Characterization of Pore Structure and Heterogeneity of Shale Reservoir from Wufeng Formation-Sublayers Long-11 in Western Chongqing Based on Nuclear Magnetic Resonance
-
摘要: 选取渝西地区五峰组-龙一1亚段富有机质页岩开展场发射扫描电镜、核磁共振和X射线衍射等实验,在图像处理和多重分形理论的基础上,分析了页岩储层孔隙结构特征及非均质性.结果表明:(1)扫描电镜分析认为,研究区有机孔平均孔径偏小, < 50 nm的有机孔数量占比82%,>100 nm的有机孔面孔率占比52%;(2)依据核磁T2谱峰形态划分为Ⅰ~Ⅲ类,分别为单峰、双峰和三峰3种类型,Ⅲ类页岩储层孔径、孔隙度较大,具备更优越的储集条件和渗流能力;(3)基于多重分形理论表征储层非均质性,石英含量越高,黏土含量越低非均质性越弱,进而控制着孔隙度和渗透率的大小.多重分形参数与矿物组分、物性参数的联系有效表征了储层孔隙结构,并为其非均质性的评估提供了新的视角.Abstract: Select the organic-rich shale of the Wufeng Formation-sublayers Long-11 in western Chongqing to carry out field emission scanning electron microscopy, nuclear magnetic resonance and X-ray diffraction experiments. Based on image processing and multifractal theory, the pore structure of the shale reservoir was analyzed. Characteristics and heterogeneity. The results show that: (1) Scanning electron microscopy analysis shows that the average pore size of organic pores in the study area is too small. The number of organic pores < 50 nm accounted for 82%, and the number of organic pores >100 nm accounted for 52%; (2)According to the NMR T2 spectrum peak shape, it is divided into categories Ⅰ~Ⅲ, which are single-peak, double-peak and three-peak respectively. The shale reservoir of type Ⅲ has larger pore size and porosity, and has better storage conditions and seepage capacity; (3)Based on the multifractal theory to characterize the heterogeneity of the reservoir, the higher the quartz content, the lower the clay content, the weaker the heterogeneity, which in turn controls the porosity and permeability. The relationship between multifractal parameters and mineral components and physical property parameters effectively characterizes the pore structure of the reservoir and provides a new perspective for the evaluation of its heterogeneity.
-
Key words:
- shale reservoir /
- pore structure /
- nuclear magnetic resonance /
- multifractal /
- heterogeneity /
- petroleum geology
-
图 2 五峰-龙马溪组页岩储层有机质孔隙的形成和生长过程
Fig. 2. Formation and growth process of organic matter pores in shale reservoirs of Wufeng Longmaxi formation
表 1 样品矿物组成及有机质含量
Table 1. Mineral composition and organic matter content of samples
井号 样品 层位 深度 TOC 矿物组分(%) (m) (%) 黏土 石英 长石 方解石 白云石 Z205 #7 龙马溪组 3 327.6 2.24 37.9 42.2 6.7 3.9 5.5 Z205 #12 龙马溪组 3 331.6 2.87 14.6 55.2 3.2 14.5 9.2 Z205 #11 龙马溪组 3 346.2 4.30 16.1 46.3 1.8 11.4 22.9 Z205 #4 五峰组 3 352.3 1.01 20.4 50.7 5.8 10.3 9.4 Z203 #17 龙马溪组 4 100.8 4.56 10.2 64.7 2.8 6.3 13.0 Z203 #16 龙马溪组 4 104.1 4.85 13.4 68.1 2.9 7.1 4.3 Z203 #18 龙马溪组 4 105.7 5.43 23.4 32.8 4.3 27.5 10.2 Z206 #3 龙马溪组 4 223.8 1.67 33.0 48.1 6.2 4.9 5.4 Z206 #5 龙马溪组 4 259.0 2.51 22.7 48.5 8.2 8.6 9.1 Z206 #6 五峰组 4 270.1 2.02 15.4 55.6 5.6 13.3 7.6 Z206 #2 五峰组 4 273.2 1.67 21.7 65.2 3.7 1.7 3.2 Z206 #1 五峰组 4 274.7 1.54 30.3 51.1 4.8 6.6 6.5 Z208 #9 龙马溪组 4 351.4 2.91 41.7 22.2 6.3 13.0 10.4 Z208 #10 龙马溪组 4 361.3 3.98 41.0 43.0 4.4 2.4 6.5 Z208 #13 龙马溪组 4 366.0 4.64 29.3 42.5 11.3 3.2 6.7 Z208 #8 龙马溪组 4 366.7 4.64 23.7 60.2 6.4 4.5 4.2 Z208 #14 五峰组 4 370.6 2.86 36.8 37.1 6.1 12.4 6.2 Z208 #15 五峰组 4 373.7 1.05 46.2 28.4 8.2 9.5 4.8 表 2 岩石物理性质及核磁共振孔隙结构参数
Table 2. Physical properties and pore structure parameters from NMR tests
T2分布类型 样品 φHe(%) kHe(mD) φNMR(%) kSDR(mD) T15(ms) T35(ms) T50(ms) Tlm(ms) Ⅰ #1 3.23 0.003 3.13 0.001 5.20 0.50 0.29 0.53 #2 4.22 0.003 2.80 0.000 1.28 0.42 0.26 0.40 #3 3.55 0.002 3.17 0.000 0.95 0.38 0.24 0.32 #4 3.14 0.007 3.28 0.007 13.16 0.76 0.37 0.85 #5 3.03 0.008 2.98 0.003 13.69 0.65 0.33 0.76 #6 2.78 0.004 2.42 0.001 21.07 0.54 0.27 0.75 平均 3.33 0.004 2.96 0.002 9.23 0.54 0.29 0.60 Ⅱ #7 5.16 0.023 4.30 0.015 3.98 1.01 0.47 0.73 #8 4.35 0.011 3.94 0.018 5.05 1.19 0.55 0.90 #9 5.90 0.027 4.97 0.047 4.95 1.54 0.72 0.89 #10 4.21 0.018 4.59 0.102 29.12 1.92 0.64 1.41 #11 4.22 0.010 4.05 0.011 5.41 0.97 0.44 0.72 #12 4.54 0.012 3.64 0.016 6.20 1.37 0.63 0.97 平均 4.73 0.017 4.25 0.035 9.12 1.33 0.58 0.94 Ⅲ #13 7.40 0.015 7.19 0.570 7.48 3.30 1.84 1.64 #14 6.47 0.015 6.68 0.608 9.38 2.96 1.56 1.96 #15 6.87 0.014 9.08 1.831 15.91 3.36 1.68 2.26 #16 4.49 0.017 4.98 0.244 12.47 3.12 1.51 1.86 #17 5.49 0.014 5.73 0.234 8.24 3.03 1.45 1.50 #18 4.56 0.013 5.52 0.185 8.56 3.21 1.49 1.41 #18 4.56 0.013 5.52 0.185 8.56 3.21 1.49 1.41 平均 5.69 0.014 6.39 0.551 10.09 3.17 1.57 1.72 表 3 多重分形特征参数
Table 3. Multifractal characteristic parameters
样品 Dmin Dmax D0 D1 D2 D0-Dmax Dmin-D0 ΔD amax amin a0 Δa #1 2.02 0.70 1.00 0.85 0.75 0.30 1.03 1.32 2.20 0.68 1.00 1.52 #2 1.98 0.68 1.00 0.82 0.73 0.31 0.98 1.29 2.17 0.66 1.00 1.51 #3 2.09 0.67 1.00 0.80 0.71 0.33 1.10 1.42 2.25 0.65 1.00 1.60 #4 2.02 0.74 1.00 0.89 0.79 0.26 1.02 1.28 2.22 0.71 1.00 1.51 #5 2.00 0.73 1.00 0.88 0.78 0.27 1.00 1.28 2.19 0.70 1.00 1.49 #6 1.95 0.71 1.00 0.88 0.77 0.29 0.96 1.25 2.15 0.68 1.00 1.46 #7 2.14 0.77 1.00 0.87 0.81 0.23 1.15 1.38 2.32 0.74 1.00 1.58 #8 2.11 0.78 1.00 0.88 0.82 0.22 1.11 1.33 2.30 0.76 1.00 1.53 #9 2.18 0.79 1.00 0.87 0.82 0.21 1.19 1.39 2.36 0.78 1.00 1.58 #10 2.16 0.79 1.00 0.90 0.85 0.20 1.16 1.36 2.34 0.76 1.00 1.57 #11 2.13 0.76 1.00 0.88 0.81 0.24 1.13 1.37 2.31 0.74 1.00 1.57 #12 2.10 0.79 1.00 0.89 0.82 0.21 1.10 1.31 2.28 0.77 1.00 1.51 #13 2.27 0.75 1.00 0.86 0.81 0.25 1.28 1.52 2.45 0.72 1.00 1.73 #14 2.23 0.78 1.00 0.89 0.83 0.21 1.24 1.45 2.42 0.75 1.00 1.67 #15 2.29 0.80 1.00 0.89 0.85 0.20 1.29 1.49 2.50 0.77 1.00 1.72 #16 2.12 0.81 1.00 0.91 0.85 0.18 1.12 1.30 2.32 0.79 1.00 1.53 #17 2.18 0.80 1.00 0.89 0.84 0.20 1.18 1.38 2.39 0.77 1.00 1.61 #18 2.22 0.81 1.00 0.87 0.84 0.19 1.22 1.41 2.38 0.78 1.00 1.60 -
[1] Ge, X. M., Fan, Y. R., Li, J. T., et al., 2015. Pore Structure Characterization and Classification Using Multifractal Theory: An Application in Santanghu Basin of Western China. Journal of Petroleum Science and Engineering, 127(1/2): 297-304. https://doi.org/10.1016/j.petrol.2015.01.004 [2] Hou, X. W., Zhu, Y. M., Wang, Y., et al., 2019. Experimental Study of the Interplay between Pore System and Permeability Using Pore Compressibility for High Rank Coal Reservoirs. Fuel, 254(1): 115712. https://doi.org/10.1016/j.fuel.2019.115712 [3] Hu, Y. B., Guo, Y.H., Zhang, J.J., et al., 2020. A Method to Determine Nuclear Magnetic Resonance Cutoff Value of Tight Sandstone Reservoir Based on Multifractal Analysis. Energy Science & Engineering, 8(4): 1135-1148. https://doi.org/10.1002/ese3.574 [4] Huang, C., Ju, Y. W., Zhu, H. J., et al., 2020. Investigation of Formation and Evolution of Organic Matter Pores in Marine Shale by Helium Ion Microscope: An Example from the Lower Silurian Longmaxi Shale, South China. Marine and Petroleum Geology, 120(6): 104550. https://doi.org/10.1016/j.marpetgeo.2020.104550 [5] Jiang, Y.Q., Liu, X.W., Fu, Y.H., et al., 2019. Evaluation of Effective Porosity in Marine Shale Reservoir, Western Chongqing. Acta Petrolei Sinica, 40(10): 1233-1243 (in Chinese with English abstract). [6] Lai, J., Wang, G. W., Fan, Z. Y., et al., 2018. Fractal Analysis of Tight Shaly Sandstones Using Nuclear Magnetic Resonance Measurements. AAPG Bulletin, 102(2): 175-193. https://doi.org/10.1306/0425171609817007 [7] Li, A., Ding, W. L., Wang, R. Y., et al., 2017. Petrophysical Characterization of Shale Reservoir Based on Nuclear Magnetic Resonance (NMR) Experiment: A Case Study of Lower Cambrian Qiongzhusi Formation in Eastern Yunnan Province, South China. Journal of Natural Gas Science and Engineering, 37(4): 29-38. https://doi.org/10.1016/j.jngse.2016.11.034 [8] Li, T., 2008. Multifractal Theory and Some Applications(Dissertation). Beijing Jiaotong University, Beijing, 2-7 (in Chinese with English abstract). [9] Liu, K. Q., Ostadhassan, M., Kong, L. Y., 2019. Fractal and Multifractal Characteristics of Pore Throats in the Bakken Shale. Transport in Porous Media, 126(3): 579-598. https://doi.org/10.1007/s11242-018-1130-2 [10] Liu, Z. S., Liu, D. M., Cai, Y. D., et al., 2020. Application of Nuclear Magnetic Resonance (NMR) in Coalbed Methane and Shale Reservoirs: A Review. International Journal of Coal Geology, 218(3): 103261. https://doi.org/10.1016/j.coal.2019.103261 [11] Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061 [12] Luo, S.Y., Chen, X.H., Li, H., et al., 2019. Shale Gas Accumulation Conditions and Target Optimization of Lower Cambrian Shuijingtuo Formation in Yichang Area, West Hubei. Earth Science, 44(11): 3598-3615 (in Chinese with English abstract). [13] Ma, X.H., 2018. Enrichment Laws and Scale Effective Development of Shale Gas in the Southern Sichuan Basin. Natural Gas Industry, 38(10): 1-10 (in Chinese with English abstract). [14] Mao, Z. Q., Xiao, L., Wang, Z. N., et al., 2012. Estimation of Permeability by Integrating Nuclear Magnetic Resonance (NMR) Logs with Mercury Injection Capillary Pressure (MICP) Data in Tight Gas Sands. Applied Magnetic Resonance, 44(4): 449-468. https://doi.org/10.1007/s00723-012-0384-z [15] Ramandi, H. L., Mostaghimi, P., Armstrong, R. T., et al., 2016. Porosity and Permeability Characterization of Coal: A Micro-Computed Tomography Study. International Journal of Coal Geology, 154-155: 57-68. https://doi.org/10.1016/j.coal.2015.10.001 [16] Rezaee, R., Saeedi, A., Clennell, B., 2012. Tight Gas Sands Permeability Estimation from Mercury Injection Capillary Pressure and Nuclear Magnetic Resonance Data. Journal of Petroleum Science and Engineering, 88-89(4): 92-99. https://doi.org/10.1016/j.petrol.2011.12.014 [17] Sun, W., Zuo, Y. J., Wu, Z. H., et al., 2019. Fractal Analysis of Pores and the Pore Structure of the Lower Cambrian Niutitang Shale in Northern Guizhou Province: Investigations Using NMR, SEM and Image Analyses. Marine and Petroleum Geology, 99(1): 416-428. https://doi.org/10.1016/j.marpetgeo.2018.10.042 [18] Sun, Y., Zhai, C., Xu, J. Z., et al., 2020. A Method for Accurate Characterisation of the Pore Structure of a Coal Mass Based on Two-Dimensional Nuclear Magnetic Resonance T1-T2. Fuel, 262(10): 116574. https://doi.org/10.1016/j.fuel.2019.116574 [19] Wang, C., Zhang, B.Q., Shu, Z.G., et al., 2019. Shale Lamination and Its Influence on Shale Reservoir Quality of Wufeng Formation-Longmaxi Formation in Jiaoshiba Area. Earth Science, 44(3): 972-982 (in Chinese with English abstract). [20] Wang, C.Y., Bao, Y., Ju, Y.W., et al., 2020. Micropore Structure Evolution of Organic Matters in Coal Measures due to Bioconversion Using FE-SEM, HIP and N2 Adsorption Experiments. Earth Science, 45(1): 251-262 (in Chinese with English abstract). [21] Wang, Q. T., Wang, T. L., Liu, W. P., et al., 2019. Relationships among Composition, Porosity and Permeability of Longmaxi Shale Reservoir in the Weiyuan Block, Sichuan Basin, China. Marine and Petroleum Geology, 102: 33-47. https://doi.org/10.1016/j.marpetgeo.2018.12.026 [22] Wang, Z.G., 2019. Reservoir Formation Conditions and Key Efficient Exploration & Development Technologies for Marine Shale Gas Fields in Fuling Area, South China. Acta Petrolei Sinica, 40(3): 370-382 (in Chinese with English abstract). [23] Wu, J. G., Yuan, Y., Niu, S. Y., et al., 2020. Multiscale Characterization of Pore Structure and Connectivity of Wufeng-Longmaxi Shale in Sichuan Basin, China. Marine and Petroleum Geology, 120(2/3): 104514. https://doi.org/10.1016/j.marpetgeo.2020.104514 [24] Wu, Y. Q., Tahmasebi, P., Lin, C. Y., et al., 2019. A Comprehensive Study on Geometric, Topological and Fractal Characterizations of Pore Systems in Low-Permeability Reservoirs Based on SEM, MICP, NMR, and X-Ray CT Experiments. Marine and Petroleum Geology, 103: 12-28. https://doi.org/10.1016/j.marpetgeo.2019.02.003 [25] Xiao, D.S., Zhao, R.W., Yang, X., et al., 2019. Characterization, Classification and Contribution of Marine Shale Gas Reservoirs. Oil & Gas Geology, 40(6): 1215-1225 (in Chinese with English abstract). [26] Yao, Y. B., Liu, D. M., Che, Y., et al., 2010. Petrophysical Characterization of Coals by Low-Field Nuclear Magnetic Resonance (NMR). Fuel, 89(7): 1371-1380. https://doi.org/10.1016/j.fuel.2009.11.005 [27] Yu, C., Nie, H.K., Zeng, C.L., et al., 2014. Shale Reservoir Space Characteristics and the Effect on Gas Content in Lower Palaeozoic Erathem of the Eastern Sichuan Basin. Acta Geologica Sinica, 88(7): 1311-1320 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201407008.htm [28] Zhang, K. X., Lai, J., Bai, G. P., et al., 2020. Comparison of Fractal Models Using NMR and CT Analysis in Low Permeability Sandstones. Marine and Petroleum Geology, 112(6): 104069. https://doi.org/10.1016/j.marpetgeo.2019.104069 [29] Zhang, P., Huang, Y.Q., Zhang, J.C., et al., 2018. Fractal characteristics of the Longtan formation transitional shale in northwest Guizhou. Journal of China Coal Society, 43(6): 1580-1588 (in Chinese with English abstract). [30] Zhao, P. Q., Wang, Z. L., Sun, Z. C., et al., 2017. Investigation on the Pore Structure and Multifractal Characteristics of Tight Oil Reservoirs Using NMR Measurements: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. Marine and Petroleum Geology, 86(4): 1067-1081. https://doi.org/10.1016/j.marpetgeo.2017.07.011 [31] Zheng, S. J., Yao, Y. B., Liu, D. M., et al., 2019. Nuclear Magnetic Resonance T2 Cutoffs of Coals: A Novel Method by Multifractal Analysis Theory. Fuel, 241(6): 715-724. https://doi.org/10.1016/j.fuel.2018.12.044 [32] Zhou, S.W., Xue, H.Q., Guo, W., et al., 2016. A New Nuclear Magnetic Resonance Permeability Model of Shale of Longmaxi Formation in Southern Sichuan Basin. Journal of China University of Petroleum(Edition of Natural Science), 40(1): 56-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201601008.htm [33] Zhu, R.K., Wu, S.T., Su, L., et al., 2016. Problems and Future Works of Porous Texture Characterization of Tight Reservoirs in China. Acta Petrolei Sinica, 37(11): 1323-1336 (in Chinese with English abstract). [34] 蒋裕强, 刘雄伟, 付永红, 等, 2019. 渝西地区海相页岩储层孔隙有效性评价. 石油学报, 40(10): 1233-1243. doi: 10.7623/syxb201910008 [35] 李彤, 2008. 多重分形原理及其若干应用(硕士学位论文). 北京: 北京交通大学, 2-7. [36] 罗胜元, 陈孝红, 李海, 等, 2019. 鄂西宜昌下寒武统水井沱组页岩气聚集条件与含气特征. 地球科学, 44(11): 3598-3615. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911002.htm [37] 马新华, 2018. 四川盆地南部页岩气富集规律与规模有效开发探索. 天然气工业, 38(10): 1-10. doi: 10.3787/j.issn.1000-0976.2018.10.001 [38] 王超, 张柏桥, 舒志国, 等, 2019. 焦石坝地区五峰组-龙马溪组页岩纹层发育特征及其储集意义. 地球科学, 44(3): 972-982. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903024.htm [39] 王超勇, 鲍园, 琚宜文, 等, 2019. 利用FE-SEM、HIP、N_2吸附实验表征生物气化煤系有机岩储层微观孔隙结构演化. 地球科学, 45(1): 251-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202001020.htm [40] 王志刚, 2019. 涪陵大型海相页岩气田成藏条件及高效勘探开发关键技术. 石油学报, 40(3): 370-382. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201903011.htm [41] 肖佃师, 赵仁文, 杨潇, 等, 2019. 海相页岩气储层孔隙表征、分类及贡献. 石油与天然气地质, 40(6): 1215-1225. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906006.htm [42] 余川, 聂海宽, 曾春林, 等, 2014. 四川盆地东部下古生界页岩储集空间特征及其对含气性的影响. 地质学报, 88(7): 1311-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407008.htm [43] 张鹏, 黄宇琪, 张金川, 等, 2018. 黔西北地区龙潭组海陆过渡相泥页岩孔隙分形特征. 煤炭学报, 43(6): 1580-1588. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806010.htm [44] 周尚文, 薛华庆, 郭伟, 等, 2016. 川南龙马溪组页岩核磁渗透率新模型研究. 中国石油大学学报(自然科学版), 40(1): 56-61. doi: 10.3969/j.issn.1673-5005.2016.01.008 [45] 朱如凯, 吴松涛, 苏玲, 等, 2016. 中国致密储层孔隙结构表征需注意的问题及未来发展方向. 石油学报, 37(11): 1323-1336. doi: 10.7623/syxb201611001