Depositional Environment during Late Salt-Forming Period in Potash Deposits of Vientiane Basin, Laos: Evidence from Borate Minerals
-
摘要:
老挝万象盆地蕴含着丰富的钾资源,是研究古蒸发岩和古海水形成演化的热点地区之一. 老挝万象盆地含盐建造包含3个蒸发岩-碎屑岩沉积韵律,而钾镁盐矿赋存在下盐段顶部. 通过对老挝通芒钾盐矿区钾镁盐矿层的硼酸盐矿物的提取,发现在成钾晚期硼酸盐矿物有方硼石单晶和鲕粒方硼石两种形式. 钻孔中方硼石单晶含量较少,而鲕粒方硼石分布较多且基本赋存于钾镁盐矿层顶部,鲕粒方硼石的规律性分布表明成钾晚期为动荡的浅水环境. 无论是方硼石单晶还是鲕粒方硼石都在高能环境下形成,其中鲕粒方硼石对于反演盐湖沉积环境有明显的指示意义.
Abstract:There exist abundant potassium resources in Vientiane Basin of Laos. These huge evaporites or potash deposits are important materials for studying formation and evolution of ancient evaporites and seawater. The salt-bearing construction of the Vientiane Basin in Laos contains three evaporite-clastic sedimentary rhythms, while the potassium-magnesium salt deposits are present at the top of the lower salt section. Through the extraction of borate minerals from the potassium-magnesium salt deposits in the Thongmang potash mine in Laos, it is found that there are two forms of borate minerals in the late stage of potassium formation, namely boracite single crystal and oolitic boracite. According to the analysis, the content of boracite single crystal in the borehole is less; while the oolitic boracite is more distributed and basically present on the top of the potassium-magnesium salt layer, and the regular distribution of oolitic boracite shows that the sedimentary environment is a turbulent shallow water environment. Both the boracite single crystal and oolitic boracite are formed in a high-energy environment, and the oolitic boracite is of great significance to invert the salt-forming environment.
-
表 1 样品的矿物组成(%)
Table 1. Mineral compositions(%)of the sample
样品编号 方硼石 硬石膏 石英 方解石 白云石 水氯硼钙石 菱镁矿 碳酸镁钙 T1‒01 82 10 3 5 T1‒02 25 67 1 T1‒03 20 49 21 9 T2‒07 11 82 3 1 2 T2‒08 11 86 2 1 1 T2‒09 14 70 9 2 2 2 FJ‒13 49 21 9 20 FJ‒14 82 3 1 2 11 FJ‒15 86 2 1 1 11 FJ‒16 70 9 2 2 2 14 表 2 方硼石单晶颗粒SEM⁃ED元素分析结果(%)
Table 2. Elemental analysis of boracite single crystal by SEM-ED(%)
颗粒编号 方硼石颗粒形态 主要元素 岩性 O Mg Cl Ca Si Al a1 晶体 69.91 23.13 6.96 钾盐 a2 晶体 71.09 22.17 6.58 0.16 b1 晶体 63.25 22.99 11.88 0.36 1.26 0.27 b2 晶体 64.72 22.13 10.13 0.49 2.53 表 3 鲕粒方硼石颗粒SEM⁃EDS元素分析结果(%)
Table 3. Element analysis of oolitic boracite crystal by SEM-ED (%)
颗粒编号 方硼石颗粒形态 主要元素 岩性 O Mg Cl Ca Si Al Na Fe Br S Mo Pb c1 鲕粒 67.86 22.78 9.15 0.21 岩盐 c2 鲕粒 71.93 21.39 5.94 0.40 0.33 c3 鲕粒 66.97 22.56 9.22 0.48 0.29 0.47 d1 鲕粒(边缘) 63.38 21.32 11.92 0.61 0.54 0.25 0.25 0.87 0.40 0.48 d2 鲕粒(内部) 64.73 22.64 11.35 0.36 0.20 0.21 0.52 e1 鲕粒(内部) 64.73 22.64 11.35 0.36 0.20 0.21 0.52 e2 鲕粒(边缘) 63.38 21.32 11.92 0.61 0.54 0.25 0.25 0.87 0.40 0.48 f1 鲕粒(内部) 66.66 23.08 9.51 0.34 0.41 f2 鲕粒(中部) 66.47 21.85 9.44 0.40 0.86 0.59 0.39 f3 鲕粒(边缘) 71.08 20.94 6.50 0.18 0.28 0.39 0.62 f4 鲕粒(边缘) 72.75 19.94 5.42 0.23 0.64 0.60 0.41 -
[1] Cheng, H.D., Ma, H.Z., Shan, F.S., et al., 2010. A Study of the Formation Mechanism of the Vientiane Potash Deposit Based on Phase Chemistry. Acta Geoscientica Sinica, 31(2): 194-202 (in Chinese with English abstract). [2] Eastoe, C. J., Peryt, T. M., Petrychenko, O. Y., et al., 2007. Stable Chlorine Isotopes in Phanerozoic Evaporites. Applied Geochemistry, 22(3): 575-588. https://doi.org/10.1016/j.apgeochem.2006.12.012 [3] El Tabakh, M., Utha-Aroon, C., Schreiber, B. C., 1999. Sedimentology of the Cretaceous Maha Sarakham Evaporites in the Khorat Plateau of Northeastern Thailand. Sedimentary Geology, 123(1-2): 31-62. https://doi.org/10.1016/s0037-0738(98)00083-9 [4] Fan, P. F., 2000. Accreted Terranes and Mineral Deposits of Indochina. Journal of Asian Earth Sciences, 18(3): 343-350. https://doi.org/10.1016/s1367-9120(99)00061-9 [5] Flügel, E., 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer, Berlin. https://doi.org/10.1007/978-3-642-03796-2 [6] Hardie, L. A., 1990. The Roles of Rifting and Hydrothermal CaCl2 Brines in the Origin of Potash Evaporites: An Hypothesis. American Journal of Science, 290(1): 43-106. https://doi.org/10.2475/ajs.290.1.43 [7] Hite, R. J., Japakasetr, T., 1979. Potash Deposits of the Khorat Plateau, Thailand and Laos. Economic Geology, 74(2): 448-458. https://doi.org/10.2113/gsecongeo.74.2.448 [8] Li, M. H., Yan, M. D., Fang, X. M., et al., 2018. Origins of the Mid-Cretaceous Evaporite Deposits of the Sakhon Nakhon Basin in Laos: Evidence from the Stable Isotopes of Halite. Journal of Geochemical Exploration, 184: 209-222. https://doi.org/10.1016/j.gexplo.2017.11.001 [9] Li, S.P., Ma, H.Z., Shan, F.S., et al., 2009. Salt Tectonic Characteristic and Genetic Mechanism of Thongmang Region in Vientiane Basin, Laos. Journal of Salt Lake Research, 17(2): 5-12 (in Chinese with English abstract). [10] Liu, C.L., Zhao, Y.J., Fang, X.M., et al., 2015. Plate Tectonics Control on the Distribution and Formation of the Marine Potash Deposits. Acta Geologica Sinica, 89(11): 1893-1907 (in Chinese with English abstract). [11] Ma, Y.Q., Liu, H.M., Zhang, S.P., et al., 2020. Types of Fine-Grained Mixed Sedimentary Rocks of Shahejie Formation and Evolution of Lake Basin in Jiyang Depression, Eastern China. Earth Science, 45(10): 3633-3644 (in Chinese with English abstract). [12] Mouret, C., 1994. Geological History of Northeastern Thailand since the Carboniferous: Relations with Indochina and Carboniferous to Early Cenozoic Evolution Model. In: Angsuwathana, P., ed., Proceedings of the International Symposium on Stratigraphic Correlation of Southeast Asia. Department of Mineral Resources, Bangkok. [13] Qian, Z.Q., Qu, Y. H., Liu, Q., et al., 1994. Potash Deposits. Geological Publishing House, Beijing (in Chinese). [14] Ren, Q. H., Du, Y. S., Gao, D. L., et al., 2018. A Multi-Fluid Constrain for the Forming of Potash Deposits in the Savannakhet Basin: Geochemical Evidence from Halite. Acta Geologica Sinica (English Edition), 92(2): 755-768. https://doi.org/10.1111/1755-6724.13552 [15] Richter, D.K., 1983. Calcareous Ooids: A Synopsis. In: Peryt, T.M., ed., Coated Grains. Springer, Berlin. https://doi.org/10.1007/978-3-642-68869-0_7 [16] Saminpanya, S., Duangkrayom, J., Jintasakul, P., et al., 2014. Petrography, Mineralogy and Geochemistry of Cretaceous Sediment Samples from Western Khorat Plateau, Thailand, and Considerations on Their Provenance. Journal of Asian Earth Sciences, 83: 13-34. https://doi.org/10.1016/j.jseaes.2014.01.007 [17] Siemann, M. G., 2003. Extensive and Rapid Changes in Seawater Chemistry during the Phanerozoic: Evidence from Br Contents in Basal Halite. Terra Nova, 15(4): 243-248. https://doi.org/10.1046/j.1365-3121.2003.00490.x [18] Simone, L., 1980. Ooids: A Review. Earth-Science Reviews, 16: 319-355. https://doi.org/10.1016/0012-8252(80)90053-7 [19] Tan, H. B., Ma, H. Z., Li, B. K., et al., 2010. Strontium and Boron Isotopic Constraint on the Marine Origin of the Khammuane Potash Deposits in Southeastern Laos. Chinese Science Bulletin, 55(27-28): 3181-3188. https://doi.org/10.1007/s11434-010-4010-x [20] Tang, Q.L., Zhang, X.Y., Miao, W.L., et al., 2013. Study of Geochemical Characteristics of Salt Deposits during Halogeneses in Tongmang Mining Area, Vientiane, Laos. Journal of Salt Lake Research, 21(3): 10-16 (in Chinese with English abstract). [21] Timofeeff, M. N., Lowenstein, T. K., da Silva, M. A. M., et al., 2006. Secular Variation in the Major-Ion Chemistry of Seawater: Evidence from Fluid Inclusions in Cretaceous Halites. Geochimica et Cosmochimica Acta, 70(8): 1977-1994. https://doi.org/10.1016/j.gca.2006.01.020 [22] Utha-Aroon, C., 1993. Continental Origin of the Maha Sarakham Evaporites, Northeastern Thailand. Journal of Southeast Asian Earth Sciences, 8(1-4): 193-203. https://doi.org/10.1016/0743-9547(93)90021-g [23] Zhang, X. Y., Ma, H. Z., Ma, Y. Q., et al., 2013. Origin of the Late Cretaceous Potash-Bearing Evaporites in the Vientiane Basin of Laos: δ11B Evidence from Borates. Journal of Asian Earth Sciences, 62: 812-818. https://doi.org/10.1016/j.jseaes.2012.11.036 [24] 程怀德, 马海州, 山发寿, 等, 2010. 基于相化学研究老挝万象钾镁盐矿床形成的机制. 地球学报, 31(2): 194-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201002011.htm [25] 李善平, 马海州, 山发寿, 等, 2009. 老挝万象盆地通芒地区盐构造特征及成因机制. 盐湖研究, 17(2): 5-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ200902004.htm [26] 刘成林, 赵艳军, 方小敏, 等, 2015. 板块构造对海相钾盐矿床分布与成矿模式的控制. 地质学报, 89(11): 1893-1907. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201511002.htm [27] 马义权, 刘惠民, 张守鹏, 等, 2020. 济阳坳陷细粒混积岩类型与湖盆演化的耦合关系. 地球科学, 45(10): 3633-3644. doi: 10.3799/dqkx.2020.192 [28] 钱自强, 曲懿华, 刘群, 等, 1994. 钾盐矿床. 北京: 地质出版社. [29] 唐启亮, 张西营, 苗卫良, 等, 2013. 老挝万象通芒矿区成盐期元素地球化学特征研究. 盐湖研究, 21(3): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201303003.htm