• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    老挝万象凹陷钾盐矿床变形改造富集模式

    梁光河 徐兴旺

    梁光河, 徐兴旺, 2022. 老挝万象凹陷钾盐矿床变形改造富集模式. 地球科学, 47(1): 136-148. doi: 10.3799/dqkx.2021.075
    引用本文: 梁光河, 徐兴旺, 2022. 老挝万象凹陷钾盐矿床变形改造富集模式. 地球科学, 47(1): 136-148. doi: 10.3799/dqkx.2021.075
    Liang Guanghe, Xu Xingwang, 2022. Potash Deformation and Enrichment Modes in Vientiane Sag, Laos. Earth Science, 47(1): 136-148. doi: 10.3799/dqkx.2021.075
    Citation: Liang Guanghe, Xu Xingwang, 2022. Potash Deformation and Enrichment Modes in Vientiane Sag, Laos. Earth Science, 47(1): 136-148. doi: 10.3799/dqkx.2021.075

    老挝万象凹陷钾盐矿床变形改造富集模式

    doi: 10.3799/dqkx.2021.075
    基金项目: 

    第二次青藏高原综合科学考察研究 2019QZKK0806

    详细信息
      作者简介:

      梁光河(1965-), 男, 副研究员, 博士, 主要从事矿产资源勘查、大地构造和地震成因机制研究.ORCID: 0000-0003-1798-3309.E-mail: lgh@mail.iggcas.ac.cn

    • 中图分类号: P619.211

    Potash Deformation and Enrichment Modes in Vientiane Sag, Laos

    • 摘要:

      呵叻盆地是特提斯成矿带重要的钾盐成矿盆地,但是其变形构造与钾盐分布规律不清而严重制约了该区域钾盐矿床的勘探与开发. 在宏观区域大地构造演化分析基础上,以老挝万象凹陷中一个区块为例,实施了三维地震勘探,在高精度地震资料和钻井自然伽马测井严格约束下,得到了地下准确的构造变化和钾盐矿分布资料. 结合盐构造变形特征和地震勘探剖面进行了地质解译,结果显示印支地块的挤压走滑旋转对呵叻盆地内的钾盐矿进行了强烈改造,由此总结出三种钾盐矿改造模式,分别为蒸发岩侏罗山式褶皱变形模式、应力作用下的差异载荷富集模式和围绕硬质盐丘旋转的富集模式.

       

    • 图  1  印支地块区域大地构造简图(改自Li et al.,2017

      Fig.  1.  Generalized tectonic framework map of Indosinian Block (from Li et al., 2017)

      图  2  呵叻盆地地质简图及钾盐矿田分布区

      典型矿床:1. 普悦矿床;2. 班纳快矿床;3.塔贡矿床;4.农波矿床;5.农诺矿床;6.廊开矿床;7.乌隆矿床;8.哇伦矿床;9.孔敬矿床;10.那隆矿床;11.暖颂矿床;12.南丘克矿床. 构造单元:I. 华南陆块;II.印支地块;III. 素可泰岛弧;IV. 滇泰马地块;①为哀牢山‒马江缝合带;②为南府缝合带;③为蒙连‒英萨农缝合带

      Fig.  2.  Geological sketch of Khorat Basin and the distribution of potash ore fields

      图  3  万象凹陷构造简图(据张明明等,2015

      Fig.  3.  Structure of Vientiane Sag (from Zhang et al., 2015)

      图  4  地震勘探层位标定方法

      Fig.  4.  Calibration method for seismic horizons

      图  5  过两个钻孔的地震勘探深度剖面与伽马测井曲线标定对比

      Fig.  5.  Seismic exploration depth profile through two boreholes and calibration with gamma logging curve

      图  6  呵叻盆地随印支地块发生差异走滑旋转示意图

      Fig.  6.  Schematic diagram of the differential slip-rotation between Indosinian Block and the Khorat Basin

      图  7  软弱蒸发岩地层相对坚硬蒸发岩盆地基底在挤压作用下产生侏罗山式褶皱示意图

      Fig.  7.  Schematic diagrams of Jura type fold in relatively weak evaporite stratum produced by the compression of the basement of hard evaporite basin

      图  8  地震勘探剖面显示的侏罗山式褶皱

      Fig.  8.  The Jura type fold shown in the seismic exploration section

      图  9  在挤压应力发生差异载荷钾盐塑性流动富集模式

      Fig.  9.  Plastic flow enrichment model of potassium salt under differential loading stress

      图  10  地震勘探剖面上显示的钾盐矿向背斜顶部塑性流动富集

      Fig.  10.  Plastic flow enrichment of potash ore to the top of anticline shown on seismic exploration profile

      图  11  在挤压走滑旋转环境下钾盐环绕盐丘流变富集模型

      Fig.  11.  Rheological enrichment model of potassium salt surrounding salt dome under the condition of compression, strike slip and rotation

      图  12  勘探剖面P0钻探结果

      Fig.  12.  Drilling result of exploration line P0

      表  1  万象凹陷塔贡组主要岩性物理参数

      Table  1.   Major lithological physical parameters of Tageung Formation in Vientiane Sag

      岩性 速度
      (m/s)
      密度(g/cm3) 波阻抗(g·cm‒2·s) 顶部反射系数
      泥岩 2 700 2.27 6 129
      石盐 4 690 2.17 10 177 0.25
      泥岩 2 700 2.27 6 129 ‒0.25
      钾石岩 4 600 2.00 9 200 0.20
      光卤石 4 480 1.60 7 168 ‒0.12
      石盐 4 690 2.17 10 177 0.17
      砂岩 2 600 2.60 6 760 ‒0.20
      下载: 导出CSV

      表  2  研究区蒸发岩层序分层结构和对应的地震反射界面

      Table  2.   Sequence stratification structure and corresponding seismic reflection interface of evaporite in the study area

      亚段 岩性 地震界面
      第四系 全新统 砂土
      更新统 粘土


      上统 班塔博组 红色泥岩、粉砂岩
      Tg3-2


      上段 第二亚段
      (上碎屑岩层)
      红色层
      灰色层
      第一亚段
      (上膏岩层)
      石盐层
      石膏层
      Tg3-1
      中段 第二亚段
      (中碎屑岩层)
      红色层
      灰色层
      Tg2-2
      第一亚段
      (中膏岩层)
      石盐层
      钾镁盐层
      石盐层
      Tg2-1
      下段 第二亚段
      (下碎屑岩层)
      红色层
      灰色层
      Tg1-2
      第一亚段
      (下膏岩层)
      石盐层
      Tofp
      钾镁盐层
      Bofp
      石盐层
      石膏层
      Tg1-1
      中统 班塔拉组 (bt2
      下载: 导出CSV
    • [1] Avouac, J. P., Tapponnier, P., 1993. Kinematic Model of Active Deformation in Central Asia. Geophysical Research Letters, 20(10): 895-898. https://doi.org/10.1029/93gl00128
      [2] Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/s1367-9120(01)00069-4
      [3] Han, Y.H., Ma, H.Z., Yuan, X.L., et al., 2011. Comprehensive Comparison of Potash Deposits in Lanping-Simao Basin and Khorat Plateau. Journal of Salt Lake Research, 19(3): 1-7, 25 (in Chinese with English abstract).
      [4] Hansen, B. T., Wemmer, K., Eckhardt, M., et al., 2016. Isotope Dating of the Potash and Rock Salt Deposit at Bamnet Narong, NE-Thailand. Open Journal of Geology, 6(8): 875-894. https://doi.org/10.4236/ojg.2016.68067
      [5] Hardie, L. A., 1990. The Roles of Rifting and Hydrothermal CaCl2 Brines in the Origin of Potash Evaporites: An Hypothesis. American Journal of Science, 290(1): 43-106. https://doi.org/10.2475/ajs.290.1.43
      [6] Hou, M.C., Jiang, W.J., Deng, M., et al., 2019. Characteristics of Ordovician Volcaniclastic Materials in Yanxia Area of Northern Tarim Basin and Their Geological Significance. Earth Science, 44(3): 822-832 (in Chinese with English abstract).
      [7] Jia, C.Z., Zhao, W.Z., Wei, G.Q., et al., 2003. Salt Structures and Exploration of Oil and Gas. Petroleum Exploration and Development, 30(2): 17-19 (in Chinese with English abstract).
      [8] Labaume, P., Teixell, A., 2020. Evolution of Salt Structures of the Pyrenean Rift (Chaînons Béarnais, France): From Hyper-Extension to Tectonic Inversion. Tectonophysics, 785: 228451. https://doi.org/10.1016/j.tecto.2020.228451
      [9] Lee, T. Y., Lawver, L. A., 1995. Cenozoic Plate Reconstruction of Southeast Asia. Tectonophysics, 251(1-4): 85-138. https://doi.org/10.1016/0040-1951(95)00023-2
      [10] Li, L., Wang, Z.X., Zheng, Y.H., et al., 2019. Mechanism of Shale Oil Enrichment from the Salt Cyclotherm in Qian3 Member of Qianjiang Sag, Jianghan Basin. Earth Science, 44(3): 1012-1023 (in Chinese with English abstract).
      [11] Li, S. H., Advokaat, E. L., van Hinsbergen, D. J. J., et al., 2017. Paleomagnetic Constraints on the Mesozoic-Cenozoic Paleolatitudinal and Rotational History of Indochina and South China: Review and Updated Kinematic Reconstruction. Earth-Science Reviews, 171: 58-77. https://doi.org/10.1016/j.earscirev.2017.05.007
      [12] Li, S.H., Huang, B.C., Zhu, R.X., 2012. Paleomagnetic Constraints on the Tectonic Rotation of the Southeastern Margin of the Tibetan Plateau. Chinese Journal of Geophysics, 55(1): 76-94 (in Chinese with English abstract). doi: 10.1002/cjg2.1702
      [13] Liang, G.H., 2016. The Exploration Method of Ultra Large Potassic Salt Ore in Laos. Chemical Fertilizer Industry, 43(3): 72-76 (in Chinese with English abstract).
      [14] Liang, G.H., 2018. A Study of the Genesis of Hainan Island. Geology in China, 45(4): 693-705 (in Chinese with English abstract).
      [15] Liang, G.H., Xu, X.W., Liu, X.J., et al., 2019. Structural Deformation and Deep Ore Prediction for Satani Potash Deposit in Vientiane Basin, Laos. Geotectonica et Metallogenia, 43(5): 934-942 (in Chinese with English abstract).
      [16] Liu, C.L., Wang, M.L., Jiao, P.C., et al., 2006. The Exploration Experiences of Potash Deposits in the World and Probing of Countermeasures of China's Future Potash-Deposits Investigation. Geology of Chemical Minerals, (1): 1-8 (in Chinese with English abstract).
      [17] Morley, C. K., 2012. Late Cretaceous-Early Palaeogene Tectonic Development of SE Asia. Earth-Science Reviews, 115(1-2): 37-75. https://doi.org/10.1016/j.earscirev.2012.08.002
      [18] Ngoc N.T., 1998. Thermotectonic Events from Early Proterozoic to Miocene in the Indochina Craton: Implication of K-Ar Ages in Vietnam. Journal of Asian Earth Sciences, 16(5-6): 475-484. https://doi.org/10.1016/s0743-9547(98)00027-0
      [19] Qian, Z. Q., Qu, Y.H., Liu, Q., 1994. Potash Deposits. Geological Publishing House, Beijing (in Chinese).
      [20] Replumaz, A., Tapponnier, P., 2003. Reconstruction of the Deformed Collision Zone between India and Asia by Backward Motion of Lithospheric Blocks. Journal of Geophysical Research: Solid Earth, 108(B6): 2285. https://doi.org/10.1029/2001jb000661
      [21] Royden, L. H., Burchfiel, B. C., van der Hilst, R. D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058. https://doi.org/10.1126/science.1155371
      [22] Tapponnier, P., Peltzer, G., le Dain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611-616. https://doi.org/10.1130/0091-7613(1982)10611: petian>2.0.co;2 doi: 10.1130/0091-7613(1982)10611:petian>2.0.co;2
      [23] Wang, E., Meng, K., Su, Z., et al., 2014. Block Rotation: Tectonic Response of the Sichuan Basin to the Southeastward Growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang Fault. Tectonics, 33(5): 686-718. https://doi.org/10.1002/2013tc003337
      [24] Wang, S.H., Du, J.J., 2012. Study on the Controlling Structure of Salt Deposit in Vientiane Plain, Laos. Journal of Geomechanics, 18(1): 52-61 (in Chinese with English abstract).
      [25] Warren, J. K., 2010. Evaporites through Time: Tectonic, Climatic and Eustatic Controls in Marine and Nonmarine Deposits. Earth-Science Reviews, 98(3-4): 217-268. https://doi.org/10.1016/j.earscirev.2009.11.004
      [26] Xu, Y.Q., Wu, S.H., 2019. Study on the Occurrence Law of Potash Deposits in Vientiane Plain, Laos Based on 3D Seismic Data. Energy Technology and Management, 44(6): 159-161 (in Chinese).
      [27] Yang, Z. Y., Besse, J., 1993. Paleomagnetic Study of Permian and Mesozoic Sedimentary Rocks from Northern Thailand Supports the Extrusion Model for Indochina. Earth and Planetary Science Letters, 117(3-4): 525-552. https://doi.org/10.1016/0012-821x(93)90101-e
      [28] Yang, Z.Y., Besse, J., Sun, Z.M., et al., 1998. Tertiary Squeeze-out of the Indo-China Block and Lithospheric Evolution of the Qinghai-Tibetan Plateau. Acta Geologica Sinica, 72(2): 112-125 (in Chinese with English abstract).
      [29] Zhang, J.L., 2006. Correlation between Palaeogene K-Salt Deposits of China and Laos. Yunnan Geology, 25(3): 309-314 (in Chinese with English abstract).
      [30] Zhang, M.M., Zhang, X., Pan, L.L., 2015. Sylvine Ledge Characteristics and the Exploration Significance of Bugan District, Laos. Geology of Chemical Minerals, 37(2): 72-76, 84 (in Chinese with English abstract).
      [31] Zhang, X.Y., Ma, H.Z., Han, Y.H., 2012. Recent Status and Prospects on Potash Deposits on Thailand-Laos Khorat Plateau. Advances in Earth Science, 27(5): 549-556 (in Chinese with English abstract). http://www.adearth.ac.cn/EN/Y2012/V27/I5/549
      [32] Zhao, B., Wang, X., Feng, X.K., et al., 2016. Evolution of Cenozoic Salt-Related Structures of Bozidun Salt Diapir, Kuqa Depression: Evidence from Halokinetic Sequences. Geotectonica et Metallogenia, 40(5): 919-927 (in Chinese with English abstract).
      [33] Zheng, M.P., Zhang, Y.S., Liu, X.F., et al., 2016. Progress and Prospects of Salt Lake Research in China. Acta Geologica Sinica, 90(9): 2123-2166 (in Chinese with English abstract). doi: 10.1111/1755-6724.12767
      [34] Zheng, M.P., Zhang, Z., Yin, H.W., et al., 2014. A New Viewpoint Concerning the Formation of the Mengyejing Potash Deposit in Jiangcheng, Yunnan. Acta Geoscientica Sinica, 35(1): 11-24 (in Chinese with English abstract).
      [35] Zhong, W.F., Li, Z.W., Shan, W.G., 2003. A Study on the Sedimentary Characteristics and Origin of K-Mg Salt in Khorat Basin. Yunnan Geology, 22(2): 142-151 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-YNZD200302002.htm
      [36] Zhou, G.X., 2012. Seismic Interpretation of Potash Deposit Sedimentary Characteristics in Vientiane Plain, Laos. Coal Geology of China, 24(8): 70-72, 76 (in Chinese with English abstract).
      [37] Zhou, J.Y., Lin, Z.M., Zhou, L.F., et al., 1999. Plastic Deformation and Oil Gas Traps of Carboniferous Salt Body in Northern Tarim Basin. Oil & Gas Geology, 20(3): 216-219, 223 (in Chinese with English abstract).
      [38] Zhu, Y.Z., 2008. The Potash Deposits in Vientiane Plain, Laos. Geology and Resources, 17(1): 45-49 (in Chinese with English abstract).
      [39] 韩元红, 马海州, 袁小龙, 等, 2011. 兰坪‒思茅盆地与呵叻高原钾盐矿床综合对比. 盐湖研究, 19(3): 1-7, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201103002.htm
      [40] 侯明才, 江文剑, 邓敏, 等, 2019. 塔里木盆地盐下地区奥陶系火山碎屑物质特征. 地球科学, 44(3): 822-832. doi: 10.3799/dqkx.2019.001
      [41] 贾承造, 赵文智, 魏国齐, 等, 2003. 盐构造与油气勘探. 石油勘探与开发, 30(2): 17-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200302003.htm
      [42] 李乐, 王自翔, 郑有恒, 等, 2019. 江汉盆地潜江凹陷潜三段盐韵律层页岩油富集机理. 地球科学, 44(3): 1012-1023. doi: 10.3799/dqkx.2018.389
      [43] 李仕虎, 黄宝春, 朱日祥, 2012. 青藏高原东南缘构造旋转的古地磁学证据. 地球物理学报, 55(1): 76-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201201009.htm
      [44] 梁光河, 2016. 老挝超大型钾盐矿勘探方法. 化肥工业, 43(3): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-KDHL201603025.htm
      [45] 梁光河, 2018. 海南岛的成因机制研究. 中国地质, 45(4): 693-705. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201804005.htm
      [46] 梁光河, 徐兴旺, 刘兴江, 等, 2019. 老挝万象盆地萨塔尼钾盐矿的构造变形与深部矿预测. 大地构造与成矿学, 43(5): 934-942. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201905006.htm
      [47] 刘成林, 王弭力, 焦鹏程, 等, 2006. 世界主要古代钾盐找矿实践与中国找钾对策. 化工矿产地质, (1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC200601000.htm
      [48] 钱自强, 曲懿华, 刘群, 1994. 钾盐矿床. 北京: 地质出版社.
      [49] 王少华, 杜建军, 2012. 老挝万象平原盐类矿床控矿构造研究. 地质力学学报, 18(1): 52-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201201007.htm
      [50] 徐永清, 吴守华, 2019. 根据三维地震资料研究老挝万象平原钾盐矿赋存规律. 能源技术与管理, 44(6): 159-161. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT201906061.htm
      [51] 杨振宇, Besse, J., 孙知明, 等, 1998. 印度支那地块第三纪构造滑移与青藏高原岩石圈构造演化. 地质学报, 72(2): 112-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199802002.htm
      [52] 张建林, 2006. 中国‒老挝古近纪钾盐矿对比. 云南地质, 25(3): 309-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD200603006.htm
      [53] 张明明, 张旭, 潘林林, 2015. 老挝巴根矿区钾盐矿层特征及其勘探意义. 化工矿产地质, 37(2): 72-76, 84. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201502002.htm
      [54] 张西营, 马海州, 韩元红, 2012. 泰国‒老挝呵叻高原钾盐矿床研究现状及展望. 地球科学进展, 27(5): 549-556. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201205006.htm
      [55] 赵博, 汪新, 冯许魁, 等, 2016. 库车褶冲带博孜敦底辟新生代盐构造变形期次: 来自盐动力层序的证据. 大地构造与成矿学, 40(5): 919-927. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201605003.htm
      [56] 郑绵平, 张永生, 刘喜方, 等, 2016. 中国盐湖科学技术研究的若干进展与展望. 地质学报, 90(9): 2123-2166. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201609007.htm
      [57] 郑绵平, 张震, 尹宏伟, 等, 2014. 云南江城勐野井钾盐成矿新认识. 地球学报, 35(1): 11-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201401003.htm
      [58] 钟维敷, 李志伟, 单卫国, 2003. 呵叻盆地钾镁盐矿沉积特征及成因探讨. 云南地质, 22(2): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD200302002.htm
      [59] 周国兴, 2012. 老挝万象平原钾盐矿床沉积特征地震解释. 中国煤炭地质, 24(8): 70-72, 76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201208018.htm
      [60] 周江羽, 林忠民, 周凌方, 等, 1999. 塔里木盆地北部石炭系盐体塑性形变与油气圈闭. 石油与天然气地质, 20(3): 216-219, 223. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT199903007.htm
      [61] 朱延浙, 2008. 老挝万象平原钾盐矿床. 地质与资源, 17(1): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200801010.htm
    • 加载中
    图(12) / 表(2)
    计量
    • 文章访问数:  413
    • HTML全文浏览量:  140
    • PDF下载量:  51
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-12-16
    • 刊出日期:  2022-01-20

    目录

      /

      返回文章
      返回