.775 45.43 2.71
      L3-A3 4.06 54.5 16.1 91.6 37.7 34.86 1.13 0.732 47.62 2.84
      平均年龄 44.40 3.10
      L4-A1 1.52 38.3 17.1 115.3 44.2 19.76 0.65 0.627 31.52 1.89
      L4-A2 1.31 36.3 18.0 114.6 44.9 24.33 0.79 0.610 39.89 2.38
      平均年龄 34.70 3.00
      L5-A1 9.33 70.6 5.8 2.6 6.4 18.74 0.96 0.805 23.28 1.67
      L5-A2 7.93 70.1 1.4 0.5 1.5 30.44 1.65 0.804 37.86 2.79
      L5-A3 10.86 75.0 9.2 1.2 9.4 19.42 1.05 0.818 23.74 1.75
      L5-A4 16.89 89.7 18.5 2.6 19.1 30.35 1.64 0.847 35.83 2.64
      平均年龄 27.30 2.00
      下载: 导出CSV
    • [1] Bao, H. Y., Guo, Z. F., Zhang, L. L., et al., 2013. Tectonic Dynamics of Eastern China since the Formation of the Pacific Plate. Advances in Earth Science, 28(3): 337-346(in Chinese with English abstract).
      [2] Cao, K., Leloup, P. H., Wang, G. C., et al., 2021. Thrusting, Exhumation, and Basin Fill on the Western Margin of the South China Block during the India-Asia Collision. GSA Bulletin, 133(1/2): 74-90. https://doi.org/10.1130/b35349.1
      [3] Cao, X. Z., Li, S. Z., Xu, L. Q., et al., 2015. Mesozoic-Cenozoic Evolution and Mechanism of Tectonic Geomorphology in the Central North China Block: Constraint from Apatite Fission Track Thermochronology. Journal of Asian Earth Sciences, 114: 41-53. https://doi.org/10.1016/j.jseaes.2015.03.041
      [4] Chang, J., Qiu, N. S., Liu, S., et al., 2019. Post-Triassic Multiple Exhumation of the Taihang Mountains Revealed via Low-T Thermochronology: Implications for the Paleo-Geomorphologic Reconstruction of the North China Craton. Gondwana Research, 68: 34-49. https://doi.org/10.1016/j.gr.2018.11.007
      [5] Chang, J., Qiu, N. S., Zhao, X. Z., et al., 2018. Mesozoic and Cenozoic Tectono-Thermal Reconstruction of the Western Bohai Bay Basin (East China) with Implications for Hydrocarbon Generation and Migration. Journal of Asian Earth Sciences, 160: 380-395. https://doi.org/10.1016/j.jseaes.2017.09.008
      [6] Chen, A. D., Guo, T. L., Wan, J. L., 2004. Study on the Tectonic Uplift of the Peripheral Upheaval in Jiangsu and Anhui by Using Fission Track and Isotopes Dating Methods. Geotectonica et Metallogenia, 28(4): 379-387(in Chinese with English abstract).
      [7] Chen, H., Hu, J. M., Wu, G. L., et al., 2015. Apatite Fission-Track Thermochronological Constraints on the Pattern of Late Mesozoic-Cenozoic Uplift and Exhumation of the Qinling Orogen, Central China. Journal of Asian Earth Sciences, 114: 649-673. https://doi.org/10.1016/j.jseaes.2014.10.004
      [8] Chen, H. H., Zhu, X. M., Wood, L. J., et al., 2020. Evolution of Drainage, Sediment-Flux and Fluvio-Deltaic Sedimentary Systems Response in Hanging Wall Depocentres in Evolving Non-Marine Rift Basins: Paleogene of Raoyang Sag, Bohai Bay Basin, China. Basin Research, 32(1): 116-145. https://doi.org/10.1111/bre.12371
      [9] Chen, L., Liu, Z. H., Jin, Q. H., et al., 2008. Meso-Cenozoic Tectonic Evolution of the East Depression of North Yellow Sea. Geotectonica et Metallogenia, 32(3): 308-316(in Chinese with English abstract).
      [10] Clinkscales, C., Kapp, P., Thomson, S., et al., 2021. Regional Exhumation and Tectonic History of the Shanxi Rift and Taihangshan, North China. Tectonics, 40(3): e2020TC0-06416. https://doi.org/10.1029/2020TC006416.
      [11] Deng, J., Wang, C. M., Bagas, L., et al., 2015. Cretaceous-Cenozoic Tectonic History of the Jiaojia Fault and Gold Mineralization in the Jiaodong Peninsula, China: Constraints from Zircon U-Pb, Illite K-Ar, and Apatite Fission Track Thermochronometry. Mineralium Deposita, 50(8): 987-1006. https://doi.org/10.1007/s00126-015-0584-1
      [12] Ding, R. X., Chang, Y., Min, K., et al., 2021. Post-Orogenic Topographic Evolution of the Dabie Orogen, Eastern China: Insights from Apatite and Zircon (U-Th)/He Thermochronology. Geomorphology, 374: 107487. https://doi.org/10.1016/j.geomorph.2020.107487
      [13] Flowers, R. M., Ketcham, R. A., Shuster, D. L., et al., 2009. Apatite (U-Th)/He Thermochronometry Using a Radiation Damage Accumulation and Annealing Model. Geochimica et Cosmochimica Acta, 73(8): 2347-2365. https://doi.org/10.1016/j.gca.2009.01.015
      [14] Gautheron, C., Tassan-Got, L., Barbarand, J., et al., 2009. Effect of Alpha-Damage Annealing on Apatite (U-Th)/He Thermochronology. Chemical Geology, 266(3-4): 157-170. https://doi.org/10.1016/j.chemgeo.2009.06.001
      [15] Ge, Y. K., Jing, L. Z., Zhang, J. Y., et al., 2020. Spatio-Temporal Variation in Rock Exhumation Linked to Large-Scale Shear Zones in the Southeastern Tibetan Plateau. Science China Earth Sciences, 63(4): 512-532. https://doi.org/10.1007/s11430-019-9567-y
      [16] Grimmer, J. C., Jonckheere, R., Enkelmann, E., et al., 2002. Cretaceous-Cenozoic History of the Southern Tan-Lu Fault Zone: Apatite Fission-Track and Structural Constraints from the Dabie Shan (Eastern China). Tectonophysics, 359(3/4): 225-253. https://doi.org/10.1016/S0040-1951(02)00513-9
      [17] Guo, J. H., Chen, F. K., Zhang, X. M., et al., 2005. Evolution of Syn- to Post-Collisional Magmatism from North Sulu UHP Belt, Eastern China: Zircon U-Pb Geochronology. Acta Petrologica Sinica, 21(4): 1281-1301(in Chinese with English abstract).
      [18] Hu, S. B., Hao, J., Fu, M. X., et al., 2005. Cenozoic Denudation and Cooling History of Qinling-Dabie-Sulu Orogens: Apatite Fission Track Thermochronology Constraints. Acta Petrologica Sinica, 21(4): 1167-1173(in Chinese with English abstract).
      [19] Hu, S. B., Kohn, B. P., Raza, A., et al., 2006. Cretaceous and Cenozoic Cooling History across the Ultrahigh Pressure Tongbai-Dabie Belt, Central China, from Apatite Fission-Track Thermochronology. Tectonophysics, 420(3/4): 409-429. https://doi.org/10.1016/j.tecto.2006.03.027
      [20] Jolivet, M., Dominguez, S., Charreau, J., et al., 2010. Mesozoic and Cenozoic Tectonic History of the Central Chinese Tian Shan: Reactivated Tectonic Structures and Active Deformation. Tectonics, 29(6): 1-30. https://doi.org/10.1029/2010tc002712
      [21] Kanouo, N. S., Kouské, A. P., Lentz, D. R., et al., 2021. New Insights into Neoproterozoic-Cretaceous Events in the Mamfe Basin (SW Cameroon, Central Africa): Evidence from Textural Analyses, U-Th Composition, and U-Pb Zircon Geochronology from Granitic Basement. Journal of Earth Science, 32(6): 1472-1484. https://doi.org/10.1007/s12583-020-1395-6
      [22] Ketcham, R. A., 2005. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry, 58(1): 275-314. https://doi.org/10.2138/rmg.2005.58.11
      [23] Li, L., Zhong, D. L., Chen, X. F., et al., 2018. Characteristics of NW-Trending Faults and Evidence of Fission Track in the Luxi Block. Acta Geologica Sinica, 92(3): 413-436(in Chinese with English abstract).
      [24] Li, S. Z., Guo, L. L., Xu, L. Q., et al., 2015. Coupling and Transition of Meso-Cenozoic Intracontinental Deformation between the Taihang and Qinling Mountains. Journal of Asian Earth Sciences, 114: 188-202. https://doi.org/10.1016/j.jseaes.2015.04.011
      [25] Li, S. Z., Suo, Y. H., Li, X. Y., et al., 2019. Mesozoic Tectono-Magmatic Response in the East Asian Ocean-Continent Connection Zone to Subduction of the Paleo-Pacific Plate. Earth-Science Reviews, 192: 91-137. https://doi.org/10.1016/j.earscirev.2019.03.003
      [26] Li, S. Z., Zhao, G. C., Dai, L. M., et al., 2012. Mesozoic Basins in Eastern China and Their Bearing on the Deconstruction of the North China Craton. Journal of Asian Earth Sciences, 47: 64-79. https://doi.org/10.1016/j.jseaes.2011.06.008
      [27] Li, Z. D., Yu, X. F., Wang, Q. M., et al., 2018. Petrogenesis of Sanfoshan Granite, Jiaodong: Diagenetic Physical and Chemical Conditions, Zircon U-Pb Geochronology and Sr-Nd Isotope Constraints. Acta Petrologica Sinica, 34(2): 447-468(in Chinese with English abstract).
      [28] Liang, J. T., Wang, H. L., 2019. Cenozoic Tectonic Evolution of the East China Sea Shelf Basin and Its Coupling Relationships with the Pacific Plate Subduction. Journal of Asian Earth Sciences, 171: 376-387. https://doi.org/10.1016/j.jseaes.2018.08.030
      [29] Lin, X., Jolivet, M., Jing, L. Z., et al., 2021. Mesozoic-Cenozoic Cooling History of the Eastern Qinghai Nan Shan (NW China): Apatite Low-Temperature Thermochronology Constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 572: 110416. https://doi.org/10.1016/j.palaeo.2021.110416
      [30] Lin, X., Liu, J., 2019. A Review of Mountain-Basin Coupling of Jianghan and Dongting Basins with Their Surrounding Mountains. Seismology and Geology, 41(2): 499-520(in Chinese with English abstract).
      [31] Liu, H., vanLoon, A. J. T., Xu, J., et al., 2020. Relationships between Tectonic Activity and Sedimentary Source-to-Sink System Parameters in a Lacustrine Rift Basin: A Quantitative Case Study of the Huanghekou Depression (Bohai Bay Basin, Eastern China). Basin Research, 32(4): 587-612. https://doi.org/10.1111/bre.12374
      [32] Liu, J. H., Zhang, P. Z., Lease, R. O., et al., 2013. Eocene Onset and Late Miocene Acceleration of Cenozoic Intracontinental Extension in the North Qinling Range-Weihe Graben: Insights from Apatite Fission Track Thermochronology. Tectonophysics, 584: 281-296. https://doi.org/10.1016/j.tecto.2012.01.025
      [33] Liu, M., Cui, X. J., Liu, F. T., 2004. Cenozoic Rifting and Volcanism in Eastern China: A Mantle Dynamic Link to the Indo-Asian Collision?. Tectonophysics, 393(1-4): 29-42. https://doi.org/10.1016/j.tecto.2004.07.029
      [34] Liu, Q. H., Zhu, X. M., Zeng, H. L., et al., 2019. Source-to-Sink Analysis in an Eocene Rifted Lacustrine Basin Margin of Western Shaleitian Uplift Area, Offshore Bohai Bay Basin, Eastern China. Marine and Petroleum Geology, 107: 41-58. https://doi.org/10.1016/j.marpetgeo.2019.05.013
      [35] Liu, S. S., Weber, U., Glasmacher, U. A., et al., 2009. Fission Track Analysis and Thermotectonic History of the Main Borehole of the Chinese Continental Scientific Drilling Project. Tectonophysics, 475(2): 318-326. https://doi.org/10.1016/j.tecto.2009.03.015
      [36] Liu, X., Fan, H. R., Evans, N. J., et al., 2017. Exhumation History of the Sanshandao Au Deposit, Jiaodong: Constraints from Structural Analysis and (U-Th)/He Thermochronology. Scientific Reports, 7(1): 7787. https://doi.org/10.1038/s41598-017-08103-w
      [37] Ma, L. F., 2002. Geological Atlas of China. Geological Publishing House, Beijing (in Chinese).
      [38] Northrup, C. J., Royden, L. H., Burchfiel, B. C., 1995. Motion of the Pacific Plate Relative to Eurasia and Its Potential Relation to Cenozoic Extension along the Eastern Margin of Eurasia. Geology, 23(8): 719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2
      [39] Pan, G. T., Xiao, Q. H., Yin, F. G., et al., 2017. Tectonics of China. Geological Publishing House, Beijing (in Chinese with English abstract).
      [40] Pang, Y. M., Guo, X. W., Han, Z. Z., et al., 2018. Apatite Fission Track Constrains on Denudation since Late Cretaceous in Central Uplift, South Yellow Sea Basin. Earth Science, 43(6): 1921-1930(in Chinese with English abstract).
      [41] Pang, Y. M., Guo, X. W., Han, Z. Z., et al., 2019. Mesozoic-Cenozoic Denudation and Thermal History in the Central Uplift of the South Yellow Sea Basin and the Implications for Hydrocarbon Systems: Constraints from the CSDP-2 Borehole. Marine and Petroleum Geology, 99: 355-369. https://doi.org/10.1016/j.marpetgeo.2018.10.027
      [42] Qi, J. F., Yang, Q., 2010. Cenozoic Structural Deformation and Dynamic Processes of the Bohai Bay Basin Province, China. Marine and Petroleum Geology, 27(4): 757-771. https://doi.org/10.1016/j.marpetgeo.2009.08.012
      [43] Qi, J. H., Wu, Z. Q., Zhang, X. H., et al., 2020. Deep Seismic Evidence of Cenozoic Tectonic Migration in the Western Pacific Back-Arc Area. Earth Science, 45(7): 2495-2507(in Chinese with English abstract).
      [44] Qiu, Y., Wang, L. F., Huang, W. K., 2016. The Mesozoic and Cenozoic Sedimentary Basins in the Sea Area of China. Geological Publishing House, Beijing (in Chinese with English abstract).
      [45] Reiners, P. W., Farley, K. A., 2001. Influence of Crystal Size on Apatite (U-Th)/He Thermochronology: An Example from the Bighorn Mountains, Wyoming. Earth and Planetary Science Letters, 188(3-4): 413-420. https://doi.org/10.1016/S0012-821X(01)00341-7
      [46] Reiners, P. W., Zhou, Z., Ehlers, T. A., et al., 2003. Post-Orogenic Evolution of the Dabie Shan, Eastern China, from (U-Th)/he and Fission-Track Thermochronology. American Journal of Science, 303(6): 489-518. https://doi.org/10.2475/ajs.303.6.489
      [47] Ren, J. Y., Tamaki, K., Li, S. T., et al., 2002. Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas. Tectonophysics, 344(3-4): 175-205. https://doi.org/10.1016/S0040-1951(01)00271-2
      [48] Shandong Bureau of Geology and Mineral Resources, 1991. Regional Geology of Shandong Province. Geological Publishing House, Beijing (in Chinese).
      [49] Shen, X. M., Tian, Y. T., Li, D. W., et al., 2016. Oligocene-Early Miocene River Incision near the First Bend of the Yangze River: Insights from Apatite (U-Th-Sm)/He Thermochronology. Tectonophysics, 687: 223-231. https://doi.org/10.1016/j.tecto.2016.08.006
      [50] Shu, L. S., Wang, B., Wang, L. S., et al., 2005. Analysis of Northern Jiangsu Prototype Basin from Late Cretaceous to Neogene. Geological Journal of China Universities, 11(4): 534-543(in Chinese with English abstract).
      [51] Shuster, D. L., Flowers, R. M., Farley, K. A., 2006. The Influence of Natural Radiation Damage on Helium Diffusion Kinetics in Apatite. Earth and Planetary Science Letters, 249(3/4): 148-161. https://doi.org/10.1016/j.epsl.2006.07.028
      [52] Siebel, W., Danišík, M., Chen, F., 2009. From Emplacement to Unroofing: Thermal History of the Jiazishan Gabbro, Sulu UHP Terrane, China. Mineralogy and Petrology, 96(3/4): 163-175. https://doi.org/10.1007/s00710-009-0058-1
      [53] Su, J. B., Zhu, W. B., Chen, J., et al., 2014a. Wide Rift Model in Bohai Bay Basin: Insight into the Destruction of the North China Craton. International Geology Review, 56(5): 537-554. https://doi.org/10.1080/00206814.2013.879373
      [54] Su, J. B., Zhu, W. B., Chen, J., et al., 2014b. Cenozoic Inversion of the East China Sea Shelf Basin: Implications for Reconstructing Cenozoic Tectonics of Eastern China. International Geology Review, 56(12): 1541-1555. https://doi.org/10.1080/00206814.2014.951004
      [55] Su, P., He, H. L., Tan, X. B., etal., 2021. Initiation and Evolution of the Shanxi Rift System in North China: Evidence from Low-Temperature Thermochronology in a Plate Reconstruction Framework. Tectonics, 40(3): e2020TC006298. https://doi.org/10.1029/2020tc006298
      [56] Sun, H. S., Li, H., Liu, L., et al., 2017. Exhumation History of the Jiaodong and Its Adjacent Areas since the Late Cretaceous: Constraints from Low Temperature Thermochronology. Science China Earth Sciences, 60(3): 531-545. https://doi.org/10.1007/s11430-016-0021-1
      [57] Sun, Z. H., Zhu, H. T., Xu, C. G., et al., 2020. Reconstructing Provenance Interaction of Multiple Sediment Sources in Continental Down-Warped Lacustrine Basins: An Example from the Bodong Area, Bohai Bay Basin, China. Marine and Petroleum Geology, 113: 104142. https://doi.org/10.1016/j.marpetgeo.2019.104142
      [58] Suo, Y. H., Li, S. Z., Yu, S., et al., 2014. Cenozoic Tectonic Jumping and Implications for Hydrocarbon Accumulation in Basins in the East Asia Continental Margin. Journal of Asian Earth Sciences, 88: 28-40. https://doi.org/10.1016/j.jseaes.2014.02.019
      [59] Tan, M. X., Zhu, X. M., Liu, W., et al., 2018. Sediment Routing Systems in the Second Member of the Eocene Shahejie Formation in the Liaoxi Sag, Offshore Bohai Bay Basin: A Synthesis from Tectono-Sedimentary and Detrital Zircon Geochronological Constraints. Marine and Petroleum Geology, 94: 95-113. https://doi.org/10.1016/j.marpetgeo.2018.04.003
      [60] Tang, J., Zheng, Y. F., Wu, Y. B., et al., 2008. Zircon U-Pb Age and Geochemical Constraints on the Tectonic Affinity of the Jiaodong Terrane in the Sulu Orogen, China. Precambrian Research, 161(3/4): 389-418. https://doi.org/10.1016/j.precamres.2007.09.008
      [61] Tang, Z. B., Li, L., Shi, X. P., et al., 2011. Fission Track Thermochronology of Late Cretaceous-Cenozoic Uplifting Events of the Mengshan Mountain in the Western Shandong Rise, China. Acta Scientiarum Naturalium Universitatis Sunyatseni, 50(2): 127-133(in Chinese with English abstract).
      [62] Tarduno, J. A., 2007. On the Motion of Hawaii and Other Mantle Plumes. Chemical Geology, 241(3/4): 234-247. https://doi.org/10.1016/j.chemgeo.2007.01.021
      [63] Vermeesch, P., 2010. HelioPlot, and the Treatment of Overdispersed (U-Th-Sm)/He Data. Chemical Geology, 271(3/4): 108-111. https://doi.org/10.1016/j.chemgeo.2010.01.002
      [64] Wang, X. X., Zattin, M., Li, J. J., et al., 2013. Cenozoic Tectonic Uplift History of Western Qinling: Evidence from Sedimentary and Fission-Track Data. Journal of Earth Science, 24(4): 491-505. https://doi.org/10.1007/s12583-013-0345-y
      [65] Wang, Y. Z., Wang, F., Wu, L., et al., 2018. (U-Th)/He Thermochronology of Metallic Ore Deposits in the Liaodong Peninsula: Implications for Orefield Evolution in Northeast China. Ore Geology Reviews, 92: 348-365. https://doi.org/10.1016/j.oregeorev.2017.11.025
      [66] Wu, L., Monié, P., Wang, F., et al., 2016. Cenozoic Exhumation History of Sulu Terrane: Implications from (U-Th)/He Thermochrology. Tectonophysics, 672/673: 1-15. https://doi.org/10.1016/j.tecto.2016.01.035
      [67] Wu, L., Monié, P., Wang, F., et al., 2018. Multi-Phase Cooling of Early Cretaceous Granites on the Jiaodong Peninsula, East China: Evidence from 40Ar/39Ar and (U-Th)/He Thermochronology. Journal of Asian Earth Sciences, 160: 334-347. https://doi.org/10.1016/j.jseaes.2017.11.014
      [68] Wu, L., Shi, G. H., Danišík, M., et al., 2019. MK-1 Apatite: A New Potential Reference Material for (U-Th)/He Dating. Geostandards and Geoanalytical Research, 43(2): 301-315. https://doi.org/10.1111/ggr.12258
      [69] Wu, L., Wang, F., Yang, J. H., et al., 2020. Meso-Cenozoic Uplift of the Taihang Mountains, North China: Evidence from Zircon and Apatite Thermochronology. Geological Magazine, 157(7): 1097-1111. https://doi.org/10.1017/s0016756819001377
      [70] Wu, L., Wang, F., Zhang, Z. Y., et al., 2021. Reappraisal of the Applicability of MK-1 Apatite as a Reference Standard for (U-Th)/He Geochronology. Chemical Geology, 575: 120255. https://doi.org/10.1016/j.chemgeo.2021.120255
      [71] Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402-1428. https://doi.org/10.1016/j.gr.2012.09.007
      [72] Wu, Z. H., Wu, Z. H., 2003. Low-Temperature Thermochronological Analysis of the Uplift History of the Yanshan Mountain and Its Neighboring Area. Acta Geologica Sinica, 77(3): 399-406(in Chinese with English abstract).
      [73] Xu, L. Q., Li, S. Z., Guo, L. L., et al., 2016. Impaction of the Tan-Lu Fault Zone on Uplift of the Luxi Rise: Constraints from Apatite Fission Track Thermochronology. Acta Petrologica Sinica, 32(4): 1153-1170(in Chinese with English abstract).
      [74] Xu, W., Qiu, N. S., Chang, J., et al., 2020. Mesozoic-Cenozoic Thermal Evolution of the Linqing Sub-Basin, Bohai Bay Basin (Eastern North China Craton): Constraints from Vitrinite Reflectance Data and Apatite Fission Track Thermochronology. Geological Journal, 55(7): 5049-5061. https://doi.org/10.1002/gj.3701
      [75] Yang, Q. Y., Santosh, M., Shen, J. F., et al., 2014. Juvenile vs. Recycled Crust in NE China: Zircon U-Pb Geochronology, Hf Isotope and an Integrated Model for Mesozoic Gold Mineralization in the Jiaodong Peninsula. Gondwana Research, 25(4): 1445-1468. https://doi.org/10.1016/j.gr.2013.06.003
      [76] Yang, R., Fellin, M. G., Herman, F., et al., 2016. Spatial and Temporal Pattern of Erosion in the Three Rivers Region, Southeastern Tibet. Earth and Planetary Science Letters, 433: 10-20. https://doi.org/10.1016/j.epsl.2015.10.032
      [77] Yang, Z., Shen, C., Ratschbacher, L., et al., 2017. Sichuan Basin and beyond: Eastward Foreland Growth of the Tibetan Plateau from an Integration of Late Cretaceous-Cenozoic Fission Track and (U-Th)/He Ages of the Eastern Tibetan Plateau, Qinling, and Daba Shan. Journal of Geophysical Research: Solid Earth, 122(6): 4712-4740. doi: 10.1002/2016JB013751
      [78] Yin, A., 2010. Cenozoic Tectonic Evolution of Asia: A Preliminary Synthesis. Tectonophysics, 488(1/2/3/4): 293-325. https://doi.org/10.1016/j.tecto.2009.06.002
      [79] Yu, J. X., Zheng, D. W., Pang, J. Z., et al., 2019. Miocene Range Growth along the Altyn Tagh Fault: Insights from Apatite Fission Track and (U-Th)/He Thermochronometry in the Western Danghenan Shan, China. Journal of Geophysical Research: Solid Earth, 124(8): 9433-9453. https://doi.org/10.1029/2019jb017570
      [80] Zhang, J., Wang, Y. N., Zhang, B. H., etal., 2021. Tectonothermal Events in the Central North China Craton since the Mesozoic and Their Tectonic Implications: Constraints from Low-Temperature Thermochronology. Tectonophysics, 804: 228769. https://doi.org/10.1016/j.tecto.2021.228769
      [81] Zhang, N., 2012. Comprehensive Provenance Study in Sedimentary Basin: An Example from the Paleogene Dainan Formation of Gaoyou Depression, the North Jiangsu Basin (Dissertation). Nanjing University, Nanjing(in Chinese with English abstract).
      [82] Zhang, W. B., Wu, L., Wang, F., 2016. Factors Impacting the Accuracy of Apatite (U-Th)/He Dating. Seismology and Geology, 38(4): 1107-1123(in Chinese with English abstract).
      [83] Zhang, Y. P., Zheng, W. J., Wang, W. T., et al., 2020. Rapid Eocene Exhumation of the West Qinling Belt: Implications for the Growth of the Northeastern Tibetan Plateau. Lithosphere, 2020(1): 1-12. https://doi.org/10.2113/2020/8294751
      [84] Zhao, R., Wang, Q. F., Liu, X. F., et al., 2018. Uplift History of the Jiaodong Peninsula, Eastern North China Craton: Implications for Lithosphere Thinning and Gold Mineralization. Geological Magazine, 155(4): 979-991. https://doi.org/10.1017/s0016756816001254
      [85] Zheng, H. W., Li, T. D., Su, G., 2020. Tomography Images of Crustal and Upper Mantle Structure beneath Sulu Orogenic Belt. Earth Science, 45(7): 2485-2494(in Chinese with English abstract).
      [86] Zheng, Y. F., 2008. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Chinese Science Bulletin, 53(20): 3081-3104. https://doi.org/10.1007/s11434-008-0388-0
      [87] Zhou, Z. Y., 2015. Low Temperature Thermochronology: Principles and Applications. Science Press, Beijing (in Chinese).
      [88] Zhu, R. X., Xu, Y. G., 2019. The Subduction of the West Pacific Plate and the Destruction of the North China Craton. Science China Earth Sciences, 62(9): 1340-1350. https://doi.org/10.1007/s11430-018-9356-y
      [89] Zhu, R. X., Zhu, G., Li, J. W., 2020. The North China Craton Destruction. Science Press, Beijing(in Chinese).
      [90] Zhu, X. F., Shen, C. B., Zhou, R. J., et al., 2020. Paleogene Sediment Provenance and Paleogeographic Reconstruction of the South Yellow Sea Basin, East China: Constraints from Detrital Zircon U-Pb Geochronology and Heavy Mineral Assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 553: 109776. https://doi.org/10.1016/j.palaeo.2020.109776
      [91] 包汉勇, 郭战峰, 张罗磊, 等, 2013. 太平洋板块形成以来的中国东部构造动力学背景. 地球科学进展, 28(3): 337-346. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201303007.htm
      [92] 陈安定, 郭彤楼, 万景林, 2004. 裂变径迹、同位素年龄研究苏皖周边隆起构造抬升. 大地构造与成矿学, 28(4): 379-387. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200404003.htm
      [93] 陈亮, 刘振湖, 金庆焕, 等, 2008. 北黄海盆地东部坳陷中新生代构造演化. 大地构造与成矿学, 32(3): 308-316. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200803008.htm
      [94] 郭敬辉, 陈福坤, 张晓曼, 等, 2005. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程: 锆石U-Pb年代学. 岩石学报, 21(4): 1281-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200504025.htm
      [95] 胡圣标, 郝杰, 付明希, 等, 2005. 秦岭-大别-苏鲁造山带白垩纪以来的抬升冷却史: 低温年代学数据约束. 岩石学报, 21(4): 1167-1173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200504014.htm
      [96] 李理, 钟大赉, 陈霞飞, 等, 2018. 鲁西地块NW走向断层的活动特征及裂变径迹证据. 地质学报, 92(3): 413-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201803001.htm
      [97] 李增达, 于晓飞, 王全明, 等, 2018. 胶东三佛山花岗岩的成因: 成岩物理化学条件、锆石U-Pb年代学及Sr-Nd同位素约束. 岩石学报, 34(2): 447-468. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201802018.htm
      [98] 林旭, 刘静, 2019. 江汉和洞庭盆地与周缘造山带盆山耦合研究进展. 地震地质, 41(2): 499-520. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201902015.htm
      [99] 马丽芳, 2002. 中国地质图集. 北京: 地质出版社.
      [100] 潘桂棠, 肖庆辉, 尹福光, 等, 2017. 中国大地构造. 北京: 地质出版社.
      [101] 庞玉茂, 郭兴伟, 韩作振, 等, 2018. 南黄海中部隆起晚白垩世以来地层剥蚀的磷灰石裂变径迹分析. 地球科学, 43(6): 1921-1930. doi: 10.3799/dqkx.2018.602
      [102] 祁江豪, 吴志强, 张训华, 等, 2020. 西太平洋弧后地区新生代构造迁移的深部地震证据. 地球科学, 45(7): 2495-2507. doi: 10.3799/dqkx.2020.031
      [103] 邱燕, 王立飞, 黄文凯, 2016. 中国海域中新生代沉积盆地. 北京: 地质出版社.
      [104] 山东省地质矿产局, 1991. 山东省区域地质志. 北京: 地质出版社.
      [105] 舒良树, 王博, 王良书, 等, 2005. 苏北盆地晚白垩世-新近纪原型盆地分析. 高校地质学报, 11(4): 534-543. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200504009.htm
      [106] 唐智博, 李理, 时秀朋, 等, 2011. 鲁西隆起蒙山晚白垩世-新生代抬升的裂变径迹证据. 中山大学学报(自然科学版), 50(2): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201102027.htm
      [107] 吴中海, 吴珍汉, 2003. 燕山及邻区晚白垩世以来山脉隆升历史的低温热年代学证据. 地质学报, 77(3): 399-406. doi: 10.3321/j.issn:0001-5717.2003.03.011
      [108] 许立青, 李三忠, 郭玲莉, 等, 2016. 郯庐断裂带对鲁西隆升过程的影响: 磷灰石裂变径迹证据. 岩石学报, 32(4): 1153-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604015.htm
      [109] 张妮, 2012. 沉积盆地的物源综合研究: 以苏北盆地高邮凹陷古近系戴南组为例(博士学位论文). 南京: 南京大学
      [110] 张炜斌, 吴林, 王非, 2016. 磷灰石(U-Th)/He年龄准确度的影响因素. 地震地质, 38(4): 1107-1123. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201604024.htm
      [111] 郑洪伟, 李廷栋, 苏刚, 2020. 苏鲁造山带地壳上地幔结构层析成像研究. 地球科学, 45(7): 2485-2494. doi: 10.3799/dqkx.2020.052
      [112] 周祖翼, 2015. 低温热年代学: 原理与应用. 北京: 科学出版社.
      [113] 朱日祥, 朱光, 李建威, 2020. 华北克拉通破坏. 北京: 科学出版社.
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  692
    • HTML全文浏览量:  255
    • PDF下载量:  99
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-02-16
    • 网络出版日期:  2022-04-29
    • 刊出日期:  2022-04-25

    目录

      /

      返回文章
      返回