• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江陵凹陷新生代玄武岩水-岩反应模拟及其对富钾卤水成因的指示

    王春连 刘成林 余小灿 王九一 李瑞琴 段晓旭 刘思晗 游超 周博文

    王春连, 刘成林, 余小灿, 王九一, 李瑞琴, 段晓旭, 刘思晗, 游超, 周博文, 2022. 江陵凹陷新生代玄武岩水-岩反应模拟及其对富钾卤水成因的指示. 地球科学, 47(1): 94-109. doi: 10.3799/dqkx.2021.069
    引用本文: 王春连, 刘成林, 余小灿, 王九一, 李瑞琴, 段晓旭, 刘思晗, 游超, 周博文, 2022. 江陵凹陷新生代玄武岩水-岩反应模拟及其对富钾卤水成因的指示. 地球科学, 47(1): 94-109. doi: 10.3799/dqkx.2021.069
    Wang Chunlian, Liu Chenglin, Yu Xiaocan, Wang Jiuyi, Li Ruiqin, Duan Xiaoxu, Liu Sihan, You Chao, Zhou Bowen, 2022. Simulation of Cenozoic Basalt Water-Rock Reaction in Jiangling Depression and Its Indications to Genesis of Potassium-Rich Brine. Earth Science, 47(1): 94-109. doi: 10.3799/dqkx.2021.069
    Citation: Wang Chunlian, Liu Chenglin, Yu Xiaocan, Wang Jiuyi, Li Ruiqin, Duan Xiaoxu, Liu Sihan, You Chao, Zhou Bowen, 2022. Simulation of Cenozoic Basalt Water-Rock Reaction in Jiangling Depression and Its Indications to Genesis of Potassium-Rich Brine. Earth Science, 47(1): 94-109. doi: 10.3799/dqkx.2021.069

    江陵凹陷新生代玄武岩水-岩反应模拟及其对富钾卤水成因的指示

    doi: 10.3799/dqkx.2021.069
    基金项目: 

    国家自然科学基金项目 U20A2092

    国家自然科学基金项目 42002106

    国家自然科学基金项目 41502089

    国家重点基础研究发展计划(973计划)项目 2011CB403007

    中央级公益性科研院所基本科研业务费专项资金 KK2005

    中央级公益性科研院所基本科研业务费专项资金 K1706

    中央级公益性科研院所基本科研业务费专项资金 K1415

    中国地质调查局地质矿产调查评价专项 DD20190816

    中国地质调查局地质矿产调查评价专项 DD20190606

    详细信息
      作者简介:

      王春连(1983-), 男, 研究员, 博士, 主要从事矿床学方面的研究.ORCID: 0000-0002-3449-4315.E-mail: wangchunlian312@163.com

    • 中图分类号: P611.5;P588.1;P599

    Simulation of Cenozoic Basalt Water-Rock Reaction in Jiangling Depression and Its Indications to Genesis of Potassium-Rich Brine

    • 摘要:

      关于江陵凹陷富钾卤水的物质来源和成因机理仍未查明. 对凹陷新生代玄武岩开展矿物学、岩石学、地球化学研究以及水-岩反应模拟实验,重点研究时间、温度、流体成分等对水-岩反应的影响. 结果表明,卤水具有高锂低镁的特征,说明其在成因上受到火山活动的影响;研究区岩浆发生不同程度的分异,玄武岩蚀变作用强烈,表明地下热液的交代作用强烈,玄武岩通过水-岩反应为富钾卤水矿提供了物质来源;温度是流体对元素的淋滤能力的主要控制因素,高盐度流体是各成矿元素主要的迁移载体,水-岩反应是卤水形成的重要过程.

       

    • 图  1  江陵凹陷构造演化阶段划分

      Fig.  1.  The structural evolution stage of Jiangling Depression

      图  2  江汉盆地及周缘地区新生代玄武岩分布(据Zhou et al., 2006修改)

      Fig.  2.  Cenozoic basalt distribution of Jianghan Basin and its surrounding areas (modified from Zhou et al., 2006)

      图  3  用于水‒岩反应实验的高温高压反应釜

      Fig.  3.  High temperature and high pressure reaction kettle used in water-rock reaction experiment

      图  4  反应釜内部结构

      Fig.  4.  Internal structure of reaction kettle

      图  5  江陵凹陷古近纪玄武岩分布(据王春连等,2021

      Fig.  5.  The distribution of the Paleogene volcanic rocks in Jiangling Depression (from Wang et al., 2021)

      图  6  江陵凹陷玄武岩野外露头和镜下照片

      a.红色气孔杏仁状玄武岩;b.致密块状玄武岩;c.柱状节理玄武岩;d.玄武岩内方解石和石英脉发育;e.间粒结构的玄武岩,橄榄石蚀变强烈,发生绿泥石化和伊丁石化;f.玄武岩主要由斜长石和辉石构成,蚀变相对较弱

      Fig.  6.  Field outcrops and microscopic photographs of basalt in Jiangling Depression

      图  7  江陵凹陷火山岩分类图解

      Fig.  7.  Classification plots of volcanic rocks in Jiangling Depression

      图  8  玄武岩静态浸泡实验K+浓度变化

      Fig.  8.  Variation diagrams of K+ concentration in basalt static immersion experiment

      图  9  玄武岩静态浸泡实验Ca2+浓度变化

      Fig.  9.  Variation diagrams of Ca2+ concentration in basalt static immersion experiment

      图  10  玄武岩静态浸泡实验Mg2+浓度变化

      Fig.  10.  Variations of Mg2+ concentration in basalt static immersion experiment

      图  11  玄武岩静态浸泡实验Sr2+浓度变化

      Fig.  11.  Variations of Sr2+ concentration in basalt static immersion experiment

      图  12  玄武岩静态浸泡实验Br浓度变化

      Fig.  12.  Variations of Br concentration in basalt static immersion experiment

      图  13  玄武岩静态浸泡实验I浓度变化

      Fig.  13.  Variations of I concentration in basalt static immersion experiment

      图  14  玄武岩静态浸泡实验B浓度变化

      Fig.  14.  Variations of B concentration in basalt static immersion experiment

      图  15  玄武岩水‒岩反应离子浓度在不同温度下的变化

      反应的流体介质为蒸馏水

      Fig.  15.  Variations of water-rock reaction ion concentration in basalt at different temperatures

      图  16  玄武岩水‒岩反应离子浓度在不同温度下的变化

      反应的流体介质为1 mol/L的NaCl溶液

      Fig.  16.  Variations of water-rock reaction ion concentration in basalt at different temperatures

      图  17  水‒岩反应中离子浓度变化

      横坐标为T-水/n,其中T为温度,℃;n为NaCl溶液浓度,mg/L

      Fig.  17.  Variations of ion content in water-rock reaction

      表  1  江陵凹陷玄武岩样品基本信息

      Table  1.   Sampling information of some igneous rocks in Jiangling Depression

      样品编号 经纬度 岩石类型
      JLY-1 古近系 古新统 沙市组 N27°42.589´E114°19.673´ 玄武岩
      JLY-2 古近系 古新统 沙市组 N27°42.083´E114°17.614´ 玄武岩
      JLY-3 古近系 古新统 沙市组 N27°40.936´E114°17.253´ 玄武岩
      JLY-4 古近系 古新统 沙市组 N27°39.197´E114°31.483´ 玄武岩
      JLY-5 古近系 古新统 沙市组 N27°39.197´E114°31.483´ 玄武岩
      JLY-6 古近系 古新统 沙市组 N27°31.780´E114°38.375´ 玄武岩
      JLY-7 古近系 古新统 沙市组 N27°32.222´E114°37.234´ 玄武岩
      JLY-8 古近系 古新统 沙市组 N27°32.222´E114°37.234´ 玄武岩
      JLY-9 古近系 古新统 沙市组 N27°36.088´E114°59.241´ 玄武岩
      JLY-10 古近系 古新统 沙市组 N27°32.883´E115°50.937´ 玄武岩
      下载: 导出CSV

      表  2  江陵凹陷玄武岩岩石含量分析

      Table  2.   Content analysis of basalt in Jiangling Depression

      样品编号 含量(%)
      SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 Zr LOI 总量
      JLY-1 53.01 1.88 14.71 2.97 0.15 6.09 7.54 3.37 1.02 0.34 147 0.65 100.14
      JLY-2 52.49 1.96 14.66 3.19 0.13 6.17 7.46 3.46 1.20 0.37 157 0.76 100.34
      JLY-3 52.55 1.94 14.91 3.12 0.14 6.07 7.71 3.44 1.03 0.35 147 0.71 100.23
      JLY-4 52.85 1.89 14.71 3.23 0.13 6.17 8.13 3.18 1.05 0.33 152 0.96 100.93
      JLY-5 52.16 1.90 14.86 3.05 0.12 6.07 8.25 3.30 1.09 0.35 155 0.76 100.32
      JLY-6 52.29 1.96 15.18 3.23 0.13 5.63 8.10 2.98 1.06 0.37 157 1.62 100.60
      JLY-7 48.71 1.95 15.35 4.16 0.09 6.26 6.96 2.45 1.21 0.35 152 5.25 100.40
      JLY-8 48.88 2.16 15.48 3.24 0.10 4.91 8.55 2.86 1.20 0.50 195 4.60 100.10
      JLY-9 49.94 2.06 15.25 3.15 0.08 5.75 7.54 2.76 1.24 0.47 188 4.17 101.40
      JLY-10 53.00 1.93 15.05 3.17 0.13 5.80 7.60 3.02 1.05 0.36 149 1.06 100.44
      下载: 导出CSV
    • [1] Batrak, G. I., Galitskaya, I. V., 2013. Experimental Investigation of Brine-Rock Interactions for Groundwater Quality Predictions in Mine Areas. Procedia Earth and Planetary Science, 7: 49-52. https://doi.org/10.1016/j.proeps.2013.03.066
      [2] Huang, C. J., Hinnov, L., 2014. Evolution of an Eocene- Oligocene Saline Lake Depositional System and Its Controlling Factors, Jianghan Basin, China. Journal of Earth Science, 25(6): 959-976. https://doi.org/10.1007/s12583-014-0499-2
      [3] Huang, H., Liu, C.L., Zhang, S.W., et al., 2014. Application of Geophysical Detection Method to Exploration of Deep Potassium Rich Brine Formation: A Case Study of Jiangling Depression. Mineral Deposits, 33(5): 1101-1107 (in Chinese with English abstract).
      [4] Kesler, S. E., Gruber, P. W., Medina, P. A., et al., 2012. Global Lithium Resources: Relative Importance of Pegmatite, Brine and Other Deposits. Ore Geology Reviews, 48: 55-69. https://doi.org/10.1016/j.oregeorev.2012.05.006
      [5] Li, R.Q., Liu, C.L., Chen, X., et al., 2013. Salting Law by Cooling Deep Potassium-Bearing Brine in Jiangling Depression. Journal of Salt Lake Research, 21(1): 1-6 (in Chinese with English abstract).
      [6] Li, R. Q., Liu, C. L., Jiao, P. C., et al., 2018. The Tempo-Spatial Characteristics and Forming Mechanism of Lithium-Rich Brines in China. China Geology, 1(1): 72-83. https://doi.org/10.31035/cg2018009
      [7] Li, R. Q., Liu, C. L., Xu, H. M., et al., 2020. Genesis of Glauberite Sedimentation in Lop Nur Salt Lake- Constraints from Thermodynamic Simulation of the Shallow Groundwater in the Tarim River Basin, China. Chemical Geology, 537: 119461. https://doi.org/10.1016/j.chemgeo.2019.119461
      [8] Liu, C.L., Wang, M.L., Jiao, P.C., et al., 2006. The Exploration Experiences of Potash Deposits in the World and Probing of Countermeasures of China's Future Potash-Deposits Investigation. Geology of Chemical Minerals, 28(1): 1-8 (in Chinese with English abstract).
      [9] Liu, C.L., Yu, X.C., Zhao, Y.J., et al., 2016. A Tentative Discussion on Regional Metallogenic Background and Mineralization Mechanism of Subterranean Brines Rich in Potassium and Lithium in South China Block. Mineral Deposits, 35(6): 1119-1143 (in Chinese with English abstract).
      [10] Liu, X.F., Zheng, M.P., Qi, W., 2007. Sources of Ore-Forming Materials of the Superlarge B and Li Deposit in Zabuye Salt Lake, Tibet, China. Acta Geologica Sinica, 81(12): 1709-1715 (in Chinese with English abstract).
      [11] Liu, J. H., Zhang, P. Z., Lease, R. O., et al., 2013. Eocene Onset and Late Miocene Acceleration of Cenozoic Intracontinental Extension in the North Qinling Range-Weihe Graben: Insights from Apatite Fission Track Thermochronology. Tectonophysics, 584: 281-296. https://doi.org/10.1016/j.tecto.2012.01.025
      [12] Meng, F.W., Liu, C.L., Ni, P., 2012. To Forecast Sylvite Deposits Using the Chemistry of Fluid Inclusions in Halite. Acta Micropalaeontologica Sinica, 29(1): 62-69 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-WSGT201201007.htm
      [13] Meng, F.W., Zhang, Z.L., Zhuo, Q.G., et al., 2018. Direct Geolocal Records of Ancient Environments in the Evaporite Basin: Evidences from Fluid Inclusions in Halite. Bulletin of Mineralogy, Petrology and Geochemistry, 37(3): 451-460, 561 (in Chinese with English abstract).
      [14] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-AlkalineVolcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58: 63-81. https://doi.org/10.1007/bf00384745
      [15] Risacher, F., Alonso, H., Salazar, C., 2003. The Origin of Brines and Salts in Chilean Salars: A Hydrochemical Review. Earth-Science Reviews, 63(3-4): 249-293. https://doi.org/10.1016/s0012-8252(03)00037-0
      [16] Tong, C.G., 1980. Some Characteristics of Petroleum Geology of the Rift System in Eastern China. Acta Petrolei Sinica, 1(4): 19-26 (in Chinese with English abstract).
      [17] Wang, C.L., Huang, H., Wang, J.Y., et al., 2018. Geological Features and Metallogenic Model of K- and Li- Rich Brine Ore Field in the Jiangling Depression. Acta Geologica Sinica, 92(8): 1630-1646 (in Chinese with English abstract).
      [18] Wang, C.L., Liu, C.L., Liu, B.K., et al., 2015. The Discovery of Carnallite in Paleocene Jiangling Depression and Its Potash Searching Significance. Acta Geologica Sinica, 89(1): 129-136 (in Chinese with English abstract).
      [19] Wang, C.L., Liu, C.L., Xu, H.M., et al., 2013a. Homogenization Temperature Study of Salt Inclusions from the Upper Section of Shashi Formation in Jiangling Depression. Acta Petrologica et Mineralogica, 32(3): 383-392 (in Chinese with English abstract).
      [20] Wang, C.L., Liu, C.L., Wang, L.C., et al., 2013b. Reviews on Potash Deposit Metallogenic Conditions. Advances in Earth Science, 28(9): 976-987 (in Chinese with English abstract).
      [21] Wang, C. L., Liu, C. L., Yu, X. C., et al., 2016. The Extremely Hot and Dry Climatic Events and Potash Enrichment in Salt Lakes of the Jiangling Depression, Jianghan Basin. Acta Geologica Sinica (English Edition), 90(2): 769-770. https://doi.org/10.1111/1755-6724.12712
      [22] Wang, C.L., Liu, L.H., Li, Q., et al., 2020. Petrogeochemical Characteristics and Genetic Analysis of the Source Area of Brine Type Lithium-Potassium Ore Sources Area in Jitai Basin of Jiangxi Province. Acta Petrologica et Mineralogica, 39(1): 65-84 (in Chinese with English abstract).
      [23] Wang, C.L., Meng, L.Y., Liu, C.L., et al., 2021. A Study of the Genesis of Paleocene Underground Brine Boron Deposits in Jiangling Depression. Acta Petrologica et Mineralogica, 40(1): 1-13 (in Chinese with English abstract).
      [24] Wang, D.H., Liu, L.J., Dai, H.Z., et al., 2017. Discussion on Particularity and Prospecting Direction of Large and Super-Large Spodumene Deposits. Earth Science, 42(12): 2243-2257 (in Chinese with English abstract).
      [25] Wang, S. L., Zheng, M. P., Liu, X. F., et al., 2013. Distribution of Cambrian Salt-Bearing Basins in China and Its Significance for Halite and Potash Finding. Journal of Earth Science, 24(2): 212-233. https://doi.org/10.1007/s12583-013-0319-0
      [26] Xu, L.X., Yan, C.D., Yu, H.L., et al., 1995. Chronology of Paleogene Volcanic Rocks in Jianghan Basin. Oil & Gas Geology, 16(2): 132-137 (in Chinese with English abstract).
      [27] Xu, W., Xu, X.Y., Lu, J.C., et al., 2019. Geochronology, Petrogenesis and Tectonic Implications of Devonian High-K Acid Magmatic Rocks from Yemajing Area in Beishan Orogen. Earth Science, 44(8): 2775-2793 (in Chinese with English abstract).
      [28] Xu, Y., Liu, C.L., Jiao, P.C., et al., 2017. Geochemical Characteristics and Potash Formation Analysis of Paleocene-Eocene Evaporites in Kuqa Depression of Xinjiang: A Case Study of Borehole KL4. Acta Petrologica et Mineralogica, 36(5): 755-764 (in Chinese with English abstract).
      [29] Xu, Y. G., 2014. Recycled Oceanic Crust in the Source of 90-40 Ma Basalts in North and Northeast China: Evidence, Provenance and Significance. Geochimica et Cosmochimica Acta, 143: 49-67. https://doi.org/10.1016/j.gca.2014.04.045
      [30] Xu, Z., Zheng, Y.F., 2019. Crust-Mantle Interaction in the Paleo-Pacific Subduction Zone: Geochemical Evidence from Cenozoic Continental Basalts in Eastern China. Earth Science, 44(12): 4135-4143 (in Chinese with English abstract).
      [31] Yu, H.L., Yan, C.D., Yu, F.Q., et al., 1996. Geochemical Characteristics and Tectonic Environment of Eogene Basalts of the Jiangling Hollow. Geological Review, 42(S1): 44-51 (in Chinese with English abstract).
      [32] Yu, X. C., Liu, C. L., Wang, C. L., et al., 2021. Origin of Geothermal Waters from the Upper Cretaceous to Lower Eocene Strata of the Jiangling Basin, South China: Constraints by Multi-Isotopic Tracers and Water-Rock Interactions. Applied Geochemistry, 124: 104810. https://doi.org/10.1016/j.apgeochem.2020.104810
      [33] Yu, X. C., Wang, C. L., Liu, C. L., et al., 2015. Sedimentary Characteristics and Depositional Model of a Paleocene-Eocene Salt Lake in the Jiangling Depression, China. Chinese Journal of Oceanology and Limnology, 33(6): 1426-1435. https://doi.org/10.1007/s00343-015-4375-4
      [34] Yu, X.Q., Shu, L.S., Deng, G.H., et al., 2005. Geochemical Features and Tectonic Significance of the Alkali- Basalts from Ji'an-Taihe Basin, Jiangxi Province. Geoscience, 19(1): 133-140 (in Chinese with English abstract).
      [35] Zhang, X.Y., Ma, H.Z., Gao, D.L., et al., 2009. Analysis of Influencing Factors Causing the Changes of Chemical Components of Underground Brine in Mining Area of West Taijinar Salt Lake. Journal of Salt Lake Research, 17(4): 22-26 (in Chinese with English abstract).
      [36] Zeng, F. M., Xiang, S. Y., 2017. Geochronology and Mineral Composition of the Pleistocene Sediments in Xitaijinair Salt Lake Region, Qaidam Basin: Preliminary Results. Journal of Earth Science, 28(4): 622-627. https://doi.org/10.1007/s12583-016-0712-6
      [37] Zhou, X., Cao, Q., Yin, F., et al., 2015. Characteristics of the Brines and Hot Springs in the Triassic Carbonates in the High and Steep Fold Zone of the Eastern Sichuan Basin. Acta Geologica Sinica, 89(11): 1908-1920 (in Chinese with English abstract).
      [38] Zhou, X., Jiang, C.L., Han, J.J., et al., 2013. Some Problems Related to the Evaluation of Subsurface Brine Resources in Deep-Seated Aquifers in Sedimentary Basins. Acta Geoscientica Sinica, 34(5): 610-616 (in Chinese with English abstract).
      [39] Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
      [40] 黄华, 刘成林, 张士万, 等, 2014. 深层富钾卤水的地球物理探测技术及应用——以江陵凹陷为例. 矿床地质, 33(5): 1101-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201405018.htm
      [41] 李瑞琴, 刘成林, 陈侠, 等, 2013. 江陵凹陷深层富钾卤水井内降温析盐情况探讨. 盐湖研究, 21(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201301003.htm
      [42] 刘成林, 王弭力, 焦鹏程, 等, 2006. 世界主要古代钾盐找矿实践与中国找钾对策. 化工矿产地质, 28(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKC200601000.htm
      [43] 刘成林, 余小灿, 赵艳军, 等, 2016. 华南陆块液体钾、锂资源的区域成矿背景与成矿作用初探. 矿床地质, 35(6): 1119-1143. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201606001.htm
      [44] 刘喜方, 郑绵平, 齐文, 2007. 西藏扎布耶盐湖超大型B、Li矿床成矿物质来源研究. 地质学报, 81(12): 1709-1715. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200712012.htm
      [45] 孟凡巍, 刘成林, 倪培, 2012. 全球古海水化学演化与世界主要海相钾盐沉积关系暨中国海相成钾探讨. 微体古生物学报, 29(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201201007.htm
      [46] 孟凡巍, 张智礼, 卓勤功, 等, 2018. 蒸发岩盆地古环境的直接记录: 来自石盐流体包裹体的证据. 矿物岩石地球化学通报, 37(3): 451-460, 561. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201803006.htm
      [47] 童崇光, 1980. 中国东部裂谷系盆地的石油地质特征. 石油学报, 1(4): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198004001.htm
      [48] 王春连, 黄华, 王九一, 等, 2018. 江陵凹陷富钾锂卤水矿田地质特征及成藏模式研究. 地质学报, 92(8): 1630-1646. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201808007.htm
      [49] 王春连, 刘成林, 刘宝坤, 等, 2015. 江陵凹陷古新统光卤石的发现及其钾盐找矿意义. 地质学报, 89(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201501010.htm
      [50] 王春连, 刘成林, 徐海明, 等, 2013a. 江陵凹陷沙市组上段石盐包裹体测温学研究. 岩石矿物学杂志, 32(3): 383-392. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201303011.htm
      [51] 王春连, 刘成林, 王立成, 等, 2013b. 钾盐矿床成矿条件研究若干进展. 地球科学进展, 28(9): 976-987. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201309003.htm
      [52] 王春连, 刘丽红, 李强, 等, 2020. 江西吉泰盆地卤水型锂钾矿物源区岩石地球化学特征及成因分析. 岩石矿物学杂志, 39(1): 65-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202001005.htm
      [53] 王春连, 孟令阳, 刘成林, 等, 2021. 江陵凹陷古新世地下卤水型硼矿成因研究. 岩石矿物学杂志, 40(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW202101002.htm
      [54] 王登红, 刘丽君, 代鸿章, 等, 2017. 试论国内外大型超大型锂辉石矿床的特殊性与找矿方向. 地球科学, 42(12): 2243-2257. doi: 10.3799/dqkx.2017.142
      [55] 徐论勋, 阎春德, 俞惠隆, 等, 1995. 江汉盆地下第三系火山岩年代. 石油与天然气地质, 16(2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT502.005.htm
      [56] 许伟, 徐学义, 卢进才, 等, 2019. 北山野马井地区泥盆纪富钾酸性岩浆岩地球化学特征及其地质意义. 地球科学, 44(8): 2775-2793. doi: 10.3799/dqkx.2019.048
      [57] 徐洋, 刘成林, 焦鹏程, 等, 2017. 塔里木盆地库车坳陷古新统—始新统蒸发岩地球化学特征及成钾分析: 以KL4井为例. 岩石矿物学杂志, 36(5): 755-764. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201705016.htm
      [58] 徐峥, 郑永飞, 2019. 中国东部新生代玄武岩记录古太平洋俯冲带壳幔相互作用. 地球科学, 44(12): 4135-4143. doi: 10.3799/dqkx.2019.273
      [59] 俞惠隆, 阎春德, 余芳权, 等, 1996. 江陵凹陷早第三纪玄武岩的地球化学特征与成岩构造环境. 地质论评, 42(S1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1996S1007.htm
      [60] 余心起, 舒良树, 邓国辉, 等, 2005. 江西吉泰盆地碱性玄武岩的地球化学特征及其构造意义. 现代地质, 19(1): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ20050100J.htm
      [61] 张西营, 马海州, 高东林, 等, 2009. 西台吉乃尔盐湖矿区地下卤水化学组分变化的影响因素分析. 盐湖研究, 17(4): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200904006.htm
      [62] 周训, 曹琴, 尹菲, 等, 2015. 四川盆地东部高褶带三叠系地层卤水和温泉的地球化学特征及成因. 地质学报, 89(11): 1908-1920. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201511003.htm
      [63] 周训, 姜长龙, 韩佳君, 等, 2013. 沉积盆地深层地下卤水资源量评价之若干探讨. 地球学报, 34(5): 610-616. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201305014.htm
    • 加载中
    图(17) / 表(2)
    计量
    • 文章访问数:  703
    • HTML全文浏览量:  94
    • PDF下载量:  132
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-12-17
    • 刊出日期:  2022-01-20

    目录

      /

      返回文章
      返回