• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青藏高原冰崩隐患发育分布规律及危险性

    汤明高 王李娜 刘昕昕 秦佳俊 李扬

    汤明高, 王李娜, 刘昕昕, 秦佳俊, 李扬, 2022. 青藏高原冰崩隐患发育分布规律及危险性. 地球科学, 47(12): 4647-4662. doi: 10.3799/dqkx.2021.074
    引用本文: 汤明高, 王李娜, 刘昕昕, 秦佳俊, 李扬, 2022. 青藏高原冰崩隐患发育分布规律及危险性. 地球科学, 47(12): 4647-4662. doi: 10.3799/dqkx.2021.074
    Tang Minggao, Wang Lina, Liu Xinxin, Qin Jiajun, Li Yang, 2022. Distribution and Risk of Ice Avalanche Hazards in Tibetan Plateau. Earth Science, 47(12): 4647-4662. doi: 10.3799/dqkx.2021.074
    Citation: Tang Minggao, Wang Lina, Liu Xinxin, Qin Jiajun, Li Yang, 2022. Distribution and Risk of Ice Avalanche Hazards in Tibetan Plateau. Earth Science, 47(12): 4647-4662. doi: 10.3799/dqkx.2021.074

    青藏高原冰崩隐患发育分布规律及危险性

    doi: 10.3799/dqkx.2021.074
    基金项目: 

    第二次青藏高原综合科学考察研究资助 2019QZKK0201

    国家自然科学基金重大专项 41941019

    详细信息
      作者简介:

      汤明高(1978-),男,博士,教授,主要从事地质灾害、评价预测及防治研究.ORCID:0000-0002-5890-9511.E-mail:tomyr2008@163.com

      通讯作者:

      王李娜, E-mail:2406824830@qq.com

    • 中图分类号: P694

    Distribution and Risk of Ice Avalanche Hazards in Tibetan Plateau

    • 摘要:

      随着全球气候变暖,青藏高原冰崩灾害日益加剧.通过大量遥感解译及数据分析,系统查明青藏高原冰崩隐患数量、类型、发育规律及危险性:(1)40 269条冰川共发育冰崩隐患581处.按失稳方式分为滑移式和崩落式;按成灾模式分为冰崩直接灾害、冰崩-堵江溃决和冰崩-冰湖溃决灾害.(2)冰崩敏感坡度40°~50°,集中分布高程为4 500~5 500 m,坡向具有“亲北性”.(3)区域分布差异大.西藏和新疆区域分布共占89.5%,雅鲁藏布江和塔里木河流域分布共占80.4%,念青唐古拉山脉和横断山脉分布共占49.4%.(4)空间分异明显.冰崩前缘高程以喜马拉雅东构造结为界,以西呈自西向东增大的趋势,以东呈先减小后增大的“V”型趋势,40.1%的冰崩前缘高程4 500~5 000 m、位于雪线附近,受山脉控制具有气候带交界“群聚性”特点.(5)高危险的冰崩隐患点36处、中等危险215处、低危险330处.

       

    • 图  1  研究区范围

      Fig.  1.  Study area

      图  2  冰崩遥感解译标识

      Fig.  2.  Remote sensing interpretation symbol of ice avalanche

      图  3  冰崩解译示例

      a.影像色调为浅灰色,悬挂于冰川前沿冰舌处,坡度约40°;b.冰崩后缘拉张裂隙发育, 碎屑堆积体两侧铲刮明显; 蓝色为所属冰川区域,红色为冰崩隐患区

      Fig.  3.  Example of remote sensing interpretation for ice avalanche

      图  4  研究流程图

      Fig.  4.  Flow diagram of remote sensing interpretation

      图  5  冰崩失稳模式分类

      a.滑移式冰崩及变形失稳模式; b.崩落式冰崩及变形失稳模式

      Fig.  5.  Ice avalanche divided by moving mode

      图  6  冰崩成灾模式分类

      Fig.  6.  Ice avalanche divided by disaster-causing mode

      图  7  冰崩表面裂隙发育程度

      Fig.  7.  Development of ice crevasses

      图  8  冰崩隐患发育特征区间统计

      Fig.  8.  Statistics on character of ice avalanche

      图  9  冰崩隐患坡向统计图

      Fig.  9.  Direction statistics of ice avalanche

      图  10  冰崩隐患坡向与高程的关系

      Fig.  10.  Relation between direction and elevation

      图  11  青藏高原冰崩灾害隐患区域分布

      Fig.  11.  Spatial distribution of ice avalanche in Tibetan Plateau

      图  12  冰崩隐患前后缘高程分布与经纬度关系

      Fig.  12.  Relation between latitude and longitude with the back edge and toe elevation of ice avalanche

      图  13  冰崩隐患平均高程与温度的关系

      Fig.  13.  Relationship between mean elevation of ice avalanche

      图  14  青藏高原气候类型分布示意

      Fig.  14.  Distribution of climate types in Tibetan plateau of ice avalanche and temperature

      图  15  危险性评估指标体系

      Fig.  15.  Factors of risk assessment

      图  16  青藏高原冰崩灾害隐患危险性分区分布

      Fig.  16.  Distribution of different risks of ice avalanche in Tibetan plateau

      图  17  冰崩隐患危险性等级划分

      Fig.  17.  Classification of risk of ice avalanche

      图  18  冰崩隐患危险性行政区划、流域、山脉统计

      Fig.  18.  Statistics of administrative division, river basin and mountain range of potential risk of ice avalanche

      图  19  阿汝错冰崩发生前后遥感影像对比

      a.冰崩发生前冰川全貌(引自http://jern.uio.no/remotesensing/gaphaz.);b.冰川表面揉皱破碎化;c.后缘冰裂隙发育;d.冰崩发生后冰川全貌;e.冰崩解体物质铲刮裹挟表面堆积体,基岩出露

      Fig.  19.  Comparison of remote sensing images before and after the Aru ice avalanches

      表  1  裂隙发育程度分类

      Table  1.   Assessment of development of ice crevasses

      发育程度 裂隙数(组) 分布密度 描述
      弱发育 < 5 稀疏 分布密度较小,裂缝张开度小,裂面较粗糙,延伸不远
      中等发育 5~10 较密集 居于两者之间
      强发育 > 10 密集 分布密度较大;裂缝张开度大,裂面较平直,延伸较远
      下载: 导出CSV

      表  2  冰崩危险性评价因子

      Table  2.   Factors of risk assessment of ice avalanche

      符号 因子 描述
      S1 坡度(°) 坡度对冰崩的发生有明显的控制作用,不仅决定斜坡的应力分布特征,而且影响着冰雪覆盖物、地表径流、坡体松散物的堆积.一般地面坡度越大,冰崩发生的规模和概率也越大
      S2 坡向(°) 不同坡向的太阳辐射强度不同,进而影响坡面冰雪覆盖度和蒸发情况
      S3 前后缘相对高差
      (m)
      冰崩最大高程与最小高程的差值,体现了冰崩的空间几何特点.高差决定了冰崩势能累积能力的大小,高差越大,灾害发生时的动能也越大
      S4 面积(km2) 面积在一定程度上体现了冰储量大小,直接决定了冰崩的物源物质条件;结合坡度S1和高差S3能有效反映冰崩的空间几何特征
      S5 裂缝发育程度 冰川表面裂隙密度越大,间距越宽,延伸越长,局部冰体越易沿此裂缝脱离崩落,裂隙发育为冰崩的形成提供有利的物质结构条件
      S6 平均月最高气温
      (℃/a)
      气温上升加速冰雪消融,对冰川规模、面积、退缩速度有直接影响,易降低覆盖冰雪稳定性
      S7 多年平均降雨量(mm/a) 降雨增加有利于冰川补给,为冰崩提供充足的物源,在雨水冲刷作用下易降低冰雪覆盖层的稳定,降雨量越大危险性越高
      S8 距最近构造距离
      (km)
      断裂等地质构造的分布往往影响滑坡、崩塌、地震等灾害发生,构造越发育,坡体稳定性越差,冰崩也有沿断裂带分布的特征
      S9 地震发育密度
      (次/ km2)
      地震烈度、震级、次数是冰崩灾害的关键诱因,提取冰崩半径100 km范围内≥5级地震的发生次数,数值越大引发冰崩的规模和概率就越大
      下载: 导出CSV

      表  3  评价因子权重值

      Table  3.   Weight of assessment factors

      评价因子 S1 S2 S3 S4 S5 S6 S7 S8 S9
      权重 0.230 7 0.028 8 0.147 2 0.227 4 0.143 8 0.084 5 0.063 6 0.043 6 0.030 4
      下载: 导出CSV

      表  4  冰崩危险性评价因子基准值划分

      Table  4.   Benchmark values of assessing factors of ice avalanche

      评价因子 低危险(V1) 中危险(V2) 高危险(V3)
      坡度(°)/S1 ≤ 25 (25,45) ≥ 45
      坡向(°)/S2 N NE、E、SE、
      SW、W、NW
      S
      前后缘相对高差(m)/S3 ≤ 500 (500,1 000) ≥ 1 000
      面积(km2)/S4 ≤ 1 (1,2) ≥ 2
      裂缝发育程度/S5 弱发育 中等发育 强发育
      月平均最高温度(℃)/S6 ≤ -5 (-5,5) ≥ 5
      年平均降雨量(mm)/S7 ≤ 300 (300,600) ≥ 600
      距最近断裂距离(km)/S8 ≥ 10 (1,10) ≤ 1
      地震发育密度(次/半径km)/S9 ≤ 5 (5,10) ≥ 10
      下载: 导出CSV

      表  5  冰崩灾害点危险性等级划分统计

      Table  5.   Statistics of different risk grades

      等级 冰崩个数 占比(%)
      低危险性 330 56.80
      中危险性 215 37.00
      高危险性 36 6.20
      下载: 导出CSV
    • [1] An, G. Y., Han, L., Tu, J. N., et al., 2019. Remote Sensing Survey on Glacial Dynamic Evolution in the Himalayas in China during 1999—2015. Geoscience, 33(5): 1086-1097(in Chinese with English abstract).
      [2] Chai, B., Tao, Y. Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639(in Chinese with English abstract).
      [3] Chen, X. Q., Cui, P., Yang, Z., et al., 2005. Change in Glaciers and Glacier Lakes in Boiqu River Basin, Middle Himalayas during Last 15 Years. Journal of Glaciology and Geocryology, 27(6): 793-800(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0240.2005.06.002
      [4] Du, G. L., 2017. Development Characteristics and Hazard Assessment of Landslide in the Eastern Himalayan Syntaxis Region of Tibetan Plateau (Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract).
      [5] Frauenfelder, R., 2005. Regional-Scale Modelling of the Occurrence and Dynamics of Rock Glaciers and the Distribution of Paleo Permafrost (Dissertation). University of Zurich, Switzerland.
      [6] Gallo, F., Lavé, J., 2014. Evolution of a Large Landslide in the High Himalaya of Central Nepal during the Last Half-Century. Geomorphology, 223: 20-32. https://doi.org/10.1016/j.geomorph.2014.06.021
      [7] Hu, W. T., Yao, T. D., Yu, W. S., et al., 2018. Advances in the Study of Glacier Avalanches in High Asia. Journal of Glaciology and Geocryology, 40(6): 1141-1152(in Chinese with English abstract).
      [8] Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549(in Chinese with English abstract).
      [9] Janke, J. R., Bellisario, A. C., Ferrando, F. A., 2015. Classification of Debris-Covered Glaciers and Rock Glaciers in the Andes of Central Chile. Geomorphology, 241: 98-121. https://doi.org/10.1016/j.geomorph.2015.03.034
      [10] Kääb, A., 2007. Periglacial Landforms, Rock Forms Rock Glaciers and Protalus Forms. In: Elias, S. A., ed., Encyclopedia of Quaternary Science. Elsevier, Amsterdam, 2236-2242. https://doi.org/10.1016/b0-44-452747-8/00114-9
      [11] Kääb, A., Leinss, S., Gilbert, A., et al., 2018. Massive Collapse of Two Glaciers in Western Tibet in 2016 After Surge-Like Instability. Nature Geoscience, 11: 114-123. https://doi.org/10.1038/s41561-017-0039-7
      [12] Kritikos, T., Robinson, T., Davies, T., 2015. Regional Coseismic Landslide Hazard Assessment without Historical Landslide Inventories: A New Approach. Journal of Geophysical Research: Earth Surface, 120: 711-729. https://doi.org/10.1002/2014jf003224
      [13] Liu, C. Z., Lü, J. T., Tong, L. Q., et al., 2019. Research on Glacial/Rock Fall-Landslide-Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet. Geology in China, 46(2): 219-234(in Chinese with English abstract).
      [14] Liu, S. Y., Guo, W. Q., Xu, L. J., 2012. The Second Glacier Inventory Dataset of China (version 1.0) (2006—2011). National Tibetan Plateau Data Center, Beijing (in Chinese). https://doi.org/10.3972/glacier.001.2013.db
      [15] Liu, S. Y., Yao, X. J., Guo, W. Q., et al., 2015. The Contemporary Glaciers in China Based on the Second Chinese Glacier Inventory. Acta Geographica Sinica, 70(1): 3-16(in Chinese with English abstract).
      [16] Liu, Z. X., Su, Z., Yao, T. D., et al., 2000. Glacier Resources and Their Distribution Characteristics in Qinghai-Tibet Plateau. Resources Science, 22(5): 49-52(in Chinese with English abstract). doi: 10.3321/j.issn:1007-7588.2000.05.011
      [17] Mahboob, M. A., Iqbal, J., Atif, I., 2015. Modeling and Simulation of Glacier Avalanche: A Case Study of Gayari Sector Glaciers Hazards Assessment. IEEE Transactions on Geoscience and Remote Sensing, 53(11): 5824-5834. https://doi.org/10.1109/tgrs.2015.2419171
      [18] Pandey, P., 2019. Inventory of Rock Glaciers in Himachal Himalaya, India Using High-Resolution Google Earth Imagery. Geomorphology, 340: 103-115. https://doi.org/10.1016/j.geomorph.2019.05.001
      [19] Pei, L. X., 2019. The Preliminary Study of Characteristics and Types of Ice Avalanche Disaster in the Tibetan Plateau (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [20] Pellicani, R., van Westen, C. J., Spilotro, G., 2014. Assessing Landslide Exposure in Areas with Limited Landslide Information. Landslides, 11(3): 463-480. https://doi.org/10.1007/s10346-013-0386-4
      [21] Peng, S. Z., 2019a. High-Spatial-Resolution Monthly Precipitation Dataset over China during 1901—2017. Earth System Science Data, 11(4): 1931-1946. https://doi.org/10.5281/zenodo.3114194
      [22] Peng, S. Z., 2019b. High-Spatial-Resolution Monthly Temperatures Dataset over China during 1901—2017. Earth System Science Data, 11(4): 1931-1946. https://doi.org/10.5281/zenodo.3185722
      [23] Pralong, A., Funk, M., 2006. On the Instability of Avalanching Glaciers. Journal of Glaciology, 52(176): 31-48. https://doi.org/10.3189/172756506781828980
      [24] Salzmann, N., Kääb, A., Huggel, C., et al., 2004. Assessment of the Hazard Potential of Ice Avalanches Using Remote Sensing and GIS-Modelling. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 58(2): 74-84. https://doi.org/10.1080/00291950410006805
      [25] Shi, L. N., Ji, X. F., Wang, X., 2017. Extraction of Ice Collapse Range in Ali, Tibet Using Sentinel-2A Data. Inner Mongolia Coal Economy, (2): 157-160(in Chinese). doi: 10.3969/j.issn.1008-0155.2017.02.083
      [26] Sun, M. P., Liu, S. Y., Yao, X. J., et al., 2014. The Cause and Potential Hazard of Glacial Lake Outburst Flood Occurred on July 5, 2013 in Jiali County, Tibet. Journal of Glaciology and Geocryology, 36(1): 158-165(in Chinese with English abstract).
      [27] Sun, S. W., Kang, S. C., Zhang, Q. G., et al., 2020. Mercury in Cryosphere of the Tibetan Plateau and Its Environmental Significance. Chinese Journal of Nature, 42(5): 364-372(in Chinese with English abstract). doi: 10.3969/j.issn.0253-9608.2020.05.002
      [28] Tong, L. Q., Pei, L. X., Tu, J. N., et al., 2020. A Preliminary Study of Definition and Classification of Ice Avalanche in the Tibetan Plateau Region. Remote Sensing for Land & Resources, 32(2): 11-18(in Chinese with English abstract).
      [29] Tong, L. Q., Tu, J. N., Pei, L. X., et al., 2018. Preliminary Discussion of the Frequently Debris Flow Events in Sedongpu Basin at Gyalaperi Peak, Yarlung Zangbo River. Journal of Engineering Geology, 26(6): 1552-1561(in Chinese with English abstract).
      [30] Wang, J., 2020. Earthquake Catalogue with M≥5 in Pan-Third Pole since 1960. National Tibetan Plateau Data Center, Beijing (in Chinese).
      [31] Wu, G. J., Yao, T. D., Wang, W. C., et al., 2019. Glacial Hazards on Tibetan Plateau and Surrounding Alpines. Bulletin of Chinese Academy of Sciences, 34(11): 1285-1292(in Chinese with English abstract).
      [32] Xue, Y. G., Kong, F. M., Yang, W. M., et al., 2020. Main Unfavorable Geological Conditions and Engineering Geological Problems along Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(3): 445-468(in Chinese with English abstract).
      [33] Zhang, Y. L., Li, B. Y., Zheng, D., 2002. A Discussion on the Boundary and Area of the Tibetan Plateau in China. Geographical Research, 21(1): 1-8(in Chinese with English abstract).
      [34] 安国英, 韩磊, 涂杰楠, 等, 2019. 中国喜马拉雅山地区冰川1999—2015年期间动态变化遥感调查. 现代地质, 33(5): 1086-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905017.htm
      [35] 柴波, 陶阳阳, 杜娟, 等, 2020. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价. 地球科学, 45(12): 4630-4639. doi: 10.3799/dqkx.2020.294
      [36] 陈晓清, 崔鹏, 杨忠, 等, 2005. 近15a喜马拉雅山中段波曲流域冰川和冰湖变化. 冰川冻土, 27(6): 793-800.
      [37] 杜国梁, 2017. 喜马拉雅东构造结地区滑坡发育特征及危险性评价(博士学位论文). 北京: 中国地质科学院.
      [38] 胡文涛, 姚檀栋, 余武生, 等, 2018. 高亚洲地区冰崩灾害的研究进展. 冰川冻土, 40(6): 1141-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201806008.htm
      [39] 黄发明, 叶舟, 姚池, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247
      [40] 刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究. 中国地质, 46(2): 219-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm
      [41] 刘时银, 郭万钦, 许君利, 2012. 中国第二次冰川编目数据集(V1.0)(2006—2011). 北京: 国家青藏高原科学数据中心.
      [42] 刘时银, 姚晓军, 郭万钦, 等, 2015. 基于第二次冰川编目的中国冰川现状. 地理学报, 70(1): 3-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201501002.htm
      [43] 刘宗香, 苏珍, 姚檀栋, 等, 2000. 青藏高原冰川资源及其分布特征. 资源科学, 22(5): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200005010.htm
      [44] 裴丽鑫, 2019. 青藏高原地区冰崩灾害特征与类型的初步研究(硕士学位论文). 北京: 中国地质大学.
      [45] 时丽娜, 藉雪峰, 王星, 2017. 利用Sentinel-2A数据的西藏阿里冰崩范围提取. 内蒙古煤炭经济, (2): 157-160. https://www.cnki.com.cn/Article/CJFDTOTAL-LMMT201702083.htm
      [46] 孙美平, 刘时银, 姚晓军, 等, 2014.2013年西藏嘉黎县"7•5"冰湖溃决洪水成因及潜在危害. 冰川冻土, 36(1): 158-165. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201401020.htm
      [47] 孙世威, 康世昌, 张强弓, 等, 2020. 青藏高原冰冻圈汞研究及其环境意义. 自然杂志, 42(5): 364-372. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ202005003.htm
      [48] 童立强, 裴丽鑫, 涂杰楠, 等, 2020. 冰崩灾害的界定与类型划分: 以青藏高原地区为例. 国土资源遥感, 32(2): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG202002002.htm
      [49] 童立强, 涂杰楠, 裴丽鑫, 等, 2018. 雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨. 工程地质学报, 26(6): 1552-1561. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806017.htm
      [50] 王继, 2020.1960年以来泛第三极地区5级以上地震目录. 北京: 国家青藏高原科学数据中心.
      [51] 邬光剑, 姚檀栋, 王伟财, 等, 2019. 青藏高原及周边地区的冰川灾害. 中国科学院院刊, 34(11): 1285-1292. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201911012.htm
      [52] 薛翊国, 孔凡猛, 杨为民, 等, 2020. 川藏铁路沿线主要不良地质条件与工程地质问题. 岩石力学与工程学报, 39(3): 445-468.
      [53] 张镱锂, 李炳元, 郑度, 2002. 论青藏高原范围与面积. 地理研究, 21(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200201000.htm
    • 加载中
    图(19) / 表(5)
    计量
    • 文章访问数:  163
    • HTML全文浏览量:  97
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-05-23
    • 网络出版日期:  2023-01-10
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回