• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中国新近纪构造-地层区划及地层格架

    宋博文 张克信 徐亚东 季军良 骆满生 韩芳 侯亚飞 艾可可

    宋博文, 张克信, 徐亚东, 季军良, 骆满生, 韩芳, 侯亚飞, 艾可可, 2022. 中国新近纪构造-地层区划及地层格架. 地球科学, 47(4): 1143-1161. doi: 10.3799/dqkx.2021.072
    引用本文: 宋博文, 张克信, 徐亚东, 季军良, 骆满生, 韩芳, 侯亚飞, 艾可可, 2022. 中国新近纪构造-地层区划及地层格架. 地球科学, 47(4): 1143-1161. doi: 10.3799/dqkx.2021.072
    Song Bowen, Zhang Kexin, Xu Yadong, Ji Junliang, Luo Mansheng, Han Fang, Hou Yafei, Ai Keke, 2022. Neogene Tectonic-Stratigraphic Realms and Sedimentary Sequence in China. Earth Science, 47(4): 1143-1161. doi: 10.3799/dqkx.2021.072
    Citation: Song Bowen, Zhang Kexin, Xu Yadong, Ji Junliang, Luo Mansheng, Han Fang, Hou Yafei, Ai Keke, 2022. Neogene Tectonic-Stratigraphic Realms and Sedimentary Sequence in China. Earth Science, 47(4): 1143-1161. doi: 10.3799/dqkx.2021.072

    中国新近纪构造-地层区划及地层格架

    doi: 10.3799/dqkx.2021.072
    基金项目: 

    中国地质调查局项目 DD20221645

    中国地质调查局项目 DD20190811

    国家自然科学基金 42072141

    国家自然科学基金 41702118

    详细信息
      作者简介:

      宋博文(1985-),副教授,硕士生导师,从事地层学、沉积学和青藏高原新生代地质研究. ORCID:0000-0002-6980-3712. E-mail:bwsong1985@cug.edu.cn

      通讯作者:

      张克信,E-mail:kx_zhang@cug.edu.cn

    • 中图分类号: P534.6

    Neogene Tectonic-Stratigraphic Realms and Sedimentary Sequence in China

    • 摘要: 新近纪是中国地貌地形和气候环境格局最终奠定的关键时期,如青藏高原强烈抬升和现代高原地貌最终成型、中国南海海盆扩张结束、东亚现今大型水系格局最终建立、中国西高东低的地势最终确立以及东亚季风系统开始形成并逐渐增强.通过对中国新近纪大地构造、沉积盆地(群)、火山岩、隆起带和大型变形构造等的综合研究,共厘定一级构造-地层单元(大区)10个,二级构造-地层单元27个(区),包含各类沉积盆地94个.通过综合各个地层分区内盆地的盆地类型、沉积序列、沉积时代及地层接触关系的研究,重新厘定了中国新近纪岩石地层对比格架,并对中国新近纪时期沉积-构造-气候耦合历史进行了系统总结.

       

    • 图  1  中国新近纪年代-磁性-生物-化学-气候等综合地层格架与全球地质事件序列

      磁性地层据Gradstein et al.(2012);主要生物带据Wade et al.(2011)、Deng et al.(2019);化学地层据Zachos et al.(2001)、McArthur et al.(2012);全球海平面变化据Miller et al.(2005);全球底层海水温度变化据Lear et al.(2000);重大生物、气候和地质事件据Briais et al.(1993)、Zachos et al.(20012008)、Li et al.(2015)、黄奇瑜(2017)和Wang and Jian(2019

      Fig.  1.  Neogene multidisciplinary stratigraphic correlation in China and global geological events

      图  2  中国新近纪构造-地层分区及盆地分布

      地理底图据http://www.mnr.gov.cn/sj/sjfw/, 审图号为GS(2016)2923号;1.布尔津断陷盆地;2.塔城压陷盆地;3.伊宁压陷盆地;4.准噶尔压陷盆地;5.吐哈压陷盆地;6.北山压陷盆地;7.塔里木压陷盆地;8.黑石北湖含火山压陷盆地;9.西可可西里含火山压陷盆地;10.松西压陷盆地;11. 鲁玛江东措压陷盆地;12.拜惹布措含火山压陷盆地;13.温泉湖含火山压陷盆地;14.查多岗日含火山压陷盆地;15.强措含火山压陷盆地;16.石坪顶含火山压陷盆地;17.玛尔果茶卡压陷盆地;18.鲸鱼湖含火山压陷盆地;19.多格措仁含火山压陷盆地;20.可可西里压陷盆地;21.唐古拉压陷盆地;22.米提将占木错压陷盆地;23.沱沱河压陷盆地;24.洞措压陷盆地;25.尼玛断陷盆地;26.南双湖断陷盆地;27.伦坡拉断坳盆地;28.芒康走滑拉分盆地;29.兰坪-剑川走滑拉分盆地;30.丽江断陷盆地;31.盐源走滑拉分盆地;32.西昌-攀枝花走滑拉分盆地;33.楚雄断陷盆地;34.昌宁走滑拉分盆地;35.保山断陷盆地;36.腾冲断陷盆地;37.耿马断陷盆地;38.景谷断陷盆地;39.思茅走滑拉分盆地;40.元江走滑拉分盆地;41.昆明断坳盆地;42.昭通断陷盆地;43.马关走滑拉分盆地;44.百色断陷盆地;45.大竹卡断陷盆地;46.乌郁断陷盆地;47.札达断陷盆地;48.普兰断陷盆地;49.吉隆断陷盆地;50.索尔库里走滑拉分盆地;51.柴达木压陷盆地;52.疏勒南山压陷盆地;53.酒泉压陷盆地;54.金塔-花海压陷盆地;55.贵德压陷盆地;56.循化压陷盆地;57.临夏压陷盆地;58.西宁-兰州压陷盆地;59.陇西-天水断陷盆地;60.宁南断陷盆地;61.阿亚克库木湖压陷盆地;62.秀河压陷盆地;63.玛多压陷盆地;64.成县压陷盆地;65.汉诺坝陆内裂谷;66.贺兰山-河套断陷盆地;67.银川断陷盆地;68.渭河断陷盆地;69.宝鸡-南洛断陷盆地;70.山西断陷盆地;71.渤海湾坳陷盆地;72.南华北坳陷盆地;73.二连坳陷盆地;74.海拉尔坳陷盆地;75.松辽坳陷盆地;76.成都压陷盆地;77.南襄坳陷盆地;78.江汉坳陷盆地;79.依兰-伊通走滑-拉分盆地;80.三江走滑-拉分盆地;81.辽源东走滑拉分盆地;82.虎林断陷-坳陷盆地;83.苏北坳陷盆地;84.芜湖坳陷盆地;85.北黄海坳陷盆地;86.南黄海坳陷盆地;87.东海陆架坳陷盆地;88.珠江口坳陷盆地;89.北部湾坳陷盆地;90.莺歌海坳陷盆地;91.琼东南坳陷盆地;92.台湾西坳陷盆地;93.台湾东坳陷盆地;94.南海中央海盆

      Fig.  2.  Neogene tectonic-stratigraphic regimes and sedimentary basins in China

      图  3  中国新近纪构造-地层区划与岩石地层格架对比

      参考文献:[1]Ji et al., 2008;[2]李云通等,1984;[3]蒋显庭等,2015;[4]李军鹏,2008;[5]Deng et al., 2012;[6] 汪啸风和陈孝红,2005;[7] 魏启荣等,2007;[8] 云南省地质矿产局,1996;[9] Leary et al., 2016;[10]赵政璋等,2001;[11] Spicer et al., 2003;[12] 刘耕武和李建国,2016;[13] 陈贺海等,2007;[14] 岳乐平等,2004;[15] Saylor et al., 2009;[16] Ji et al., 2017;[17] Fang et al., 2007;[18] Fang et al., 2019;[19] 宋春晖,2006;[20] Zhang et al., 2014;[21] Wang,2004;[22] Liu et al., 2019;[23] 刘荣等,2006;[24] Jiang et al., 2019;[25]Wan et al.,2014;[26] 叶捷等,2012;[27] Kaakinen and Lunkka, 2003;[28] 王慧芬等,1985;[29] Li et al., 2014;[30] 赵振明等,2009;[31] He et al., 2011;[32] Zhang et al., 2014;[33]陈新伟,2016;[34] Cao et al.,2014;[35] 王凤林等,2003;[36] 孙东霞等,2019;[37] Ho et al., 2003;[38] 陈建林等,2006

      Fig.  3.  Neogene tectonic-stratigraphic regimes and correlation of lithostratigraphc units in China

      图  4  中国新近纪构造-地层区代表性盆地沉积充填序列

      Fig.  4.  Sedimentary filling sequences of representative basins in the Neogene tectonic-stratigraphic realms of China

    • [1] Ai, K. K., Shi, G. L., Zhang, K. X., et al., 2019. The Uppermost Oligocene Kailas Flora from Southern Tibetan Plateau and Its Implications for the Uplift History of the Southern Lhasa Terrane. Palaeogeography, Palaeoclimatology, Palaeoecology, 515: 143-151. https://doi.org/10.1016/j.palaeo.2018.04.017
      [2] Aitchison, J. C., Davis, A. M., Badengzhu, et al., 2002. New Constraints on the India-Asia Collision: The Lower Miocene Gangrinboche Conglomerates, Yarlung Tsangpo Suture Zone, SE Tibet. Journal of Asian Earth Sciences, 21(3): 251-263. https://doi.org/10.1016/S1367-9120(02)00037-8
      [3] An, Z. S., 2014. Late Cenozoic Climate Change in Asia: Loess, Monsoon and Monsoon-Arid Environment Evolution. Springer, London.
      [4] An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times. Nature, 411(6833): 62-66. https://doi.org/10.1038/35075035
      [5] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280
      [6] Bureau of Geology and Mineral Resources of Yunnan Province, 1996. Stratigraphy (Lithostratic) of Yunnan Province. China University of Geosiences Press, Wuhan (in Chinese).
      [7] Cao, K., Mai, H. T., Wang, G. C., et al., 2018. Mesozoic-Cenozoic Tectonic and Topographic Development of the Pamir Syntaxis and Its Potential Effects on the Sea Retreat in the Tarim Basin, Quaternary Science, 38(1): 15-38(in Chinese with English abstract).
      [8] Cao, K., Xu, Y. D., Wang, G. C., et al., 2014. Neogene Source-to-Sink Relations between the Pamir and Tarim Basin: Insights from Stratigraphy, Detrital Zircon Geochronology, and Whole-Rock Geochemistry. The Journal of Geology, 122(4): 433-454. https://doi.org/10.1086/676478
      [9] Chen, F. N., Xu, Y. D., Jiang, S. S., et al., 2010. Late Miocene-Early Pleistocene Ostracoda Fauna of Oma Formation in Gyirong Basin, Southern Tibet. Earth Science, 35(5): 821-827(in Chinese with English abstract).
      [10] Chen, H. H., Han, J. T., Ding, Z. L., et al., 2007. The Sedimentary Sequence Era of Wuyu Basin in the Southern Tibet since the Late Cenozoic and Its Tectonic Significance. Science in China (Series D), 37(12): 1617-1624(in Chinese).
      [11] Chen, J., Burbank, D. W., Scharer, K. M., et al., 2002. Magnetochronology of the Upper Cenozoic Strata in the Southwestern Chinese Tian Shan: Rates of Pleistocene Folding and Thrusting. Earth and Planetary Science Letters, 195(1/2): 113-130. https://doi.org/10.1016/S0012-821X(01)00579-9
      [12] Chen, J. L., Xu, J. F., Kang, Z. Q., et al., 2006. Origin of the Miocene Bugasi Group Volcanic Rocks in the Cuoqin County, Western Tibetan Plateau. Acta Petrologica Sinica, 22(3): 585-594(in Chinese with English abstract).
      [13] Chen, X. W., 2016. Sedimentary Records of Cenozoic Tectonic Events in the Pamir and South Tian Shan(Dissertation). Zhejiang University, Hangzhou(in Chinese with English abstract).
      [14] Chen, Z. L., Bai, Y. F., Chen, B. L., et al., 2003. Sedimentation and Tectonic Evolution of the North Xorkol Basin in the Altyn Tagh Range. Regional Geology of China, 22(6): 405-411(in Chinese with English abstract).
      [15] Chen, Z. L., Gong, H. L., Li, L., et al., 2006. Cenozoic Uplifting and Exhumation Process of the Altyn Tagh Mountains. Earth Science Frontiers, 13(4): 91-102(in Chinese with English abstract).
      [16] Clark, M. K., House, M. A., Royden, L. H., et al., 2005. Late Cenozoic Uplift of Southeastern Tibet. Geology, 33(6): 525-528. https://doi.org/10.1130/g21265.1
      [17] DeCelles, P. G., Kapp, P., Quade, J., et al., 2011. Oligocene-Miocene Kailas Basin, Southwestern Tibet: Record of Postcollisional Upper-Plate Extension in the Indus-Yarlung Suture Zone. Geological Society of America Bulletin, 123(7/8): 1337-1362. https://doi.org/10.1130/b30258.1
      [18] Deng, T., Hou, S. K., Wang, S. Q., 2019. Neogene Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 310-323. https://doi.org/10.1007/s11430-017-9155-4
      [19] Deng, T., Wang, S. Q., Xie, G. P., et al., 2012. A Mammalian Fossil from the Dingqing Formation in the Lunpola Basin, Northern Tibet, and Its Relevance to Age and Paleo-Altimetry. Chinese Science Bulletin, 57(2/3): 261-269. https://doi.org/10.1007/s11434-011-4773-8
      [20] Deng, T., Wu, F. X., Wang, S. Q., et al., 2019. Significant Shift in the Terrestrial Ecosystem at the Paleogene/Neogene Boundary in the Tibetan Plateau. Chinese Science Bulletin, 64(27): 2894-2906(in Chinese). doi: 10.1360/TB-2019-0053
      [21] Deng, T., Wu, F. X., Wang, S. Q., et al., 2021. Major Turnover of Biotas across the Oligocene/Miocene Boundary on the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110241. https://doi.org/10.1016/j.palaeo.2021.110241
      [22] Ding, L., Spicer, R. A., Yang, J., et al., 2017. Quantifying the Rise of the Himalaya Orogen and Implications for the South Asian Monsoon. Geology, 45(3): 215-218. https://doi.org/10.1130/g38583.1
      [23] Fang, X. M., Garzione, C., van der Voo, R., et al., 2003. Flexural Subsidence by 29 Ma on the NE Edge of Tibet from the Magnetostratigraphy of Linxia Basin, China. Earth and Planetary Science Letters, 210(3/4): 545-560. https://doi.org/10.1016/S0012-821X(03)00142-0
      [24] Fang, X. M., Fang, Y. H., Zan, J. B., et al., 2019. Cenozoic Magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and Its Constraints on Paleontological, Sedimentological and Tectonomorphological Evolution. Earth-Science Reviews, 190: 460-485. https://doi.org/10.1016/j.earscirev.2019.01.021
      [25] Fang, X. M., Song, C. H., Dai, S., et al., 2007. Cenozoic Deformation and Uplift of the NE Qinghai-Tibet Plateau: Evidence from High-Resolution Magnetostratigraphy and Basin Evolution. Earth Science Frontiers, 14(1): 230-242(in Chinese with English abstract).
      [26] Fang, X. M., Zhang, W. L., Meng, Q. Q., et al., 2007. High-Resolution Magnetostratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1/2): 293-306. https://doi.org/10.1016/j.epsl.2007.03.042
      [27] Fu, B. H., Shi, P. L., Jia, Y. Y., 2009. Late Cenozoic Tectono-Geomorphic Growth and Drainage Response along the Large-Scale Strike-Slip Fault System, Tibetan Plateau. Chinese Journal of Geology (Scientia Geologica Sinica), 44(4): 1343-1363(in Chinese with English abstract). http://www.researchgate.net/profile/Bihong_Fu2/publication/287364648_Late_Cenozoic_tectono-geomorphic_growth_and_drainage_response_along_the_large-scale_strike-slip_fault_system_Tibetan_Plateau/links/56b40e7608ae1f8aa4535d41.pdf
      [28] Gourbet, L., Leloup, P. H., Paquette, J. L., et al., 2017. Reappraisal of the Jianchuan Cenozoic Basin Stratigraphy and Its Implications on the SE Tibetan Plateau Evolution. Tectonophysics, 700/701: 162-179. https://doi.org/10.1016/j.tecto.2017.02.007
      [29] Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., 2012. The Geological Time Scale 2012(vol. 2). Elsevier, Waltham, Massachusetts.
      [30] Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., et al., 2002. Onset of Asian Desertification by 22 Myr ago Inferred from Loess Deposits in China. Nature, 416(6877): 159-163. https://doi.org/10.1038/416159a
      [31] Guo, Z. T., Sun, B., Zhang, Z. S., et al., 2008. A Major Reorganization of Asian Climate by the Early Miocene. Climate of the Past, 4(3): 153-174. https://doi.org/10.5194/cp-4-153-2008
      [32] Han, Z. P., Sinclair, H. D., Li, Y. L., et al., 2019. Internal Drainage has Sustained Low-Relief Tibetan Landscapes since the Early Miocene. Geophysical Research Letters, 46(15): 8741-8752. https://doi.org/10.1029/2019gl083019
      [33] He, H. Y., Deng, C. L., Pan, Y. X., 2011. New 40Ar/39Ar Dating Results from the Shanwang Basin, Eastern China: Constraints on the Age of the Shanwang Formation and Associated Biota. Physics of the Earth and Planetary Interiors, 187(1/2): 66-75. https://doi.org/10.1016/j.pepi.2011.05.002
      [34] Heermance, R. V., Chen, J., Burbank, D. W., et al., 2007. Chronology and Tectonic Controls of Late Tertiary Deposition in the Southwestern Tian Shan Foreland, NW China. Basin Research, 19(4): 599-632. https://doi.org/10.1111/j.1365-2117.2007.00339.x
      [35] Ho, K. S., Chen, J. C., Lo, C. H., et al., 2003. 40Ar-39Ar Dating and Geochemical Characteristics of Late Cenozoic Basaltic Rocks from the Zhejiang-Fujian Region, SE China: Eruption Ages, Magma Evolution and Petrogenesis. Chemical Geology, 197(1-4): 287-318. https://doi.org/10.1016/S0009-2541(02)00399-6
      [36] Huang, C. Y., Yuan, P. B., Lin, C. W., et al., 2000. Geodynamic Processes of Taiwan Arc-Continent Collision and Comparison with Analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325(1/2): 1-21. https://doi.org/10.1016/S0040-1951(00)00128-1
      [37] Huang, Q. Y., 2017. Geological Ages of Taiwan Stratigraphy and Tectonic Events. Scientia Sinica (Terrae), 47(4): 394-405(in Chinese). doi: 10.1360/N072017-00023
      [38] Ji, J. L., Luo, P., White, P., et al., 2008. Episodic Uplift of the Tianshan Mountains since the Late Oligocene Constrained by Magnetostratigraphy of the Jingou River Section, in the Southern Margin of the Junggar Basin, China. Journal of Geophysical Research Atmospheres, 113(B5): B05102. https://doi.org/10.1029/2007jb005064
      [39] Ji, J. L., Zhang, K. X., Clift, P. D., et al., 2017. High-Resolution Magnetostratigraphic Study of the Paleogene-Neogene Strata in the Northern Qaidam Basin: Implications for the Growth of the Northeastern Tibetan Plateau. Gondwana Research, 46: 141-155. https://doi.org/10.1016/j.gr.2017.02.015
      [40] Ji, J. L., Zhang, K. X., Qiang, T., et al., 2010. Magnetostratigraphy of the Neogene Strata in Xunhua Basin, Qinghai Province. Earth Science, 35(5): 803-810(in Chinese with English abstract).
      [41] Jia, C. Z., Zhang, S. B., Wu, S. Z., 2004. Stratigraphy of the Tarim Basin and Adjacent Areas. Science Press, Beijing (in Chinese).
      [42] Jiang, R., Cao, K., Zeng, J. W., et al., 2019. Late Cenozoic Tectonic Evolution of the Southern Segment of the Tan-Lu Fault Zone, Eastern China. Journal of Asian Earth Sciences, 182: 103932. https://doi.org/10.1016/j.jseaes.2019.103932
      [43] Jiang, X. T., Zhou, W. F., Lin, S. P., 1995. Stratigraphy and Ostracods of Xinjiang in China. Geological Publishing House, Beijing(in Chinese).
      [44] Jolivet, M., Brunel, M., Seward, D., et al., 2001. Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau: Fission-Track Constraints. Tectonophysics, 343(1/2): 111-134. https://doi.org/10.1016/S0040-1951(01)00196-2
      [45] Kaakinen, A., Lunkka, J. P., 2003. Sedimentation of the Late Miocene Bahe Formation and Its Implications for Stable Environments Adjacent to Qinling Mountains in Shaanxi, China. Journal of Asian Earth Sciences, 22(1): 67-78. https://doi.org/10.1016/S1367-9120(03)00044-0
      [46] Lear, C. H., Elderfield, H., Wilson, P. A., 2000. Cenozoic Deep-Sea Temperatures and Global Ice Volumes from Mg/Ca in Benthic Foraminiferal Calcite. Science, 287(5451): 269-272. https://doi.org/10.1126/science.287.5451.269
      [47] Leary, R., Orme, D. A., Laskowski, A. K., et al., 2016. Along-Strike Diachroneity in Deposition of the Kailas Formation in Central Southern Tibet: Implications for Indian Slab Dynamics. Geosphere, 12(4): 1198-1223. https://doi.org/10.1130/ges01325.1
      [48] Lease, R. O., Burbank, D. W., Clark, M. K., et al., 2011. Middle Miocene Reorganization of Deformation along the Northeastern Tibetan Plateau. Geology, 39(4): 359-362. https://doi.org/10.1130/g31356.1
      [49] Li, B. J., Wu, D. Y., Pang, L. C., et al., 2019. Stratigraphic Attribute and Origin of the Xiyu Conglomerates in NW China: Progress and Prospect. Journal of Earth Environment, 10(5): 427-440(in Chinese with English abstract).
      [50] Li, H. J., Shen, K. F., Nie, F. J., et al., 2012. Sedimentary Evolution in Meso-Cenozoic and Uranium Mineralization of Erlian Basin. Journal of East China Institute of Technology (Natural Science), 35(4): 301-308(in Chinese with English abstract).
      [51] Li, J. J., Fang, X. M., Song, C. H., et al., 2014. Late Miocene-Quaternary Rapid Stepwise Uplift of the NE Tibetan Plateau and Its Effects on Climatic and Environmental Changes. Quaternary Research, 81(3): 400-423. https://doi.org/10.1016/j.yqres.2014.01.002
      [52] Li, J. J., Zhou, S. Z., Zhao, Z. J., et al., 2015. The Qingzang Movement: The Major Uplift of the Qinghai-Tibetan Plateau. Science China Earth Sciences, 58(11): 2113-2122. https://doi.org/10.1007/s11430-015-5124-4
      [53] Li, J. P., 2008. Miocene Wudaoliang Formation Magnetostratigraphy and Paleoenvironmental Evolution in the Tuotuohe Area of the Qinghai-Tibetan Plateau(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      [54] Li, S., Ding, L., Xu, Q., et al., 2017. The Evolution of Yarlung Tsangpo River: Constraints from the Age and Provenance of the Gangdese Conglomerates, Southern Tibet. Gondwana Research, 41: 249-266. https://doi.org/10.1016/j.gr.2015.05.010
      [55] Li, T. D., 1995. The Uplifting Process and Mechanism of the Qinhai-Tibet Plateau. Acta Geoscientia Sinica, 16(1): 1-9(in Chinese with English abstract).
      [56] Li, Y. T., 1984. Stratigraphy of China (13)·Chinese Tertiary. Geological Publishing House, Beijing (in Chinese).
      [57] Liang, J. T., Wang, H. L., Bai, Y., et al., 2016. Cenozoic Tectonic Evolution of the Bohai Bay Basin and Its Coupling Relationship with Pacific Plate Subduction. Journal of Asian Earth Sciences, 127: 257-266. https://doi.org/10.1016/j.jseaes.2016.06.012
      [58] Liu, C. Y., Zhao, H. G., Zhang, C., et al., 2009. The Important Turning Period of Evolution in the Tibet-Himalayan Tectonic Domain. Earth Science Frontiers, 16(4): 1-12(in Chinese with English abstract).
      [59] Liu, D. S., Zheng, M. P., Guo, Z. T., 1998. Initiation and Evolution of the Asian Monsoon System Timely Coupled with the Ice-Sheet Growth and the Tectonic Movements in Asia. Quaternary Sciences, 18(3): 194-204(in Chinese with English abstract).
      [60] Liu, G. W., Li, J. G., 2016. Miocene Fossil Floral Horizons in the Oiyug Basin, Southern Central Tibet, and Related Stratigraphic Problems. Journal of Stratigraphy, 40(1): 92-99(in Chinese with English abstract).
      [61] Liu, J. S., Xu, H. Z., Jiang, Y. M., et al., 2020. Mesozoic and Cenozoic Basin Structure and Tectonic Evolution in the East China Sea Basin. Acta Geologica Sinica, 94(3): 675-691(in Chinese with English abstract).
      [62] Liu, R., Lu, J. G., Wu, X. Z., 2006. Time and Environment of Formation and Geochemical Characteristics of the Chenyuhu to Xiangyanghu Shipingding Group Volcanic Rocks in Northern Tibet. Xinjiang Geology, 24(2): 109-114(in Chinese with English abstract).
      [63] Liu, X. B., Shi, W., Hu, J. M., et al., 2019. Magnetostratigraphy and Tectonic Implications of Paleogene-Neogene Sediments in the Yinchuan Basin, Western North China Craton. Journal of Asian Earth Sciences, 173: 61-69. https://doi.org/10.1016/j.jseaes.2019.01.016
      [64] Liu, X. D., Sun, H., Miao, Y. F., et al., 2015. Impacts of Uplift of Northern Tibetan Plateau and Formation of Asian Inland Deserts on Regional Climate and Environment. Quaternary Science Reviews, 116: 1-14. https://doi.org/10.1016/j.quascirev.2015.03.010
      [65] Lu, H. J., Tian, X. B., Yun, K., et al., 2018. Convective Removal of the Tibetan Plateau Mantle Lithosphere by ~26 Ma. Tectonophysics, 731/732: 17-34. https://doi.org/10.1016/j.tecto.2018.03.006
      [66] Lu, H. J., Xiong, S. F., 2009. Magnetostratigraphy of the Dahonggou Section, Northern Qaidam Basin and Its Bearing on Cenozoic Tectonic Evolution of the Qilian Shan and Altyn Tagh Fault. Earth and Planetary Science Letters, 288(3/4): 539-550. https://doi.org/10.1016/j.epsl.2009.10.016
      [67] Lu, H. Y., Wang, X. Y., Wang, X. Y., et al., 2019. Formation and Evolution of Gobi Desert in Central and Eastern Asia. Earth-Science Reviews, 194: 251-263. https://doi.org/10.1016/j.earscirev.2019.04.014
      [68] Lu, H. Y., Zhang, H. Z., Wang, Y. C., et al., 2018. Cenozoic Depositional Sequence in the Weihe Basin (Central China): A Long-Term Record of Asian Monsoon Precipitation from the Greenhouse to Icehouse Earth. Quaternary Sciences, 38(5): 1057-1067 (in Chinese with English abstract).
      [69] Ma, S. X., Li, H. L., Zhang, Y. Q., et al., 2016. The Neogene Extension of the Tianshui Basin: Evidence from Sedimentary and Structural Records. Geological Bulletin of China, 35(8): 1314-1323(in Chinese with English abstract).
      [70] McArthur, J. M., Howarth, R. J., Shields, G. A., 2012. Strontium Isotope Stratigraphy. The Geologic Time Scale. Elsevier, Amsterdam, 127-144. https://doi.org/10.1016/b978-0-444-59425-9.00007-x
      [71] Miller, K. G., Kominz, M. A., Browning, J. V., et al., 2005. The Phanerozoic Record of Global Sea-Level Change. Science, 310(5752): 1293-1298. https://doi.org/10.1126/science.1116412
      [72] Qiang, X. K., An, Z. S., Song, Y. G., et al., 2011. New Eolian Red Clay Sequence on the Western Chinese Loess Plateau Linked to Onset of Asian Desertification about 25 Ma Ago. Science China Earth Sciences, 54(1): 136-144. https://doi.org/10.1007/s11430-010-4126-5
      [73] Qiu, H. J., Xu, Z. Q., Qiao, D. W., 2006. Progress in the Study of the Tectonic Evolution of the Subei Basin, Jiangsu, China. Geological Bulletin of China, 25(Z2): 1117-1120(in Chinese with English abstract).
      [74] Rea, D. K., Snoeckx, H., Joseph, L. H., 1998. Late Cenozoic Eolian Deposition in the North Pacific: Asian Drying, Tibetan Uplift, and Cooling of the Northern Hemisphere. Paleoceanography, 13(3): 215-224. https://doi.org/10.1029/98pa00123
      [75] Ren, J. Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361(in Chinese with English abstract).
      [76] Ren, L. L., Zhang, B., Zheng, D. W., et al., 2020. Tectonic Transformation and Its Exhumation History of the Ailao Shan-Red River Shear Zone in Oligocene: Evidences from Apatite Fission Track Thermochronology of the Southern Segment of the Ailao Shan Range. Acta Petrologica Sinica, 36(6): 1787-1802(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.09
      [77] Robinson, A. C., Yin, A., Manning, C. E., et al., 2004. Tectonic Evolution of the Northeastern Pamir: Constraints from the Northern Portion of the Cenozoic Kongur Shan Extensional System, Western China. Geological Society of America Bulletin, 116(7): 953-973. https://doi.org/10.1130/b25375.1
      [78] Saylor, J. E., Quade, J., Dettman, D. L., et al., 2009. The Late Miocene through Present Paleoelevation History of Southwestern Tibet. American Journal of Science, 309(1): 1-42. https://doi.org/10.2475/01.2009.01
      [79] Shen, Q. Q., Cao, K., Wang, G. C., et al., 2017. Paleogene Sedimentary and Structural Evolution of the Jianchuan-Lanping Basins, Western Yunnan and Its Regional Tectonic Implications. Geotectonica et Metallogenia, 41(1): 23-41(in Chinese with English abstract).
      [80] Shi, Y. F., Li, J. J., Li, B. Y., et al., 1999. Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia Environmental Change during Late Cenozoic. Acta Geographica Sinica, 54(1): 10-21(in Chinese with English abstract).
      [81] Sobel, E. R., Chen, J., Heermance, R. V., 2006. Late Oligocene-Early Miocene Initiation of Shortening in the Southwestern Chinese Tian Shan: Implications for Neogene Shortening Rate Variations. Earth and Planetary Science Letters, 247(1/2): 70-81. https://doi.org/10.1016/j.epsl.2006.03.048
      [82] Song, B. W., Spicer, R. A., Zhang, K. X., et al., 2020. Qaidam Basin Leaf Fossils Show Northeastern Tibet was High, Wet and Cool in the Early Oligocene. Earth and Planetary Science Letters, 537: 116175. https://doi.org/10.1016/j.epsl.2020.116175
      [83] Song, B. W., Zhang, K. X., Hou, Y. F., et al., 2019. New Insights into the Provenance of Cenozoic Strata in the Qaidam Basin, Northern Tibet: Constraints from Combined U-Pb Dating of Detrital Zircons in Recent and Ancient Fluvial Sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 533: 109254. https://doi.org/10.1016/j.palaeo.2019.109254
      [84] Song, B. W., Zhang, K. X., Xu, Y. D., et al., 2020. Paleogene Tectonic-Stratigraphic Realms and Sedimentary Sequence in China. Earth Science, 45(12): 4352-4369(in Chinese with English abstract).
      [85] Song, C. H., 2006. Tectonic Uplift and Cenozoic Sedimentary Evolution in the Northern Margin of the Tibetan Plateau(Dissertation). Lanzhou University, Lanzhou(in Chinese with English abstract).
      [86] Spicer, R. A., Harris, N. B. W., Widdowson, M., et al., 2003. Constant Elevation of Southern Tibet over the Past 15 Million Years. Nature, 421(6923): 622-624. https://doi.org/10.1038/nature01356
      [87] Su, J. B., Zhu, W. B., Chen, J., et al., 2014. Cenozoic Inversion of the East China Sea Shelf Basin: Implications for Reconstructing Cenozoic Tectonics of Eastern China. International Geology Review, 56(12): 1541-1555. https://doi.org/10.1080/00206814.2014.951004
      [88] Sun, D. X., Lü, T. Y., Shen, X. L., et al., 2019. High-Precision Laser 40Ar/39Ar Age of Volcanic Rocks in Longhai-Zhangpu Area, Fujian Province. Geological Bulletin of China, 38(9): 1511-1520(in Chinese with English abstract).
      [89] Sun, J. M., Liu, T. S., 2006. The Age of the Taklimakan Desert. Science, 312(5780): 1621. https://doi.org/10.1126/science.1124616
      [90] Sun, J. M., Ye, J., Wu, W. Y., et al., 2010. Late Oligocene-Miocene Mid-Latitude Aridification and Wind Patterns in the Asian Interior. Geology, 38(6): 515-518. https://doi.org/10.1130/g30776.1
      [91] Sun, X. J., Wang, P. X., 2005. How Old is the Asian Monsoon System?—Palaeobotanical Records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222(3/4): 181-222. https://doi.org/10.1016/j.palaeo.2005.03.005
      [92] Suo, Y. H., Li, S. Z., Dai, L. M., et al., 2012. Cenozoic Tectonic Migration and Basin Evolution in East Asia and Its Continental Margins. Acta Petrologica Sinica, 28(8): 2602-2618(in Chinese with English abstract).
      [93] Wade, B. S., Pearson, P. N., Berggren, W. A., et al., 2011. Review and Revision of Cenozoic Tropical Planktonic Foraminiferal Biostratigraphy and Calibration to the Geomagnetic Polarity and Astronomical Time Scale. Earth-Science Reviews, 104(1/2/3): 111-142. https://doi.org/10.1016/j.earscirev.2010.09.003
      [94] Wan, C. B., Sun, Y. W., Xue, Y. F., et al., 2014. Neogene Palynological Assemblages in the West Slope of Songliao Basin and Their Geological Implications. Science China Earth Sciences, 57(10): 2486-2497. https://doi.org/10.1007/s11430-014-4846-z
      [95] Wan, T. F., 2004. The Tectonics Compendium in China. Geological Publishing House, Beijing (in Chinese).
      [96] Wang, J. G., Hu, X. M., Garzanti, E., et al., 2013. Upper Oligocene-Lower Miocene Gangrinboche Conglomerate in the Xigaze Area, Southern Tibet: Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo Initiation. The Journal of Geology, 121(4): 425-444. https://doi.org/10.1086/670722
      [97] Wang, P. X., 2005. Cenozoic Deformation and History of Sea-Land Interactions in Asia. Earth Science, 30(1): 1-18(in Chinese with English abstract).
      [98] Wang, B. J., Lin, C. S., Chen, Y., et al., 2006. Episodic Tectonic Movement and Evolutional Character in Jianghan Basin. Oil Geophysical Prospecting, 41(2): 226-230, 248, 19-20(in Chinese with English abstract).
      [99] Wang, C. S., Dai, J. G., Zhao, X. X., et al., 2014. Outward-Growth of the Tibetan Plateau during the Cenozoic: A Review. Tectonophysics, 621: 1-43. https://doi.org/10.1016/j.tecto.2014.01.036
      [100] Wang, C. S., Zhao, X. X., Liu, Z. F., et al., 2008. Constraints on the Early Uplift History of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 105(13): 4987-4992. https://doi.org/10.1073/pnas.0703595105
      [101] Wang, E. Q., Chen, L. Z., Chen, Z. L., 2002. Tectonic and Climatic Element-Controlled Evolution of the Yalungzangbu River in Southern Tibet. Quaternary Sciences, 22(4): 365-373(in Chinese with English abstract).
      [102] Wang, F. L., Li, Y., Li, Y. Z., et al., 2003. Sedmentary Characteristics of the Cenozoic Dayi Conglomerate in Chengdu Basin. Journal of Chengdu University of Technology (Science & Technology Edition), 30(2): 139-146(in Chinese with English abstract).
      [103] Wang, G. C., Cao, K., Zhang, K. X., et al., 2011. Spatio-Temporal Framework of Tectonic Uplift Stages of the Tibetan Plateau in Cenozoic. Science China Earth Sciences, 54(1): 29-44. https://doi.org/10.1007/s11430-010-4110-0
      [104] Wang, H. F., Dai, T. M., Fan, S. K., et al., 1985. K-Ar Dating of Hannuoba Basalts at Zhangjiakou. Geochimica, 14(3): 206-215(in Chinese with English abstract).
      [105] Wang, P. X., Jian, Z. M., 2019. Exploring the Deep South China Sea: Retrospects and Prospects. Science China Earth Sciences, 62(10): 1473-1488. https://doi.org/10.1007/s11430-019-9484-4
      [106] Wang, P. X., Zhao, Q. H., Jian, Z. M., 2003. Thirty Million Year Deep Sea Records in the South China Sea. Chinese Science Bulletin, 48: 2524-2535 (in Chinese).
      [107] Wang, S. F., Zhang, W. L., Fang, X. M., et al., 2008. Magnetic Stratigraphic Characteristics of Zhada Basin in the Southwest of the Tibet and Its Tectonic Significance. Chinese Science Bulletin, 53(6): 676-683(in Chinese). doi: 10.1360/csb2008-53-6-676
      [108] Wang, W. L., Fu, J. Y., Yang, Y. J., 2012. Tectonic Evolution and Genesis of the Late Mesozoic-Cenozoic Basin-and-Mountain System of Northeast China. Geology and Resources, 21(1): 17-26(in Chinese with English abstract).
      [109] Wang, W. T., Zheng, W. J., Zhang, P. Z., et al., 2017. Expansion of the Tibetan Plateau during the Neogene. Nature Communications, 8(1): 1-12. https://doi.org/10.1038/ncomms15887
      [110] Wang, X., Carrapa, B., Sun, Y., et al., 2020. The Role of the Westerlies and Orography in Asian Hydroclimate since the Late Oligocene. Geology, 48(7): 728e732. https://doi.org/10.1130/G47400.1
      [111] Wang, X. F., Chen, X. H., 2005. Stratigraphic Subdivision and Correlation of Each Geologic Period in China. Geological Publishing House, Beijing (in Chinese).
      [112] Wang, X. M., 2004. New Materials of Tungurictis (Hyaenidea, Carnivora) from Tunggur Formation, Neimongol. Vertebrata Palasiatica, 42(2): 144-153.
      [113] Wang, Z. F., He, J. X., Xie, X. N, 2004. Heat Flow Action and Its Control on Natural Gas Migration and Accumulation in Mud-Fluid Diapir Areas in Yinggehai Basin. Earth Science, 29(2): 203-210(in Chinese with English abstract).
      [114] Wei, Q. R., Li, D. W., Wang, G. C., et al., 2007. Zircon SHRIMP U-Pb Dating and Geochemical Characteristics of Chabaoma Formation Volcanic Rocks in Northern Tibetan Plateau and Its Petrogenesis. Acta Petrologica Sinica, 23(11): 2727-2736(in Chinese with English abstract).
      [115] Xie, X. N., Ren, J. Y., Wang, Z. F., et al., 2015. Difference of Tectonic Evolution of Continental Marginal Basins of South China Sea and Relationship with SCS Spreading. Earth Science Frontiers, 22(1): 77-87(in Chinese with English abstract).
      [116] Xing, G. F., Feng, Y. M., Yu, M. G., et al., 2017. The Volcanic Tectonic of China. Geological Publishing House, Beijing (in Chinese).
      [117] Xing, Z. Y., Zhao, B., Tu, M. Y., et al., 2005. The Formation of the Fenwei Rift Valley. Earth Science Frontiers, 12(2): 247-262(in Chinese with English abstract).
      [118] Xu, Y. D., Zhang, K. X., Wang, G. C., et al., 2012. Extended Stratigraphy, Palynology and Depositional Environments Record the Initiation of the Himalayan Gyirong Basin (Neogene China). Journal of Asian Earth Sciences, 44: 77-93. https://doi.org/10.1016/j.jseaes.2011.04.007
      [119] Yang, Q., Chen, H. Y., 2003. Tectonic Evolution of the North Jiangsu-South Yellow Sea Basin. Petroleum Geology & Experiment, 25(S1): 562-565(in Chinese with English abstract).
      [120] Ye, J., Wu, W. Y., Ni, X. J., et al., 2012. The Duolebulejin Section of Northern Junggar Basin and Its Stratigraphic and Environmental Implication. Scientia Sinica (Terrae), 42(10): 1523-1532(in Chinese). doi: 10.1360/zd-2012-42-10-1523
      [121] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [122] Yuan, D. Y., Ge, W. P., Chen, Z. W., et al., 2013. The Growth of Northeastern Tibet and Its Relevance to Large-Scale Continental Geodynamics: A Review of Recent Studies. Tectonics, 32(5): 1358-1370. https://doi.org/10.1002/tect.20081
      [123] Yue, L. P., Deng, T., Zhang, R., et al., 2004. Paleomagnetic Chronology and Records of Himalayan Uplift on the Longgugou Section of Gyirong-Oma Basin in Xizang(Tibet). Chinese Journal of Geophysics, 47(6): 1009-1016(in Chinese with English abstract).
      [124] Yue, Y. J., Ritts, B. D., Hanson, A. D., et al., 2004. Sedimentary Evidence against Large Strike-Slip Translation on the Northern Altyn Tagh Fault, NW China. Earth and Planetary Science Letters, 228(3/4): 311-323. https://doi.org/10.1016/j.epsl.2004.10.008
      [125] Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517): 686-693. https://doi.org/10.1126/science.1059412
      [126] Zachos, J. C., Dickens, G. R., Zeebe, R. E., 2008. An Early Cenozoic Perspective on Greenhouse Warming and Carbon-Cycle Dynamics. Nature, 451(7176): 279-283. https://doi.org/10.1038/nature06588
      [127] Zhang, J., Wang, Y. N., Zhang, B. H., et al., 2015. Evolution of the NE Qinghai-Tibetan Plateau, Constrained by the Apatite Fission Track Ages of the Mountain Ranges around the Xining Basin in NW China. Journal of Asian Earth Sciences, 97: 10-23. https://doi.org/10.1016/j.jseaes.2014.10.002
      [128] Zhang, J., Wang, Y. N., Zhang, B. H., et al., 2016. Tectonics of the Xining Basin in NW China and Its Implications for the Evolution of the NE Qinghai-Tibetan Plateau. Basin Research, 28(2): 159-182. https://doi.org/10.1111/bre.12104
      [129] Zhang, K. X., He, W. H., Luo, M. S., et al., 2017. Sedimentary Formation and Tectonic Evolution of China. Geological Publishing House, Beijing (in Chinese).
      [130] Zhang, K. X., He, W. H., Xu, Y. D., et al., 2020. Principles and Methods to Division of Tectonostratigraphic Regions for Geochronologic Periods: Exemplified by Cambrian Period. Earth Science, 45(12): 4267-4290(in Chinese with English abstract).
      [131] Zhang, K. X., Pan, G. T., He, W. H., et al., 2015. New Division of Tectonic-Strata Superregion in China. Earth Science, 40(2): 206-233(in Chinese with English abstract).
      [132] Zhang, K. X., Wang, G. C., Ji, J. L., et al., 2010. Paleogene-Neogene Stratigraphic Realm and Sedimentary Sequence of the Qinghai-Tibet Plateau and Their Response to Uplift of the Plateau. Science China Earth Sciences, 53(9): 1271-1294. https://doi.org/10.1007/s11430-010-4048-2
      [133] Zhang, K. X., Wang, G. C., Luo, M. S., et al., 2013. Cenozoic Tectonic Lithofacies Paleogeographic Map with Instructions in the Tibetan Plateau and Adjacent Regions (1∶3 000 000). Geological Publishing House, Beijing (in Chinese).
      [134] Zhang, T., Fang, X. M., Song, C. H., et al., 2014. Cenozoic Tectonic Deformation and Uplift of the South Tian Shan: Implications from Magnetostratigraphy and Balanced Cross-Section Restoration of the Kuqa Depression. Tectonophysics, 628: 172-187. https://doi.org/10.1016/j.tecto.2014.04.044
      [135] Zhang, Y. Q., Dong, S. W., Li, J. H, 2019. Late Paleogene Sinistral Strike-Slip System along East Qinling and in Southern North China: Implications for Interaction between Collision-Related Block Trans-rotation and Subduction-Related Back-Arc Extension in East China. Tectonophysics, 769: 228181. https://doi.org/10.1016/j.tecto.2019.228181
      [136] Zhang, Y. Q., Shi, W., Dong, S. W., 2019. Neotectonics of North China: Interplay between Far-Field Effect of India-Eurasia Collision and Pacific Subduction Related Deep-Seated Mantle Upwelling. Acta Geologica Sinica, 93(5): 971–1001(in Chinese with English abstract).
      [137] Zhang, Z. S., Guo, Z. T., 2005. Spatial Character Reconstruction of Different Periods in Oligocene and Miocene. Quaternary Sciences, 25(4): 523-530(in Chinese with English abstract).
      [138] Zhao, Z., Wu, Z. H., Yang, Y. Z., et al., 2020. Establishing the Chronostratigraphic Framework of the Continental Red Beds in Central Qiangtang Basin: Constrained by Zircon U-Pb Ages. Geological Review, 66(5): 1155-1171(in Chinese with English abstract).
      [139] Zhao, Z. G., Wang, P., Qi, P., et al., 2016. Regional Background and Tectonic Evolution of East China Sea Basin. Earth Science, 41(3): 546-554(in Chinese with English abstract).
      [140] Zhao, Z. M., Ji, W. H., Li, R. S., et al., 2009. Geochemical Characteristics and Petrogenesis of Volcanic Rocks since the Neogene in the Bayankala and East Kunlun Region, Northern Tibetan Plateau. Geochimica, 38(3): 205-230(in Chinese with English abstract).
      [141] Zhao, Z. Z., Li, Y. T., Ye, H. F., et al., 2001. Stratigraphy of Qinghai-Tibet Plateau. Science Press, Beijing (in Chinese).
      [142] Zheng, D. W., Zhang, P. Z., Wan, J. L., et al., 2006. Rapid Exhumation at ~ 8 Ma on the Liupan Shan Thrust Fault from Apatite Fission-Track Thermochronology: Implications for Growth of the Northeastern Tibetan Plateau Margin. Earth and Planetary Science Letters, 248(1-2): 198-208. https://doi.org/10.1016/j.epsl.2006.05.023
      [143] Zheng, H. B., Clift, P. D., Wang, P., et al., 2013. Pre-Miocene Birth of the Yangtze River. Proceedings of the National Academy of Sciences, 110(19): 7556-7561. https://doi.org/10.1073/pnas.1216241110
      [144] Zheng, H. B., Wei, X. C., Tada, R., et al., 2015. Late Oligocene-Early Miocene Birth of the Taklimakan Desert. PNAS, 112(25): 7662-7667. https://doi.org/10.1073/pnas.1424487112
      [145] Zhu, Y. T., Fang, X. M., Gao, J. P., et al., 2006. Oligo-Mioence Depositional Facies of the Wuyu Basin, Southern Tibetan Plateau. Acta Sedimentologica Sinica, 24(6): 775-782(in Chinese with English abstract).
      [146] 曹凯, 麦洪涛, 王国灿, 等, 2018. 帕米尔构造结中新生代构造地貌演化及对塔里木盆地海退的影响. 第四纪研究, 38(1): 15-38
      [147] 陈奋宁, 徐亚东, 江尚松, 等, 2010. 西藏南部吉隆盆地晚中新世-早更新世沃马组介形虫动物群. 地球科学, 35(5): 821-827. doi: 10.3799/dqkx.2010.095
      [148] 陈贺海, 汉景泰, 丁仲礼, 等, 2007. 藏南乌郁盆地晚新生代沉积序列的时代及其区域构造意义. 中国科学(D辑: 地球科学), 37(12): 1617-1624. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200712008.htm
      [149] 陈建林, 许继峰, 康志强, 等, 2006. 青藏高原西部措勤县中新世布嘎寺组钾质火山岩成因. 岩石学报, 22(3): 585-594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603007.htm
      [150] 陈新伟, 2016. 帕米尔南天山新生代构造事件的沉积响应研究(博士学位论文). 杭州: 浙江大学.
      [151] 陈正乐, 白彦飞, 陈柏林, 等, 2003. 阿尔金山索尔库里北盆地沉积与构造演化. 地质通报, 22(6): 405-411. doi: 10.3969/j.issn.1671-2552.2003.06.005
      [152] 陈正乐, 宫红良, 李丽, 等, 2006. 阿尔金山脉新生代隆升-剥露过程. 地学前缘, 13(4): 91-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604007.htm
      [153] 邓涛, 吴飞翔, 王世骐, 等, 2019. 古近纪/新近纪之交青藏高原陆地生态系统的重大转折. 科学通报, 64(27): 2894-2906. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201927015.htm
      [154] 方小敏, 宋春晖, 戴霜, 等, 2007. 青藏高原东北部阶段性变形隆升: 西宁、贵德盆地高精度磁性地层和盆地演化记录. 地学前缘, 14(1): 230-242. doi: 10.3321/j.issn:1005-2321.2007.01.022
      [155] 付碧宏, 时丕龙, 贾营营, 2009. 青藏高原大型走滑断裂带晚新生代构造地貌生长及水系响应. 地质科学, 44(4): 1343-1363. doi: 10.3321/j.issn:0563-5020.2009.04.020
      [156] 黄奇瑜, 2017. 台湾岛的年龄. 中国科学: 地球科学, 47(4): 394-405. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201704003.htm
      [157] 季军良, 张克信, 强泰, 等, 2010. 青海循化盆地新近纪磁性地层学. 地球科学, 35(5): 803-810. doi: 10.3799/dqkx.2010.093
      [158] 贾承造, 张师本, 吴绍祖, 2004. 塔里木盆地及周边地层. 北京: 科学出版社.
      [159] 蒋显庭, 周维芬, 林树, 2015. 新疆地层及介形类化石. 北京: 地质出版社.
      [160] 解习农, 任建业, 王振峰, 等, 2015. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系. 地学前缘, 22(1): 77-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501009.htm
      [161] 李冰晶, 武登云, 逄立臣, 等, 2019. 西域砾岩的地层属性与成因: 进展与展望. 地球环境学报, 10(5): 427-440. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201905001.htm
      [162] 李洪军, 申科峰, 聂逢君, 等, 2012. 二连盆地中新生代沉积演化与铀成矿. 东华理工大学学报(自然科学版), 35(4): 301-308. doi: 10.3969/j.issn.1674-3504.2012.04.001
      [163] 李军鹏, 2008. 青藏高原沱沱河地区中新世五道梁组磁性地层与古环境演变研究(硕士学位论文). 成都: 成都理工大学.
      [164] 李廷栋, 1995. 青藏高原隆升的过程和机制. 地球学报, 16(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB501.000.htm
      [165] 李云通, 雷奕振, 王大宁, 等, 1984. 中国地层-中国的第三系. 北京: 地质出版社.
      [166] 刘池洋, 赵红格, 张参, 等, 2009. 青藏-喜马拉雅构造域演化的转折时期. 地学前缘, 16(4): 1-12. doi: 10.3321/j.issn:1005-2321.2009.04.001
      [167] 刘东生, 郑绵平, 郭正堂, 1998. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性. 第四纪研究, 18(3): 194-204. doi: 10.3321/j.issn:1001-7410.1998.03.002
      [168] 刘耕武, 李建国, 2016. 西藏南木林乌郁盆地中新世植物化石层位及相关地层问题. 地层学杂志, 40(1): 92-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201601012.htm
      [169] 刘金水, 许怀智, 蒋一鸣, 等, 2020. 东海盆地中、新生代盆架结构与构造演化. 地质学报, 94(3): 675-691. doi: 10.3969/j.issn.0001-5717.2020.03.001
      [170] 刘荣, 吕金刚, 吴新忠, 2006. 藏北沉鱼湖—向阳湖一带石坪顶组火山岩特征、形成时代及环境. 新疆地质, 24(2): 109-114. doi: 10.3969/j.issn.1000-8845.2006.02.003
      [171] 鹿化煜, 张瀚之, 王逸超, 等, 2018. 渭河盆地新生代沉积序列与亚洲季风气候起源演化. 第四纪研究, 38(3): 1057-1067.
      [172] 马收先, 李海龙, 张岳桥, 等, 2016. 天水盆地新近纪伸展构造: 来自沉积与构造变形方面的证据. 地质通报, 35(8): 1314-1323. doi: 10.3969/j.issn.1671-2552.2016.08.012
      [173] 邱海峻, 许志琴, 乔德武, 2006. 苏北盆地构造演化研究进展. 地质通报, 25(Z2): 1117-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z2022.htm
      [174] 任建业, 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330
      [175] 任龙龙, 张波, 郑德文, 等, 2020. 哀牢山-红河剪切带渐新世的构造体制转换与剥露历史: 来自哀牢山南段磷灰石裂变径迹的证据. 岩石学报, 36(6): 1787-1802. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202006009.htm
      [176] 沈青强, 曹凯, 王国灿, 等, 2017. 剑川-兰坪盆地古近纪沉积-构造变革及其区域构造意义. 大地构造与成矿学, 41(1): 23-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201701002.htm
      [177] 施雅风, 李吉均, 李炳元, 等, 1999. 晚新生代青藏高原的隆升与东亚环境变化. 地理学报, 54(1): 10-21. doi: 10.3321/j.issn:0375-5444.1999.01.002
      [178] 宋博文, 张克信, 徐亚东, 等, 2020. 中国古近纪构造-地层区划及地层格架. 地球科学, 45(12): 4352-4369. doi: 10.3799/dqkx.2020.122
      [179] 宋春晖, 2006. 青藏高原北缘新生代沉积演化与高原构造隆升过程(博士学位论文). 兰州: 兰州大学.
      [180] 孙东霞, 吕同艳, 沈晓丽, 等, 2019. 福建龙海—漳浦沿海地区火山岩激光40Ar/39Ar年龄. 地质通报, 38(9): 1511-1520. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201909009.htm
      [181] 索艳慧, 李三忠, 戴黎明, 等, 2012. 东亚及其大陆边缘新生代构造迁移与盆地演化. 岩石学报, 28(8): 2602-2618. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208026.htm
      [182] 万天丰, 2007. 中国大地构造学纲要. 北京: 地质出版社.
      [183] 汪品先, 2005. 新生代亚洲形变与海陆相互作用. 地球科学, 30(1): 1-18. http://www.earth-science.net/article/id/1447
      [184] 汪啸风, 陈孝红, 2005. 中国各地质时代地层划分与对比. 北京: 地质出版社.
      [185] 王必金, 林畅松, 陈莹, 等, 2006. 江汉盆地幕式构造运动及其演化特征. 石油地球物理勘探, 41(2): 226-230, 248, 19-20. doi: 10.3321/j.issn:1000-7210.2006.02.022
      [186] 王二七, 陈良忠, 陈智樑, 2002. 在构造和气候因素制约下的雅鲁藏布江的演化. 第四纪研究, 22(4): 365-373. doi: 10.3321/j.issn:1001-7410.2002.04.009
      [187] 王凤林, 李勇, 李永昭, 等, 2003. 成都盆地新生代大邑砾岩的沉积特征. 成都理工大学学报(自然科学版), 30(2): 139-146. doi: 10.3969/j.issn.1671-9727.2003.02.005
      [188] 王慧芬, 戴橦谟, 范嗣昆, 等, 1985. 张家口汉诺坝玄武岩K-Ar年龄计时. 地球化学, 14(3): 206-215. doi: 10.3321/j.issn:0379-1726.1985.03.002
      [189] 王世锋, 张伟林, 方小敏, 等, 2008. 藏西南札达盆地磁性地层学特征及其构造意义. 科学通报, 53(6): 676-683. doi: 10.3321/j.issn:0023-074X.2008.06.011
      [190] 王五力, 付俊彧, 杨雅军, 2012. 中国东北晚中生代-新生代盆山体系构造演化及成因探讨. 地质与资源, 21(1): 17-26. doi: 10.3969/j.issn.1671-1947.2012.01.004
      [191] 王振峰, 何家雄, 解习农, 2004. 莺歌海盆地泥-流体底辟带热流体活动对天然气运聚成藏的控制作用. 地球科学, 29(2): 203-210. doi: 10.3321/j.issn:1000-2383.2004.02.013
      [192] 魏启荣, 李德威, 王国灿, 等, 2007. 青藏高原北部查保马组火山岩的锆石SHRIMP U-Pb定年和地球化学特点及其成因意义. 岩石学报, 23(11): 2727-2736. doi: 10.3969/j.issn.1000-0569.2007.11.005
      [193] 邢光福, 冯益民, 余明刚, 等, 2017. 中国火山岩大地构造. 北京: 地质出版社.
      [194] 邢作云, 赵斌, 涂美义, 等, 2005. 汾渭裂谷系与造山带耦合关系及其形成机制研究. 地学前缘, 12(2): 247-262. doi: 10.3321/j.issn:1005-2321.2005.02.027
      [195] 杨琦, 陈红宇, 2003. 苏北-南黄海盆地构造演化. 石油实验地质, 25(S1): 562-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD2003S1008.htm
      [196] 叶捷, 吴文裕, 倪喜军, 等, 2012. 新疆准噶尔盆地北缘夺勒布勒津剖面的地层学及环境意义. 中国科学: 地球科学, 42(10): 1523-1532. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201210007.htm
      [197] 岳乐平, 邓涛, 张睿, 等, 2004. 西藏吉隆-沃马盆地龙骨沟剖面古地磁年代学及喜马拉雅山抬升记录. 地球物理学报, 47(6): 1009-1016. doi: 10.3321/j.issn:0001-5733.2004.06.012
      [198] 云南省地质矿产局, 1996. 云南省岩石地层. 武汉: 中国地质大学出版社.
      [199] 张克信, 何卫红, 徐亚东, 等, 2020. 论断代构造-地层区划的原则与方法: 以中国寒武纪构造-地层区划为例. 地球科学, 45(12): 4267-4290. doi: 10.3799/dqkx.2020.315
      [200] 张克信, 潘桂棠, 何卫红, 等, 2015. 中国构造-地层大区划分新方案. 地球科学, 40(2): 206-233. doi: 10.3799/dqkx.2015.016
      [201] 张克信, 2017. 中国沉积岩建造与沉积大地构造. 北京: 地质出版社.
      [202] 张克信, 王国灿, 骆满生, 等, 2013. 青藏高原及邻区新生代构造-岩相古地理图及说明书(1: 3 000 000). 北京: 地质出版社.
      [203] 张岳桥, 施炜, 董树文, 2019. 华北新构造: 印欧碰撞远场效应与太平洋俯冲地幔上涌之间的相互作用. 地质学报, 93(5): 971-1001. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201905001.htm
      [204] 张仲石, 郭正堂, 2005. 根据地质记录恢复渐新世和中新世不同时期环境空间特征及其意义. 第四纪研究, 25(4): 523-530. doi: 10.3321/j.issn:1001-7410.2005.04.017
      [205] 赵珍, 吴珍汉, 杨易卓, 等, 2020. 羌塘中部陆相红层时代的U-Pb年龄约束. 地质论评, 66(5): 1155-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202005009.htm
      [206] 赵振明, 计文化, 李荣社, 等, 2009. 青藏高原北部巴颜喀拉与东昆仑地区新近纪以来火山岩的地球化学特征及其成因. 地球化学, 38(3): 205-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200903003.htm
      [207] 赵政璋, 李永铁, 叶和飞, 等, 2001. 青藏高原地层. 北京: 科学出版社.
      [208] 赵志刚, 王鹏, 祁鹏, 等, 2016. 东海盆地形成的区域地质背景与构造演化特征. 地球科学, 41(3): 546-554. doi: 10.3799/dqkx.2016.045
      [209] 朱迎堂, 方小敏, 高军平, 等, 2006. 青藏高原南部乌郁盆地渐新世—上新世地层沉积相分析. 沉积学报, 24(6): 775-782. doi: 10.3969/j.issn.1000-0550.2006.06.001
    • 加载中
    图(4)
    计量
    • 文章访问数:  641
    • HTML全文浏览量:  233
    • PDF下载量:  267
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-01-10
    • 网络出版日期:  2022-04-29
    • 刊出日期:  2022-04-25

    目录

      /

      返回文章
      返回