Indication of Zircon Oxygen Fugacity to Different Mineralization Control Factors of Porphyry Deposits in Zhongdian Ore-Concentrated Area, Southern Yidun Arc
-
摘要: 中甸铜钼多金属矿集区位于义敦岛弧南段,区内绝大多数矿床与晚三叠世和晚白垩世岩浆活动有关,目前两期斑岩锆石氧逸度及差异性成矿研究薄弱.对4个斑岩体5类岩石的锆石开展LA-ICPMS微量元素分析,数据经筛选检验后进行了氧逸度估算.氧逸度结果由高到低为:地苏嘎铜矿晚三叠世石英闪长玢岩(Ce4+/Ce3+比值为515)、休瓦促晚三叠世贫矿黑云母花岗岩(Ce4+/Ce3+比值为443)、铜厂沟钼铜矿晚白垩世花岗闪长斑岩(Ce4+/Ce3+比值为368)、热林钼矿晚白垩世二长花岗岩(Ce4+/Ce3+比值为237)、休瓦促钨钼矿晚白垩世二长花岗岩(Ce4+/Ce3+比值为104).综合前人资料,认为俯冲或碰撞环境的斑岩型铜矿,高氧逸度是成矿的必要非充分条件,Cu铜主要直接或间接(有幔源贡献的新生下地壳)来自地幔;碰撞型斑岩矿床钼、钨主要来自古老地壳,对氧逸度的要求相对较低,偏氧化环境有利钼矿形成,偏还原环境有利于钨矿形成.矿产评价时,斑岩型铜矿应注重幔源/壳源比例和氧逸度条件的研究,斑岩型钼、钨矿不适用斑岩型铜矿氧逸度评价标准.Abstract: Zhongdian Cu-Mo polymetallic ore-concentrated area is located in southern Yidun arc. The vast majority of deposits in this area are related to the two-stage magmatic activities of Late Triassic and Late Cretaceous. The research on the oxygen fugacity and differential mineralization of porphyry zircons in the two stages is currently weak.In this paper, LA-ICPMS trace element analysis was carried out on zircons from 5 types of rocks of 4 porphyry bodies, and the oxygen fugacity was estimated after the data were screened and tested.The calculated results of oxygen fugacity from high to low are: the Late Triassic quartz diorite porphyrite (Ce4+/Ce3+ value of 515) from the copper deposit in Disuga, the Late Triassic barren biotite granite (Ce4+/ Ce3+ value of 443) from Xiuwacu, the Late Cretaceous granodiorite porphyry (Ce4+/Ce3+ value of 368) from the molybdenum-copper deposit in Tongchanggou, the Late Cretaceous monzogranite (Ce4+/Ce3+ value of 237) from the molybdenum deposit in Relin, and the Late Cretaceous monzogranite (Ce4+/Ce3+ value of 104) from the tungsten-molybdenum deposit in Xiuwacu. Based on the previous research results, it is believed that Cu, either from a subduction-related porphyry copper deposit or a collision-related porphyry copper deposit, is mainly derived from the mantle, where high oxygen fugacity is necessary but insufficient in mineralization. The metallogenic elements of molybdenum and tungsten deposits related to collisional porphyry are predominantly derived from the ancient siliceous-alumina crust. Although the requirement in terms of oxygen fugacity is relatively low, oxygen fugacity is a major factor controlling the differential mineralization of molybdenum and tungsten. That is, the partially oxidized environment is favorable for the development of molybdenum deposits, while the partially reducing environment is favorable for the formation of tungsten deposits. When evaluating the mineral resources, more attention should be paid to the mantle source/crust source ratio and oxygen fugacity for porphyry copper deposits. The oxygen fugacity criteria in assessing the porphyry copper deposit should not be applied to the molybdenum and tungsten deposits, where a relatively lower oxygen fugacity or even partially reducing environment is still conducive to mineralization.
-
图 2 地苏嘎(a)、休瓦促(b)、铜厂沟(c)和热林(d)岩体地质简图
图a据刘学龙等(2014)修改;图b据刘学龙等(2017)修改;图c据刘学龙等(2020)修改;图d据Gao et al.(2017)修改. 1.第四系;2.上三叠统图姆沟组浅变质碎屑岩夹中酸性火山岩;3.上三叠统曲嘎寺组浅变质碎屑岩夹灰岩、中基性火山岩;4.上三叠统喇嘛垭组砂岩夹板岩;5.中三叠统北衙组碳酸盐岩;6.二叠系峨眉山组玄武岩;7.白垩纪花岗闪长斑岩;8.白垩纪二长花岗岩;9.三叠纪闪长玢岩;10.三叠纪石英闪长玢岩;11.三叠纪黑云母花岗岩;12.辉绿岩;13.角岩;14.断层;15.实测地质界线;16.推测地质界线;17.蚀变界线;18.矿体;19.采样位置
Fig. 2. Simplified geological maps for Disuga pluton (a), Xiuwacu composite pluton (b), Tongchanggou pluton (c) and Relin pluton (d)
图 3 地苏嘎、休瓦促、铜厂沟、热林岩体岩石及显微特征照片
a~b.地苏嘎石英闪长玢岩手标本及镜下特征;c~d.休瓦促黑云母花岗岩手标本及镜下特征;e~f.休瓦促二长花岗岩手标本及镜下特征;g~i.铜厂沟花岗闪长斑岩手标本及镜下特征;j~l.热林二长花岗岩手标本及镜下特征. Pl.斜长石;Kf.钾长石;Qz.石英;Bi.黑云母;Mol.辉钼矿;Sht.白钨矿;Spn.榍石;Alt.褐帘石
Fig. 3. Hand samples and photomicrographs of rocks from Disuga pluton, Xiuwacu composite pluton, Tongchanggou pluton and the Relin pluton
图 5 锆石-熔体的微量元素分配系数对三价(a, c, e, g, i)和四价阳离子(b, d, f, h, j)的晶格应变参数的对数图解
a~b.地苏嘎石英闪长玢岩;c~d.休瓦促黑云母花岗岩;e~f.休瓦促二长花岗岩;g~h.铜厂沟花岗闪长斑岩;i~j.热林二长花岗岩
Fig. 5. Logarithmic diagrams of distribution coefficient of trace elements between zircon and melt for lattice strain parameters of trivalent (a, c, e, g, i) and tetravalent cations (b, d, f, h, j)
图 7 锆石Ce4+/Ce3+与EuN/EuN*关系
沙坪沟钼矿分布区来源于张红等,2011;智利北部含矿斑岩集中分布区来源于Ballard et al., 2002;普朗铜矿分布区来源于陈玲,2016;德兴铜矿分布区来源于Zhang et al., 2013;石门寺钨矿分布区来源于潘大鹏等,2017
Fig. 7. Relationship between zircon Ce4+/Ce3+ and EuN/EuN*
图 8 氧逸度计算结果(据Trail et al., 2012修改)
Fig. 8. Rang of lgfo2 values(modified after Trail et al., 2012)
表 1 全岩微量元素(10-6)
Table 1. Whole-rock trace element data(10-6)
岩石 样号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf U Th 数据来源 铜厂沟花岗闪长斑岩 TCG8-42 73.60 123.00 12.05 39.80 6.02 1.44 3.83 0.55 2.54 0.50 1.26 0.18 1.10 0.19 5.90 7.31 24.20 本次研究 TCG8-39 73.50 122.50 12.05 37.90 5.74 1.48 3.72 0.55 2.72 0.49 1.21 0.17 1.15 0.20 6.20 7.83 27.10 TCG8-02 69.50 117.50 11.50 36.80 5.38 1.38 3.58 0.47 2.53 0.48 1.18 0.17 1.12 0.18 5.90 6.66 23.30 TCG8-40-1 74.80 126.50 12.60 40.20 5.93 1.62 4.05 0.59 2.69 0.53 1.39 0.21 1.28 0.20 5.50 7.60 26.40 平均值 72.85 122.38 12.05 38.68 5.77 1.48 3.80 0.54 2.62 0.50 1.26 0.18 1.16 0.19 5.88 7.35 25.25 地苏嘎石英闪长玢岩 DSG-004 38.20 66.80 7.41 27.90 4.43 1.36 3.75 0.60 3.08 0.58 1.97 0.25 1.64 0.27 4.24 3.27 13.50 刘学龙等,2014 DSG-005 39.60 66.20 7.62 30.00 5.16 1.33 3.71 0.65 3.34 0.62 1.88 0.26 1.70 0.27 4.53 3.50 13.60 ED-21 45.40 88.50 9.88 35.70 6.21 1.63 4.64 0.62 3.35 0.65 1.89 0.27 1.80 0.26 5.66 3.98 15.90 潘彦宁等,2019 ED-28 34.20 65.90 7.45 28.00 5.38 1.40 4.17 0.57 3.22 0.57 1.53 0.22 1.39 0.20 4.07 3.48 15.70 ED-69 53.60 96.00 10.00 35.80 6.09 1.50 4.49 0.62 3.25 0.63 1.68 0.25 1.60 0.23 4.81 3.76 16.70 平均值 42.20 76.68 8.47 31.48 5.45 1.44 4.15 0.61 3.25 0.61 1.79 0.25 1.63 0.25 4.66 3.60 15.08 休瓦促黑云母花岗岩 XWC13-B5 24.40 45.60 7.10 23.70 4.40 1.10 3.80 0.50 2.70 0.60 1.80 0.30 1.90 0.30 0.70 5.70 22.00 Yan et al., 2020 XWC13-B6 19.50 42.60 5.50 19.80 4.10 1.20 3.50 0.50 2.70 0.50 1.50 0.30 1.50 0.20 0.50 3.80 14.20 XWC13-B20 44.40 83.90 9.50 30.60 5.00 1.00 4.20 0.50 3.00 0.60 2.00 0.30 2.00 0.30 0.50 7.20 37.30 XWC13-B23 13.90 30.70 3.60 12.10 2.60 0.40 2.50 0.40 2.30 0.60 1.90 0.30 2.60 0.50 1.00 15.60 35.60 XWC13-B24 30.90 52.60 6.30 20.60 3.50 0.90 3.00 0.40 2.20 0.50 1.40 0.30 1.70 0.30 0.40 7.50 24.10 平均值 26.62 51.08 6.40 21.36 3.92 0.92 3.40 0.46 2.58 0.56 1.72 0.30 1.94 0.32 0.62 7.96 26.64 休瓦促二长花岗岩 15XWC-6 51.33 90.70 9.21 29.07 5.11 0.56 4.52 0.68 3.96 0.80 2.44 0.39 2.72 0.43 5.91 13.25 48.72 陈莉等,2020 15XWC-7 56.74 98.96 9.91 30.43 4.87 0.56 4.26 0.63 3.51 0.74 2.17 0.34 2.49 0.38 5.50 16.48 50.55 15XWC-8 31.36 53.68 5.81 18.21 3.40 0.63 2.98 0.48 2.70 0.56 1.63 0.26 1.78 0.28 1.20 7.93 26.90 平均值 46.48 81.11 8.31 25.90 4.46 0.58 3.92 0.59 3.39 0.70 2.08 0.33 2.33 0.37 4.20 12.55 42.06 热林二长花岗岩 RL12-01 56.40 97.90 9.59 30.90 4.77 1.08 3.87 0.54 2.51 0.48 1.38 0.20 1.30 0.21 5.52 16.00 29.60 Wang et al., 2014a RL12-03 63.70 110.00 10.80 36.80 5.48 1.29 4.56 0.63 2.99 0.58 1.69 0.24 1.56 0.24 5.56 14.20 30.40 RL12-04 47.00 84.00 8.20 26.90 4.07 0.93 3.26 0.45 2.23 0.43 1.18 0.18 1.20 0.19 5.07 13.20 24.80 RL12-05 65.00 114.00 10.90 35.90 5.40 1.19 4.52 0.58 3.04 0.57 1.60 0.21 1.59 0.25 6.23 17.40 32.80 RL12-06 54.50 94.50 9.00 29.40 4.33 1.15 3.69 0.47 2.32 0.45 1.31 0.18 1.21 0.18 5.25 11.60 25.40 RL12-07 55.40 97.80 9.48 31.30 4.71 1.08 3.90 0.52 2.67 0.51 1.46 0.21 1.47 0.23 5.82 14.70 27.00 RL12-08 53.00 94.80 9.27 31.50 4.95 1.13 4.14 0.56 2.73 0.54 1.55 0.21 1.45 0.25 5.62 14.30 26.10 平均值 57.00 99.70 9.66 31.87 4.79 1.12 3.97 0.53 2.63 0.50 1.44 0.20 1.39 0.22 5.58 14.52 28.33 表 2 晶格应变模型偏离系数检验及拟合方程
Table 2. Deviation coefficient test of lattice strain model and fitting equation
岩石 k1 k2 δK K1拟合线方程式 K2拟合线方程式 Hf-U-Th拟合线方程式 地苏嘎石英闪长玢岩 -144.768 -139.545 2.585 y=-144.768x+4.099 y=-139.545x+4.030 y=-73.443x+3.332 休瓦促黑云母花岗岩 -132.446 -127.997 2.624 y=-132.664x+3.800 y=-127.997x+3.741 y=-125.969x+4.074 休瓦促二长花岗岩 -124.971 -120.715 2.821 y=-124.971x+3.611 y=-120.715x+3.554 y=-97.185x+3.430 铜厂沟花岗闪长斑岩 -144.115 -143.302 0.394 y=-144.115x+3.839 y=-143.302x+3.829 y=-88.666x+3.259 热林二长花岗岩 -140.641 -142.084 0.722 y=-140.641x+3.762 y=-142.084x+3.782 y=-96.471x+3.292 注:方程式中,y为lgD锆石/全岩,是锆石/熔体的稀土元素配分系数的对数值;x为(ri/3+r0/6)(ri-r0)2,其中ri为稀土元素离子半径,r0为Zr4+离子半径. 表 3 筛选后锆石微量元素计算的特征数值
Table 3. Characteristic values of trace elements in zircon after screening
岩性 分析点号 ΣREE(10-6) (Ce4+/Ce3+)锆石 EuN/EuN* t(℃) lgfo2 Ce/Nd (Ce/Nd)/Y Dy/Yb Y/Ho 热林二长花岗岩 RL1样品 1 729.70 180 0.32 664 -12.4 24 0.03 0.17 35 5 1 041.28 267 0.32 659 -14.6 10 0.01 0.26 32 12 805.48 245 0.37 688 -14.8 18 0.02 0.20 33 18 472.68 156 0.36 662 -16.0 23 0.04 0.21 31 RL3样品 3 572.30 169 0.35 646 -15.4 21 0.03 0.19 35 4 1 134.71 421 0.27 698 -11.8 27 0.02 0.21 31 13 549.54 194 0.44 676 -10.4 51 0.08 0.20 33 17 642.56 362 0.51 665 -15.4 23 0.03 0.22 34 18 485.19 143 0.38 664 -12.1 37 0.06 0.18 34 平均 714.82 237 0.37 669 -13.7 26 0.03 0.20 33 铜厂沟花岗闪长斑岩 TCG16样品 1 851.71 492 0.56 717 -10.5 37 0.03 0.25 32 2 724.61 432 0.63 699 -10.0 34 0.04 0.25 33 3 407.90 234 0.65 663 55 0.11 0.20 32 4 682.70 296 0.72 682 -11.3 54 0.07 0.17 34 5 1 118.21 848 0.54 715 -9.6 23 0.02 0.31 30 6 803.81 386 0.71 706 43 0.04 0.22 33 8 427.98 123 0.72 640 48 0.09 0.18 35 10 588.26 363 0.54 694 -9.1 32 0.05 0.21 33 11 633.88 425 0.65 690 -11.1 33 0.04 0.24 32 12 582.20 227 0.64 679 -8.1 22 0.03 0.20 34 13 618.35 282 0.76 666 -12.6 34 0.05 0.20 32 15 811.85 435 0.66 688 -12.0 34 0.03 0.21 34 16 629.80 272 0.67 680 -12.4 29 0.04 0.21 33 17 684.89 258 0.66 682 -11.7 29 0.04 0.19 33 18 626.43 329 0.59 676 -12.7 32 0.04 0.18 36 20 696.66 386 0.73 706 -9.2 34 0.04 0.22 33 TCG21样品 1 548.02 163 0.68 657 -15.0 22 0.03 0.17 36 2 743.91 351 0.59 687 43 0.05 0.18 35 3 747.72 398 0.54 689 -11.0 32 0.03 0.23 32 6 658.96 361 0.64 706 32 0.04 0.21 33 8 763.39 387 0.66 698 -5.0 35 0.04 0.23 33 9 568.69 262 0.62 673 63 0.09 0.18 35 10 929.56 523 0.68 740 -10.6 13 0.01 0.29 32 11 932.98 532 0.60 724 -10.9 25 0.02 0.28 31 12 568.89 310 0.62 680 -10.5 31 0.04 0.25 31 14 510.75 218 0.72 661 -10.1 38 0.06 0.17 34 15 532.71 301 0.54 697 -13.4 29 0.05 0.21 35 17 766.18 366 0.60 689 -12.7 23 0.02 0.22 34 18 1 081.48 646 0.65 727 38 0.03 0.28 31 19 788.22 328 0.61 701 30 0.03 0.21 33 20 875.77 486 0.65 711 -8.1 37 0.03 0.23 34 平均 706.66 368 0.64 691 -10.8 34 0.04 0.22 33 休瓦促黑云母花岗岩 XWC4-5样品 1 1 306.37 340 0.48 678 -7.0 71 0.05 0.15 34 2 923.04 305 0.48 715 -10.0 31 0.03 0.20 31 3 1 325.08 396 0.46 736 49 0.03 0.19 32 4 1 585.25 356 0.43 683 75 0.04 0.14 34 5 1 759.63 552 0.40 722 56 0.03 0.21 32 6 1 487.63 636 0.47 727 -4.8 48 0.03 0.22 31 7 1 998.35 1 218 0.48 725 -8.9 22 0.01 0.28 31 8 1 384.74 521 0.48 719 -1.0 47 0.03 0.19 32 10 852.06 223 0.52 678 45 0.05 0.15 33 11 937.19 253 0.47 681 35 0.03 0.20 33 12 931.01 291 0.44 682 65 0.06 0.17 33 13 1 242.27 332 0.45 690 58 0.04 0.16 33 14 963.52 249 0.55 696 -3.0 42 0.04 0.16 32 15 1 300.58 790 0.49 723 -7.1 32 0.02 0.26 31 16 848.45 341 0.52 681 46 0.05 0.19 33 18 1 259.14 421 0.48 701 -6.2 43 0.03 0.19 34 19 1 146.40 326 0.54 677 59 0.04 0.16 33 平均 1 250.04 444 0.48 701 -6.0 48 0.04 0.19 32 休瓦促二长花岗岩 XWC4-11样品 1 916.95 100 0.15 686 -13.8 19 0.02 0.25 32 2 898.73 51 0.11 689 20 0.02 0.21 33 3 1 081.32 64 0.17 666 -15.9 15 0.01 0.17 33 4 1 165.19 163 0.29 734 -11.2 17 0.01 0.27 32 6 524.84 45 0.14 666 -9.4 25 0.04 0.26 31 7 1 368.72 54 0.11 653 23 0.01 0.18 32 14 1 025.80 40 0.08 626 -18.6 21 0.02 0.17 33 16 1 140.22 95 0.19 662 -12.7 21 0.02 0.20 32 18 2 095.46 346 0.16 707 -12.7 10 0.00 0.39 30 19 1 377.30 81 0.12 701 -14.7 17 0.01 0.19 33 平均 1 159.45 104 0.15 679 -13.6 19 0.02 0.23 32 地苏嘎石英闪长玢岩 DSG4-9样品 1 1 649.46 573 0.61 777 -5.5 36 0.02 0.27 31 3 1 679.77 563 0.61 754 41 0.02 0.23 33 6 1 131.36 275 0.68 730 -7.7 35 0.03 0.16 34 8 1 446.26 464 0.72 749 -4.7 43 0.02 0.21 33 9 1 447.42 446 0.65 763 -8.4 22 0.01 0.26 31 10 1 386.52 548 0.59 766 -7.1 31 0.02 0.27 31 13 2 053.62 642 0.70 784 36 0.01 0.25 31 15 1 827.05 530 0.78 763 -1.3 33 0.01 0.18 37 17 2 052.98 636 0.71 771 -5.3 37 0.01 0.19 36 20 1 454.62 472 0.63 749 -7.5 34 0.02 0.21 34 平均 1 612.91 515 0.67 760 -5.9 35 0.02 0.22 33 注:由于部分锆石La元素检测值低于检出限,导致lgfo2无法计算,以空值表示. -
[1] Ague, J.J., Brimhall, G.H., 1988. Magmatic Arc Asymmetry and Distribution of Anomalous Plutonic Belts in the Batholiths of California: Effects of Assimilation, Crustal Thickness, and Depth of Crystallization. Geological Society of America Bulletin, 100(6): 912-927. https://doi.org/10.1130/0016-7606(1988)1000912:maaado>2.3.co;2 doi: 10.1130/0016-7606(1988)1000912:maaado>2.3.co;2 [2] Arcay, D., Tric, E., Doin, M.P., 2007. Slab Surface Temperature in Subduction Zones: Influence of the Interplate Decoupling Depth and Upper Plate Thinning Processes. Earth and Planetary Science Letters, 255(3/4): 324-338. https://doi.org/10.1016/j.epsl.2006.12.027 [3] Ballard, J.R., Palin, M.J., Campbell, I.H., 2002. Relative Oxidation States of Magmas Inferred from Ce(Ⅳ)/Ce(Ⅲ) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. https://doi.org/10.1007/s00410-002-0402-5 [4] Blundy, J., Wood, B., 1994. Prediction of Crystal–Melt Partition Coefficients from Elastic Moduli. Nature, 372(6505): 452-454. https://doi.org/10.1038/372452a0 [5] Burnham, A.D., Berry, A.J., 2012. An Experimental Study of Trace Element Partitioning between Zircon and Melt as a Function of Oxygen Fugacity. Geochimica et Cosmochimica Acta, 95: 196-212. https://doi.org/10.1016/j.gca.2012.07.034 [6] Candela, P.A., Bouton, S.L., 1990. The Influence of Oxygen Fugacity on Tungsten and Molybdenum Partitioning between Silicate Melts and Ilmenite. Economic Geology, 85(3): 633-640. https://doi.org/10.2113/gsecongeo.85.3.633 [7] Che, X.D., Linnen, R.L., Wang, R.C., et al., 2013. Tungsten Solubility in Evolved Granitic Melts: An Evaluation of Magmatic Wolframite. Geochimica et Cosmochimica Acta, 106: 84-98. https://doi.org/10.1016/j.gca.2012.12.007 [8] Chelle-Michou, C., Chiaradia, M., Ovtcharova, M., et al., 2014. Zircon Petrochronology Reveals the Temporal Link between Porphyry Systems and the Magmatic Evolution of Their Hidden Plutonic Roots (the Eocene Coroccohuayco Deposit, Peru). Lithos, 198/199: 129-140. https://doi.org/10.1016/j.lithos.2014.03.017 [9] Chen, H.Y., Wu, C., 2020. Metallogenesis and Major Challenges of Porphyry Copper Systems above Subduction Zones. Science China Earth Sciences, 50(7): 865-886(in Chinese). [10] Chen, L., 2016. The Characteristics of Ore-Forming Magma and Tectonic Setting of the Pulang Gaint Porphyry Copper Deposit in the Yunnan Province (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou(in Chinese with English abstract). [11] Chen, L., Liu, H., He, J., 2020. LA-ICP-MS Zircon U-Pb Ages of the Two Phases of Magmatism in the Xiuwacu W-Mo Deposit, Northwest Yunnan, and Their Implications for Ore Genesis. Geological Bulletin of China, 39(6): 929-942(in Chinese with English abstract). [12] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2011. Zircon Hf-O Isotope Evidence for Crust-Mantle Interaction during Continental Deep Subduction. Earth and Planetary Science Letters, 308(1/2): 229-244. https://doi.org/10.1016/j.epsl.2011.06.001 [13] Dilles, J.H., Kent, A.J.R., Wooden, J.L., et al., 2015. Zircon Compositional Evidence for Sulfur-Degassing from Ore-Forming Arc Magmas. Economic Geology, 110(1): 241-251. https://doi.org/10.2113/econgeo.110.1.241 [14] Dong, P.S., Dong, G.C., Sun, Z.R., et al., 2020. Late Triassic Porphyries in the Zhongdian Arc, Eastern Tibet: Origin and Implications for Cu Mineralization. Geological Magazine, 157(2): 275-288. https://doi.org/10.1017/s0016756819000700 [15] Ferry, J.M., Watson, E.B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0 [16] Foster, J.G., Lambert, D.D., Frick, L.R., et al., 1996. Re-Os Isotopic Evidence for Genesis of Archaean Nickel Ores from Uncontaminated Komatiites. Nature, 382(6593): 703-706. https://doi.org/10.1038/382703a0 [17] Gao, X., Yang, L.Q., Meng, J.Y., et al., 2017. Zircon U-Pb, Molybdenite Re-Os Geochronology and Sr-Nd-Pb-Hf-O-S Isotopic Constraints on the Genesis of Relin Cu-Mo Deposit in Zhongdian, Northwest Yunnan, China. Ore Geology Reviews, 91: 945-962. https://doi.org/10.1016/j.oregeorev.2017.08.012 [18] Gao, X., Yang, L.Q., Zhang, R.G., et al., 2019. Nature and Origin of Mesozoic Granitoids and Associated Mineralization in the Sanjiang Tethys Orogeny, SW China: The Xiuwacu Complex Example. International Geology Review, 61(7): 795-820. https://doi.org/10.1080/00206814.2018.1464405 [19] Hou, Z.Q., Yang, Y.Q., Qu, X.M., et al., 2004. Tectonic Evolution and Mineralization Systems of the Yidun Arc Orogen in Sanjiang Region, China. Acta Geologica Sinica, 78(1): 109-120(in Chinese with English abstract). [20] Hou, Z.Q., Zaw, K., Pan, G.T., et al., 2007. Sanjiang Tethyan Metallogenesis in S.W. China: Tectonic Setting, Metallogenic Epochs and Deposit Types. Ore Geology Reviews, 31(1/2/3/4): 48-87. https://doi.org/10.1016/j.oregeorev.2004.12.007 [21] Hanchar, J.M., Finch, R.J., Hoskin, P.W.O., et al., 2001. Rare Earth Elements in Synthetic Zircon: Part 1. Synthesis, and Rare Earth Element and Phosphorus Doping. American Mineralogist, 86(5/6): 667-680. https://doi.org/10.2138/am-2001-5-607 [22] Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1): 47-69. [23] Kong, D.X., Xu, J.F., Chen, J.L., 2016. Oxygen Isotope and Trace Element Geochemistry of Zircons from Porphyry Copper System: Implications for Late Triassic Metallogenesis within the Yidun Terrane, Southeastern Tibetan Plateau. Chemical Geology, 441: 148-161. https://doi.org/10.1016/j.chemgeo.2016.08.012 [24] Li, H.W., Dong, G.C., Dong, P.S., et al., 2020. Titanite Chemical Compositions and Their Implications for Petrogenesis and Mineralization in Zhongdian Arc, NW Yunnan, China. Earth Science, 45(6): 1999-2010(in Chinese with English abstract). [25] Li, J.K., Li, W.C., Wang, D.H., et al., 2007. Re-Os Dating for Ore-Forming Event in the Late of Yanshan Epoch and Research of Ore-Forming Regularity in Zhongdian Arc. Acta Petrologica Sinica, 23(10): 2415-2422(in Chinese with English abstract). [26] Li, W.C., 2007. The Tectonic Evolution of the Yidun Island Arc and the Metallogenic Model of the Pulang Porphyry Copper Deposit, Yunnan, SW China (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [27] Li, W.C., Yu, H.J., Gao, X., et al., 2017. Review of Mesozoic Multiple Magmatism and Porphyry Cu-Mo (W) Mineralization in the Yidun Arc, Eastern Tibet Plateau. Ore Geology Reviews, 90: 795-812. https://doi.org/10.1016/j.oregeorev.2017.03.009 [28] Li, W.C., Yu, H.J., Yin, G.H., 2013. Porphyry Metallogenic System of Geza Arc in the Sanjiang Region, Southwestern China. Acta Petrologica Sinica, 29(4): 1129-1144(in Chinese with English abstract). [29] Li, W.C., Yu, H.J., Yin, G.H., et al., 2012. Re-Os Dating of Molybdenite from Tongchanggou Mo-Polymetallic Deposit in Northwest Yunnan and Its Metallogenic Environment. Mineral Deposits, 31(2): 282-292(in Chinese with English abstract). [30] Li, W.C., Zeng, P.S., 2007. Characteristics and Metallogenic Model of the Pulang Superlarge Porphyry Copper Deposit in Yunnan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 34(4): 436-446(in Chinese with English abstract). [31] Li, Z.K., Li, X.M., Jin, X.Y., et al., 2021. Age and Genesis of the Laodaizhanggou Pb-Zn-Ag Deposit in the Fudian Ore Field, Southern North China Craton: Implications for Regional Mineral Prospecting. Journal of Earth Science, 32(1): 195-207. https://doi.org/10.1007/s12583-020-1093-4 [32] Liang, H.Y., Campbell, I.H., Allen, C., et al., 2006. Zircon Ce4+/Ce3+ Ratios and Ages for Yulong Ore-Bearing Porphyries in Eastern Tibet. Mineralium Deposita, 41(2): 152-159. https://doi.org/10.1007/s00126-005-0047-1 [33] Liu, X.L., Chen, J.H., Li, W.C., et al., 2019. Late Cretaceous Magmatism and Porphyry Mo-Cu Polymetallic Mineralization in the Tongchanggou Intrusion, Geza Arc, Southwestern China. Arabian Journal of Geosciences, 12(14): 1-15. https://doi.org/10.1007/s12517-019-4593-8 [34] Liu, X.L., Li, W.C., Yang, F.C., et al., 2017. Zircon U-Pb Age and Hf Isotopic Composition of the Two-Period Magmatism of the Xiuwacu Mo-W-Cu Deposit in the Geza Arc Belt, Yunnan, and Their Tectonic Significance. Acta Geologica Sinica, 91(4): 849-863(in Chinese with English abstract). [35] Liu, X.L., Li, W.C., Zhang, N., et al., 2014. Geochronological, Geochemical Characteristics of Disuga Ore-Forming Ⅰ-Type Granitic Porphyries in the Geza Arc, Yunnan Province, and Their Geological Significance. Geological Review, 60(1): 103-114(in Chinese with English abstract). [36] Liu, X.L., Li, W.C., Zhang, N., et al., 2020. Tongchanggou Porphyry Mo-Cu Deposit in Zhongdian Area of Northwestern Yunnan: Hydrothermal Alteration Zone, Vein System and Prospecting Indicator. Mineral Deposits, 39(5): 845-866(in Chinese with English abstract). [37] Lu, Y.J., Loucks, R.R., Fiorentini, M., et al., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu ± Mo ± Au Deposits. In: Society of Economic Geologists Special Publication No. 19 on Tethyan Tectonics and Metallogeny, Society of Economic Geologists, 329-347. https://doi.org/10.13140/RG.2.2.22790.16964 [38] Mao, J.W., Wu, S.H., Song, S.W., et al., 2020. The World-Class Jiangnan Tungsten Belt: Geological Characteristics, Metallogeny, and Ore Deposit Model. Chinese Science Bulletin, 65(33): 3746-3762(in Chinese). doi: 10.1360/TB-2020-0370 [39] McInnes, B.I., McBride, J.S., Evans, N.J., et al., 1999. Osmium Isotope Constraints on Ore Metal Recycling in Subduction Zones. Science, 286(5439): 512-516. https://doi.org/10.1126/science.286.5439.512 [40] O'Neill, H.S.C., Berry, A.J., Eggins, S.M., 2008. The Solubility and Oxidation State of Tungsten in Silicate Melts: Implications for the Comparative Chemistry of W and Mo in Planetary Differentiation Processes. Chemical Geology, 255(3/4): 346-359. https://doi.org/10.1016/j.chemgeo.2008.07.005 [41] Palme, H., O'Neill, H. St. C., 2007. Cosmochemical Estimates of Mantle Composition. Treatise on Geochemistry. Elsevier, Amsterdam: 1-38. https://doi.org/10.1016/b0-08-043751-6/02177-0 [42] Pan, D.P., Wang, D., Wang, X.L., 2017. Petrogenesis of Granites in Shimensi in Northwestern Jiangxi Province and Its Implications for Tungsten Deposits. Geology in China, 44(1): 118-135(in Chinese with English abstract). [43] Pan, L.C., Hu, R.Z., Bi, X.W., et al., 2018. Titanite Major and Trace Element Compositions as Petrogenetic and Metallogenic Indicators of Mo Ore Deposits: Examples from Four Granite Plutons in the Southern Yidun Arc, SW China. American Mineralogist, 103(9): 1417-1434. https://doi.org/10.2138/am-2018-6224 [44] Pan, Y.N., Dong, G.C., Li, X.F., et al., 2019. Geochemistry and Their Implications for Mineralization of Disuga Indosinian Porphyry in Zhongdian, Yunnan, China. Geoscience, 33(6): 1275-1285(in Chinese with English abstract). [45] Peng, H.J., 2014. Metallogeny of the Hongniu-Hongshan Porphyry-Skarn Copper Deposit and the Porphyry-Skarn Metallogenic System of the Yidun Island Arc, Yunnan, SW China(Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract). [46] Qiu, J.T., 2018. Research on the Precision of Magma Oxygen Calculation Based on Zircon Trace Element Composition(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [47] Reid, A.J., Wilson, C.J.L., Liu, S., 2005. Structural Evidence for the Permo-Triassic Tectonic Evolution of the Yidun Arc, Eastern Tibetan Plateau. Journal of Structural Geology, 27(1): 119-137. https://doi.org/10.1016/j.jsg.2004.06.011 [48] Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry. Pergamon, Oxford. https://doi.org/10.1016/B978-0-08-095975-7.00301-6 [49] Seal, R.R., Clark, A.H., Morrissy, C.J., 1987. Stockwork Tungsten (Scheelite)-Molybdenum Mineralization, Lake George, Southwestern New Brunswick. Economic Geology, 82(5): 1259-1282. https://doi.org/10.2113/gsecongeo.82.5.1259 [50] Seedorff, E., Dilles, J.H., Proffett, J.M., et al., 2005. Porphyry Deposits: Characteristics and Origin of Hypogene Features. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton, 251-298. https://doi.org/10.5382/av100.10 [51] Shannon, R.D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(5): 751-767. https://doi.org/10.1107/s0567739476001551 [52] Shen, P., Hattori, K., Pan, H.D., et al., 2015. Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt. Economic Geology, 110(7): 1861-1878. https://doi.org/10.2113/econgeo.110.7.1861 [53] Sillitoe, R.H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3 [54] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [55] Sun, W.D., Ling, M.X., Chung, S.L., et al., 2012. Geochemical Constraints on Adakites of Different Origins and Copper Mineralization. Journal of Geology, 120(1): 105-120. https://www.researchgate.net/publication/236348118 [56] Trail, D., Bruce Watson, E., Tailby, N.D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70-87. https://doi.org/10.1016/j.gca.2012.08.032 [57] Turner, S., Wilde, S., Wörner, G., et al., 2020. An Andesitic Source for Jack Hills Zircon Supports Onset of Plate Tectonics in the Hadean. Nature Communications, 11(1): 1241. https://doi.org/10.1038/s41467-020-14857-1 [58] Wang, X.S., Bi, X.W., Leng, C.B., et al., 2014a. Geochronology and Geochemistry of Late Cretaceous Igneous Intrusions and Mo-Cu-(W) Mineralization in the Southern Yidun Arc, SW China: Implications for Metallogenesis and Geodynamic Setting. Ore Geology Reviews, 61: 73-95. https://doi.org/10.1016/j.oregeorev.2014.01.006 [59] Wang, X.S., Hu, R.Z., Bi, X.W., et al., 2014b. Petrogenesis of Late Cretaceous Ⅰ-Type Granites in the Southern Yidun Terrane: New Constraints on the Late Mesozoic Tectonic Evolution of the Eastern Tibetan Plateau. Lithos, 208/209: 202-219. https://doi.org/10.1016/j.lithos.2014.08.016 [60] Watson, E.B., Harrison, T.M., 2005. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science, 308(5723): 841-844. https://doi.org/10.1126/science.1110873 [61] Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5 [62] Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x [63] Wood, B.J., Blundy, J.D., 1997. A Predictive Model for Rare Earth Element Partitioning between Clinopyroxene and Anhydrous Silicate Melt. Contributions to Mineralogy and Petrology, 129(2/3): 166-181. https://doi.org/10.1007/s004100050330 [64] Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589 [65] Xie, G.Q., Mao, J.W., Bagas, L., et al., 2019a. Mineralogy and Titanite Geochronology of the Caojiaba W Deposit, Xiangzhong Metallogenic Province, Southern China: Implications for a Distal Reduced Skarn W Formation. Mineralium Deposita, 54(3): 459-472. https://doi.org/10.1007/s00126-018-0816-2 [66] Xie, G.Q., Mao, J.W., Li, W., et al., 2019b. Granite-Related Yangjiashan Tungsten Deposit, Southern China. Mineralium Deposita, 54(1): 67-80. https://doi.org/10.1007/s00126-018-0805-5 [67] Xin, H.B., Qu, X.M., 2008. Relative Oxidation States of Ore-Bearing Porphyries Inferred from Ce(Ⅳ)/Ce(Ⅲ) Ratio in Zircon: Application to the Porphyry Copper Belt at Gangdese, Tibet. Acta Mineralogica Sinica, 28(2): 152-160(in Chinese with English abstract). [68] Xu, L.L., Bi, X.W., Chen, Y.W., et al., 2012. Zircon Ce4+/Ce3+ Ratios of the Tongchang Intrusions in Jinping County, Yunnan Province: Implications for Mineralization. Acta Mineralogica Sinica, 32(1): 74-82(in Chinese with English abstract). doi: 10.5846/stxb201007201066 [69] Yan, T.T., Zhang, X.F., Wang, D., et al., 2020. Geochronology, Mineralogy, and Geochemistry of the Late Triassic Xiuwacu Biotite Granite in the Southern Yidun Terrane, Southwest China: Insights into the Petrogenesis and Magmatic Fertility. Geological Journal, 55(1): 806-820. https://doi.org/10.1002/gj.3448 [70] Yang, L.Q., Deng, J., Dilek, Y., et al., 2016. Melt Source and Evolution of Ⅰ-Type Granitoids in the SE Tibetan Plateau: Late Cretaceous Magmatism and Mineralization Driven by Collision-Induced Transtensional Tectonics. Lithos, 245: 258-273. https://doi.org/10.1016/j.lithos.2015.10.005 [71] Yu, C., Yang, Z.M., Zhou, L.M., et al., 2019. Impact of Laser Focus on Accuracy of U-Pb Dating of Zircons by LA-ICPMS. Mineral Deposits, 38(1): 21-28(in Chinese with English abstract). [72] Yu, H.J., Jiang, J.W., Li, W.C., 2020. Controls of Variable Crustal Thicknesses on Late Triassic Mineralization in the Yidun Arc, Eastern Tibet. Journal of Asian Earth Sciences, 195: 104285. https://doi.org/10.1016/j.jseaes.2020.104285 [73] Yu, Y.F., Fei, G.C., Li, Y.G., et al., 2016. Oxygen Fugacity of Intrusions from Lannitang Porphyry Copper Deposit in Zhongdian Island Arc, Yunan: Implications for Mineralization. Journal of Mineralogy and Petrology, 36(1): 28-36(in Chinese with English abstract). [74] Zhang, C.C., Sun, W.D., Wang, J.T., et al., 2017. Oxygen Fugacity and Porphyry Mineralization: A Zircon Perspective of Dexing Porphyry Cu Deposit, China. Geochimica et Cosmochimica Acta, 206: 343-363. https://doi.org/10.1016/j.gca.2017.03.013 [75] Zhang, D.H., Audétat, A., 2017. What Caused the Formation of the Giant Bingham Canyon Porphyry Cu-Mo-Au Deposit? Insights from Melt Inclusions and Magmatic Sulfides. Economic Geology, 112(2): 221-244. https://doi.org/10.2113/econgeo.112.2.221 [76] Zhang, H., Ling, M.X., Liu, Y.L., et al., 2013. High Oxygen Fugacity and Slab Melting Linked to Cu Mineralization: Evidence from Dexing Porphyry Copper Deposits, Southeastern China. The Journal of Geology, 121(3): 289-305. https://doi.org/10.1086/669975 [77] Zhang, H., Sun, W.D., Yang, X.Y., et al., 2011. Geochronology and Metallogenesis of the Shapinggou Giant Porphyry Molybdenum Deposit in the Dabie Orogenic Belt. Acta Geologica Sinica, 85(12): 2039-2059(in Chinese with English abstract). [78] Zhang, J.B., An, F., 2018. Methods for Estimating Magma Oxidation State of Porphyry Copper Deposits: A Review. Mineral Deposits, 37(5): 1052-1064(in Chinese with English abstract). [79] Zhang, X.F., Li, W.C., Yin, G.H., et al., 2017. Geological and Mineralized Characteristics of the Composite Complex in Xiuwacu W-Mo Mining District, NW Yunnan, China: Constraints by Geochronology, Oxygen Fugacity and Geochemistry. Acta Petrologica Sinica, 33(7): 2018-2036(in Chinese with English abstract). [80] Zhu, Y.H., Chen, G.W., Shan, Q., et al., 2020. Geochemical Characteristics and Ore-Forming Materials of Luokuidong Molybdenum Ore Deposit in Hainan Island. Earth Science, 45(4): 1187-1212(in Chinese with English abstract). [81] Zou, X.Y., Qin, K.Z., Han, X.L., et al., 2019. Insight into Zircon REE Oxy-Barometers: A Lattice Strain Model Perspective. Earth and Planetary Science Letters, 506: 87-96. https://doi.org/10.1016/j.epsl.2018.10.031 [82] 陈华勇, 吴超, 2020. 俯冲带斑岩铜矿系统成矿机理与主要挑战. 中国科学: 地球科学, 50(7): 865-886. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007001.htm [83] 陈莉, 刘函, 贺娟, 2020. 滇西北休瓦促钨钼矿床两期岩浆作用的LA-ICP-MS锆石U-Pb年龄及矿床成因. 地质通报, 39(6): 929-942. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202006013.htm [84] 陈玲, 2016. 云南普朗超大型斑岩铜矿床成矿岩浆特征及构造背景分析(博士学位论文). 广州: 中国科学院研究生院(广州地球化学研究所). [85] 侯增谦, 杨岳清, 曲晓明, 等, 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78(1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200401013.htm [86] 李华伟, 董国臣, 董朋生, 等, 2020. 滇西北中甸弧成矿岩体中榍石化学成分特征及其成岩成矿标识. 地球科学, 45(6): 1999-2010. doi: 10.3799/dqkx.2019.193 [87] 李建康, 李文昌, 王登红, 等, 2007. 中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究. 岩石学报, 23(10): 2415-2422. doi: 10.3969/j.issn.1000-0569.2007.10.010 [88] 李文昌, 2007. 义敦岛弧构造演化与普朗超大型斑岩铜矿成矿模型(博士学位论文). 北京: 中国地质大学. [89] 李文昌, 余海军, 尹光候, 2013. 西南"三江"格咱岛弧斑岩成矿系统. 岩石学报, 29(4): 1129-1144. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201304003.htm [90] 李文昌, 余海军, 尹光侯, 等, 2012. 滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境. 矿床地质, 31(2): 282-292. doi: 10.3969/j.issn.0258-7106.2012.02.009 [91] 李文昌, 曾普胜, 2007. 云南普朗超大型斑岩铜矿特征及成矿模型. 成都理工大学学报(自然科学版), 34(4): 436-446. doi: 10.3969/j.issn.1671-9727.2007.04.011 [92] 刘学龙, 李文昌, 杨富成, 等, 2017. 云南格咱岛弧带休瓦促Mo-W-Cu矿床两期岩浆作用的锆石U-Pb年龄、Hf同位素组成及构造意义. 地质学报, 91(4): 849-863. doi: 10.3969/j.issn.0001-5717.2017.04.011 [93] 刘学龙, 李文昌, 张娜, 等, 2014. 云南格咱岛弧地苏嘎成矿岩体Ⅰ型花岗岩年代学、地球化学特征及地质意义. 地质论评, 60(1): 103-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201401012.htm [94] 刘学龙, 李文昌, 张娜, 等, 2020. 滇西北中甸地区铜厂沟斑岩钼铜矿床热液蚀变分带、脉体系统及找矿标志. 矿床地质, 39(5): 845-866. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202005006.htm [95] 毛景文, 吴胜华, 宋世伟, 等, 2020. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型. 科学通报, 65(33): 3746-3762. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033010.htm [96] 潘大鹏, 王迪, 王孝磊, 2017. 赣西北大湖塘石门寺钨矿区花岗岩的成因及其对钨矿的指示意义. 中国地质, 44(1): 118-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201701010.htm [97] 潘彦宁, 董国臣, 李雪峰, 等, 2019. 云南中甸地苏嘎印支期斑岩地球化学特征及其成矿标识. 现代地质, 33(6): 1275-1285. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201906016.htm [98] 彭惠娟, 2014. 云南中甸红牛-红山斑岩-矽卡岩型铜矿床成矿过程及义敦岛弧斑岩-矽卡岩成矿系统研究(博士学位论文). 北京: 中国地质科学院. [99] 邱骏挺, 2018. 锆石岩浆氧逸度计算的宽域问题研究(博士学位论文). 北京: 中国地质大学. [100] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [101] 辛洪波, 曲晓明, 2008. 西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态: 来自锆石Ce(Ⅳ)/Ce(Ⅲ)比值的约束. 矿物学报, 28(2): 152-160. doi: 10.3321/j.issn:1000-4734.2008.02.007 [102] 胥磊落, 毕献武, 陈佑纬, 等, 2012. 云南金平铜厂斑岩铜钼矿区岩体锆石Ce4+/Ce3+比值及其对成矿的指示意义. 矿物学报, 32(1): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201201012.htm [103] 于超, 杨志明, 周利敏, 等, 2019. 激光焦平面变化对LA-ICPMS锆石U-Pb定年准确度的影响. 矿床地质, 38(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201901002.htm [104] 俞一凡, 费光春, 李佑国, 等, 2016. 云南中甸岛弧烂泥塘斑岩铜矿床岩体氧逸度特征及成矿意义. 矿物岩石, 36(1): 28-36. doi: 10.3969/j.issn.1007-2802.2016.01.003 [105] 张红, 孙卫东, 杨晓勇, 等, 2011. 大别造山带沙坪沟特大型斑岩钼矿床年代学及成矿机理研究. 地质学报, 85(12): 2039-2059. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201112008.htm [106] 张京渤, 安芳, 2018. 斑岩型铜矿床成矿斑岩岩浆氧化状态研究方法综述. 矿床地质, 37(5): 1052-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201805009.htm [107] 张向飞, 李文昌, 尹光候, 等, 2017. 滇西北休瓦促钨钼矿区复式岩体地质及其成矿特征: 来自年代学、氧逸度和地球化学的约束. 岩石学报, 33(7): 2018-2036. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201707004.htm [108] 朱昱桦, 陈根文, 单强, 等, 2020. 海南岛罗葵洞斑岩钼矿床地球化学特征及成矿物质来源. 地球科学, 45(4): 1187-1212. doi: 10.3799/dqkx.2019.101 -
李守奎 附表1~2.docx 李守奎 附图1.zip