Potash Deformation and Enrichment Modes in Vientiane Sag, Laos
-
摘要:
呵叻盆地是特提斯成矿带重要的钾盐成矿盆地,但是其变形构造与钾盐分布规律不清而严重制约了该区域钾盐矿床的勘探与开发. 在宏观区域大地构造演化分析基础上,以老挝万象凹陷中一个区块为例,实施了三维地震勘探,在高精度地震资料和钻井自然伽马测井严格约束下,得到了地下准确的构造变化和钾盐矿分布资料. 结合盐构造变形特征和地震勘探剖面进行了地质解译,结果显示印支地块的挤压走滑旋转对呵叻盆地内的钾盐矿进行了强烈改造,由此总结出三种钾盐矿改造模式,分别为蒸发岩侏罗山式褶皱变形模式、应力作用下的差异载荷富集模式和围绕硬质盐丘旋转的富集模式.
Abstract:The Khorat Basin is an important potash basin in the Tethys metallogenic belt, but the exploration and development of potash deposits in this area are severely restricted due to the unclear deformation structure and the distribution rules of potash salts. Based on the analysis of macro-regional tectonic evolution, taking a small region in the Vientiane Sag as an example, under the strict constraints of high-precision 3D seismic exploration and drilling natural gamma logging, the underground accurate structural changes and potash ore distribution data were obtained. Combined with the deformation characteristics of salt structure and seismic exploration profile, the geological interpretation was carried out. The results indicate that the squeeze, slip, and rotation of the Indosinian block have strongly transformed the potash deposits in the Khorat Basin. Three types of potash deposit transformation models are summarized, including evaporite Jura type fold deformation model, differential load enrichment modes under stress, enrichment mode rotating around hard salt mound.
-
Key words:
- Laos /
- Vientiane Sag /
- potash deposit /
- tectonic movement /
- deformation mode /
- mineral deposit
-
图 1 印支地块区域大地构造简图(改自Li et al.,2017)
Fig. 1. Generalized tectonic framework map of Indosinian Block (from Li et al., 2017)
图 3 万象凹陷构造简图(据张明明等,2015)
Fig. 3. Structure of Vientiane Sag (from Zhang et al., 2015)
表 1 万象凹陷塔贡组主要岩性物理参数
Table 1. Major lithological physical parameters of Tageung Formation in Vientiane Sag
岩性 速度
(m/s)密度(g/cm3) 波阻抗(g·cm‒2·s) 顶部反射系数 泥岩 2 700 2.27 6 129 石盐 4 690 2.17 10 177 0.25 泥岩 2 700 2.27 6 129 ‒0.25 钾石岩 4 600 2.00 9 200 0.20 光卤石 4 480 1.60 7 168 ‒0.12 石盐 4 690 2.17 10 177 0.17 砂岩 2 600 2.60 6 760 ‒0.20 表 2 研究区蒸发岩层序分层结构和对应的地震反射界面
Table 2. Sequence stratification structure and corresponding seismic reflection interface of evaporite in the study area
系 统 组 段 亚段 岩性 地震界面 第四系 全新统 砂土 更新统 粘土 白
垩
系上统 班塔博组 红色泥岩、粉砂岩 Tg3-2 塔
贡
组上段 第二亚段
(上碎屑岩层)红色层 灰色层 第一亚段
(上膏岩层)石盐层 石膏层 Tg3-1 中段 第二亚段
(中碎屑岩层)红色层 灰色层 Tg2-2 第一亚段
(中膏岩层)石盐层 钾镁盐层 石盐层 Tg2-1 下段 第二亚段
(下碎屑岩层)红色层 灰色层 Tg1-2 第一亚段
(下膏岩层)石盐层 Tofp 钾镁盐层 Bofp 石盐层 石膏层 Tg1-1 中统 班塔拉组 (bt2) -
[1] Avouac, J. P., Tapponnier, P., 1993. Kinematic Model of Active Deformation in Central Asia. Geophysical Research Letters, 20(10): 895-898. https://doi.org/10.1029/93gl00128 [2] Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/s1367-9120(01)00069-4 [3] Han, Y.H., Ma, H.Z., Yuan, X.L., et al., 2011. Comprehensive Comparison of Potash Deposits in Lanping-Simao Basin and Khorat Plateau. Journal of Salt Lake Research, 19(3): 1-7, 25 (in Chinese with English abstract). [4] Hansen, B. T., Wemmer, K., Eckhardt, M., et al., 2016. Isotope Dating of the Potash and Rock Salt Deposit at Bamnet Narong, NE-Thailand. Open Journal of Geology, 6(8): 875-894. https://doi.org/10.4236/ojg.2016.68067 [5] Hardie, L. A., 1990. The Roles of Rifting and Hydrothermal CaCl2 Brines in the Origin of Potash Evaporites: An Hypothesis. American Journal of Science, 290(1): 43-106. https://doi.org/10.2475/ajs.290.1.43 [6] Hou, M.C., Jiang, W.J., Deng, M., et al., 2019. Characteristics of Ordovician Volcaniclastic Materials in Yanxia Area of Northern Tarim Basin and Their Geological Significance. Earth Science, 44(3): 822-832 (in Chinese with English abstract). [7] Jia, C.Z., Zhao, W.Z., Wei, G.Q., et al., 2003. Salt Structures and Exploration of Oil and Gas. Petroleum Exploration and Development, 30(2): 17-19 (in Chinese with English abstract). [8] Labaume, P., Teixell, A., 2020. Evolution of Salt Structures of the Pyrenean Rift (Chaînons Béarnais, France): From Hyper-Extension to Tectonic Inversion. Tectonophysics, 785: 228451. https://doi.org/10.1016/j.tecto.2020.228451 [9] Lee, T. Y., Lawver, L. A., 1995. Cenozoic Plate Reconstruction of Southeast Asia. Tectonophysics, 251(1-4): 85-138. https://doi.org/10.1016/0040-1951(95)00023-2 [10] Li, L., Wang, Z.X., Zheng, Y.H., et al., 2019. Mechanism of Shale Oil Enrichment from the Salt Cyclotherm in Qian3 Member of Qianjiang Sag, Jianghan Basin. Earth Science, 44(3): 1012-1023 (in Chinese with English abstract). [11] Li, S. H., Advokaat, E. L., van Hinsbergen, D. J. J., et al., 2017. Paleomagnetic Constraints on the Mesozoic-Cenozoic Paleolatitudinal and Rotational History of Indochina and South China: Review and Updated Kinematic Reconstruction. Earth-Science Reviews, 171: 58-77. https://doi.org/10.1016/j.earscirev.2017.05.007 [12] Li, S.H., Huang, B.C., Zhu, R.X., 2012. Paleomagnetic Constraints on the Tectonic Rotation of the Southeastern Margin of the Tibetan Plateau. Chinese Journal of Geophysics, 55(1): 76-94 (in Chinese with English abstract). doi: 10.1002/cjg2.1702 [13] Liang, G.H., 2016. The Exploration Method of Ultra Large Potassic Salt Ore in Laos. Chemical Fertilizer Industry, 43(3): 72-76 (in Chinese with English abstract). [14] Liang, G.H., 2018. A Study of the Genesis of Hainan Island. Geology in China, 45(4): 693-705 (in Chinese with English abstract). [15] Liang, G.H., Xu, X.W., Liu, X.J., et al., 2019. Structural Deformation and Deep Ore Prediction for Satani Potash Deposit in Vientiane Basin, Laos. Geotectonica et Metallogenia, 43(5): 934-942 (in Chinese with English abstract). [16] Liu, C.L., Wang, M.L., Jiao, P.C., et al., 2006. The Exploration Experiences of Potash Deposits in the World and Probing of Countermeasures of China's Future Potash-Deposits Investigation. Geology of Chemical Minerals, (1): 1-8 (in Chinese with English abstract). [17] Morley, C. K., 2012. Late Cretaceous-Early Palaeogene Tectonic Development of SE Asia. Earth-Science Reviews, 115(1-2): 37-75. https://doi.org/10.1016/j.earscirev.2012.08.002 [18] Ngoc N.T., 1998. Thermotectonic Events from Early Proterozoic to Miocene in the Indochina Craton: Implication of K-Ar Ages in Vietnam. Journal of Asian Earth Sciences, 16(5-6): 475-484. https://doi.org/10.1016/s0743-9547(98)00027-0 [19] Qian, Z. Q., Qu, Y.H., Liu, Q., 1994. Potash Deposits. Geological Publishing House, Beijing (in Chinese). [20] Replumaz, A., Tapponnier, P., 2003. Reconstruction of the Deformed Collision Zone between India and Asia by Backward Motion of Lithospheric Blocks. Journal of Geophysical Research: Solid Earth, 108(B6): 2285. https://doi.org/10.1029/2001jb000661 [21] Royden, L. H., Burchfiel, B. C., van der Hilst, R. D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058. https://doi.org/10.1126/science.1155371 [22] Tapponnier, P., Peltzer, G., le Dain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611-616. https://doi.org/10.1130/0091-7613(1982)10611: petian>2.0.co;2 doi: 10.1130/0091-7613(1982)10611:petian>2.0.co;2 [23] Wang, E., Meng, K., Su, Z., et al., 2014. Block Rotation: Tectonic Response of the Sichuan Basin to the Southeastward Growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang Fault. Tectonics, 33(5): 686-718. https://doi.org/10.1002/2013tc003337 [24] Wang, S.H., Du, J.J., 2012. Study on the Controlling Structure of Salt Deposit in Vientiane Plain, Laos. Journal of Geomechanics, 18(1): 52-61 (in Chinese with English abstract). [25] Warren, J. K., 2010. Evaporites through Time: Tectonic, Climatic and Eustatic Controls in Marine and Nonmarine Deposits. Earth-Science Reviews, 98(3-4): 217-268. https://doi.org/10.1016/j.earscirev.2009.11.004 [26] Xu, Y.Q., Wu, S.H., 2019. Study on the Occurrence Law of Potash Deposits in Vientiane Plain, Laos Based on 3D Seismic Data. Energy Technology and Management, 44(6): 159-161 (in Chinese). [27] Yang, Z. Y., Besse, J., 1993. Paleomagnetic Study of Permian and Mesozoic Sedimentary Rocks from Northern Thailand Supports the Extrusion Model for Indochina. Earth and Planetary Science Letters, 117(3-4): 525-552. https://doi.org/10.1016/0012-821x(93)90101-e [28] Yang, Z.Y., Besse, J., Sun, Z.M., et al., 1998. Tertiary Squeeze-out of the Indo-China Block and Lithospheric Evolution of the Qinghai-Tibetan Plateau. Acta Geologica Sinica, 72(2): 112-125 (in Chinese with English abstract). [29] Zhang, J.L., 2006. Correlation between Palaeogene K-Salt Deposits of China and Laos. Yunnan Geology, 25(3): 309-314 (in Chinese with English abstract). [30] Zhang, M.M., Zhang, X., Pan, L.L., 2015. Sylvine Ledge Characteristics and the Exploration Significance of Bugan District, Laos. Geology of Chemical Minerals, 37(2): 72-76, 84 (in Chinese with English abstract). [31] Zhang, X.Y., Ma, H.Z., Han, Y.H., 2012. Recent Status and Prospects on Potash Deposits on Thailand-Laos Khorat Plateau. Advances in Earth Science, 27(5): 549-556 (in Chinese with English abstract). http://www.adearth.ac.cn/EN/Y2012/V27/I5/549 [32] Zhao, B., Wang, X., Feng, X.K., et al., 2016. Evolution of Cenozoic Salt-Related Structures of Bozidun Salt Diapir, Kuqa Depression: Evidence from Halokinetic Sequences. Geotectonica et Metallogenia, 40(5): 919-927 (in Chinese with English abstract). [33] Zheng, M.P., Zhang, Y.S., Liu, X.F., et al., 2016. Progress and Prospects of Salt Lake Research in China. Acta Geologica Sinica, 90(9): 2123-2166 (in Chinese with English abstract). doi: 10.1111/1755-6724.12767 [34] Zheng, M.P., Zhang, Z., Yin, H.W., et al., 2014. A New Viewpoint Concerning the Formation of the Mengyejing Potash Deposit in Jiangcheng, Yunnan. Acta Geoscientica Sinica, 35(1): 11-24 (in Chinese with English abstract). [35] Zhong, W.F., Li, Z.W., Shan, W.G., 2003. A Study on the Sedimentary Characteristics and Origin of K-Mg Salt in Khorat Basin. Yunnan Geology, 22(2): 142-151 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-YNZD200302002.htm [36] Zhou, G.X., 2012. Seismic Interpretation of Potash Deposit Sedimentary Characteristics in Vientiane Plain, Laos. Coal Geology of China, 24(8): 70-72, 76 (in Chinese with English abstract). [37] Zhou, J.Y., Lin, Z.M., Zhou, L.F., et al., 1999. Plastic Deformation and Oil Gas Traps of Carboniferous Salt Body in Northern Tarim Basin. Oil & Gas Geology, 20(3): 216-219, 223 (in Chinese with English abstract). [38] Zhu, Y.Z., 2008. The Potash Deposits in Vientiane Plain, Laos. Geology and Resources, 17(1): 45-49 (in Chinese with English abstract). [39] 韩元红, 马海州, 袁小龙, 等, 2011. 兰坪‒思茅盆地与呵叻高原钾盐矿床综合对比. 盐湖研究, 19(3): 1-7, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201103002.htm [40] 侯明才, 江文剑, 邓敏, 等, 2019. 塔里木盆地盐下地区奥陶系火山碎屑物质特征. 地球科学, 44(3): 822-832. doi: 10.3799/dqkx.2019.001 [41] 贾承造, 赵文智, 魏国齐, 等, 2003. 盐构造与油气勘探. 石油勘探与开发, 30(2): 17-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200302003.htm [42] 李乐, 王自翔, 郑有恒, 等, 2019. 江汉盆地潜江凹陷潜三段盐韵律层页岩油富集机理. 地球科学, 44(3): 1012-1023. doi: 10.3799/dqkx.2018.389 [43] 李仕虎, 黄宝春, 朱日祥, 2012. 青藏高原东南缘构造旋转的古地磁学证据. 地球物理学报, 55(1): 76-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201201009.htm [44] 梁光河, 2016. 老挝超大型钾盐矿勘探方法. 化肥工业, 43(3): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-KDHL201603025.htm [45] 梁光河, 2018. 海南岛的成因机制研究. 中国地质, 45(4): 693-705. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201804005.htm [46] 梁光河, 徐兴旺, 刘兴江, 等, 2019. 老挝万象盆地萨塔尼钾盐矿的构造变形与深部矿预测. 大地构造与成矿学, 43(5): 934-942. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201905006.htm [47] 刘成林, 王弭力, 焦鹏程, 等, 2006. 世界主要古代钾盐找矿实践与中国找钾对策. 化工矿产地质, (1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC200601000.htm [48] 钱自强, 曲懿华, 刘群, 1994. 钾盐矿床. 北京: 地质出版社. [49] 王少华, 杜建军, 2012. 老挝万象平原盐类矿床控矿构造研究. 地质力学学报, 18(1): 52-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201201007.htm [50] 徐永清, 吴守华, 2019. 根据三维地震资料研究老挝万象平原钾盐矿赋存规律. 能源技术与管理, 44(6): 159-161. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT201906061.htm [51] 杨振宇, Besse, J., 孙知明, 等, 1998. 印度支那地块第三纪构造滑移与青藏高原岩石圈构造演化. 地质学报, 72(2): 112-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199802002.htm [52] 张建林, 2006. 中国‒老挝古近纪钾盐矿对比. 云南地质, 25(3): 309-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD200603006.htm [53] 张明明, 张旭, 潘林林, 2015. 老挝巴根矿区钾盐矿层特征及其勘探意义. 化工矿产地质, 37(2): 72-76, 84. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC201502002.htm [54] 张西营, 马海州, 韩元红, 2012. 泰国‒老挝呵叻高原钾盐矿床研究现状及展望. 地球科学进展, 27(5): 549-556. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201205006.htm [55] 赵博, 汪新, 冯许魁, 等, 2016. 库车褶冲带博孜敦底辟新生代盐构造变形期次: 来自盐动力层序的证据. 大地构造与成矿学, 40(5): 919-927. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201605003.htm [56] 郑绵平, 张永生, 刘喜方, 等, 2016. 中国盐湖科学技术研究的若干进展与展望. 地质学报, 90(9): 2123-2166. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201609007.htm [57] 郑绵平, 张震, 尹宏伟, 等, 2014. 云南江城勐野井钾盐成矿新认识. 地球学报, 35(1): 11-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201401003.htm [58] 钟维敷, 李志伟, 单卫国, 2003. 呵叻盆地钾镁盐矿沉积特征及成因探讨. 云南地质, 22(2): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD200302002.htm [59] 周国兴, 2012. 老挝万象平原钾盐矿床沉积特征地震解释. 中国煤炭地质, 24(8): 70-72, 76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201208018.htm [60] 周江羽, 林忠民, 周凌方, 等, 1999. 塔里木盆地北部石炭系盐体塑性形变与油气圈闭. 石油与天然气地质, 20(3): 216-219, 223. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT199903007.htm [61] 朱延浙, 2008. 老挝万象平原钾盐矿床. 地质与资源, 17(1): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200801010.htm