• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海万安盆地构造—层序发育特征与构造—沉积充填演化

    肖鸿议 何云龙 解习农 张道军 陆必宇 王亚辉 杨允柳

    肖鸿议, 何云龙, 解习农, 张道军, 陆必宇, 王亚辉, 杨允柳, 2021. 南海万安盆地构造—层序发育特征与构造—沉积充填演化. 地球科学, 46(9): 3338-3351. doi: 10.3799/dqkx.2021.064
    引用本文: 肖鸿议, 何云龙, 解习农, 张道军, 陆必宇, 王亚辉, 杨允柳, 2021. 南海万安盆地构造—层序发育特征与构造—沉积充填演化. 地球科学, 46(9): 3338-3351. doi: 10.3799/dqkx.2021.064
    Xiao Hongyi, He Yunlong, Xie Xinong, Zhang Daojun, Lu Biyu, Wang Yahui, Yang Yunliu, 2021. Characteristics of Structural-Sequence and Evolution of Tectonic and Sedimentary of Wan'an Basin in South China Sea. Earth Science, 46(9): 3338-3351. doi: 10.3799/dqkx.2021.064
    Citation: Xiao Hongyi, He Yunlong, Xie Xinong, Zhang Daojun, Lu Biyu, Wang Yahui, Yang Yunliu, 2021. Characteristics of Structural-Sequence and Evolution of Tectonic and Sedimentary of Wan'an Basin in South China Sea. Earth Science, 46(9): 3338-3351. doi: 10.3799/dqkx.2021.064

    南海万安盆地构造—层序发育特征与构造—沉积充填演化

    doi: 10.3799/dqkx.2021.064
    基金项目: 

    中国—东盟海上合作基金项目 12120100500017001

    国家自然科学基金项目 42172125

    国家自然科学基金项目 41502102

    国家“十三五”科技重大专项 2017ZX05026-005-002

    详细信息
      作者简介:

      肖鸿议(1995-), 男, 硕士研究生, 主要从事海洋油气地质学研究.ORCID: 0000-0003-2904-8051.E-mail: 1146616857@qq.com

      通讯作者:

      何云龙, ORCID: 0000-0003-1925-5356.E-mail: ylhe@cug.edu.cn

    • 中图分类号: P618

    Characteristics of Structural-Sequence and Evolution of Tectonic and Sedimentary of Wan'an Basin in South China Sea

    • 摘要: 万安盆地是南海西南部重要的沉积盆地之一,深入分析其构造—沉积充填特征对于认识南海南部主要构造事件及其沉积响应具有重要的科学意义.利用覆盖全盆地的二维地震资料,结合国内外的研究成果,对万安盆地构造—层序特征及其构造—沉积充填演化进行分析.研究表明,万安盆地内新生代以来可识别出8个主要的二级/三级层序界面.沉降模拟显示,盆地沉降整体表现出一个“快—慢—快”的过程,且整体呈现出东高西低,中高南低的特征.综合构造层序特征和沉降模拟结果,万安盆地新生代以来沉积演化可分为5个阶段:初始裂陷期、晚期裂陷期、断坳转换期、裂后热沉降期和裂后加速热沉降期.盆地自形成以来,沉降主要受东亚大陆边缘区域拉张所造成的深部断裂的影响,至上新世,万安断裂转而成为盆地沉降的主要影响因素,并由此造成了早期盆地沉降中心由中部向西迁移,然后再逐步向东迁移的特征.渐新世至早中新世为盆地裂陷阶段,以陆源碎屑岩沉积为主,断陷早期可能为湖相,晚期为浅海相;中中新世为盆地断坳转换阶段,晚中新世以来为盆地裂后热沉降阶段,二者均发育陆源碎屑岩和自生碳酸盐岩两种沉积类型,且裂后热沉降期碳酸盐岩沉积范围相对缩小,陆缘碎屑岩沉积范围相对扩大.

       

    • 图  1  南海南部盆地概况及万安盆地构造单元

      姚永坚等(2018)修改

      Fig.  1.  General situation of basins in the south of the South China Sea and tectonic unit of Wan'an basin

      图  2  万安盆地综合柱状图及区域构造事件

      Fig.  2.  Integrated stratigraphic column and regional tectonic events of Wan'an basin

      图  3  关键构造‒地层界面地震反射特征

      具体位置见图 4

      Fig.  3.  Characteristics of seismic responses of key structural-stratigraphic boundaries

      图  4  万安盆地南典型测线构造‒地层格架综合解释剖面

      Fig.  4.  Mian interpretation profiles showing structure-stratigraphic framework in the south of Wan'an basin

      图  5  虚拟井沉降速率柱状图

      Fig.  5.  Subsidence rate histogram of virtual well

      图  7  典型剖面L3沉降量和构造沉降量曲线

      Fig.  7.  Total subsidence and structural subsidence of mian profile L3

      图  6  典型剖面L1沉降量和构造沉降量曲线

      Fig.  6.  Total subsidence and structural subsidence of mian profile L1

      图  8  万安盆地构造‒沉积充填演化剖面

      以中部凹陷为例

      Fig.  8.  Tectonic-sedimentary evolution process of Wan'an basin

      图  9  万安盆地断陷晚期沉积模式

      Fig.  9.  Sedimentary model of late rifting stage of Wanan basin

      图  10  万安盆地断坳转换期沉积模式

      Fig.  10.  Sedimentary model of rifting-post rifting transitional stage of Wanan basin

    • [1] Barckhausen, U., Engels, M., Franke, D., et al., 2014. Evolution of the South China Sea: Revised Ages for Breakup and Seafloor Spreading. Marine and Petroleum Geology, 58: 599-611. https://doi.org/10.1016/j.marpetgeo.2014.02.022
      [2] Chen, Q., Jin, Q. H., 2017. Activity Features of Wan'an Fault and Its Constraints on Wan'an Basin, Western South China Sea. Marine Geology Frontiers, 33(10): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDT201710001.htm
      [3] Clift, P. D., 2014. Preface to the Special Collection on the Tectonics of the South China Sea. Marine and Petroleum Geology, 58: 551-554. https://doi.org/10.1016/j.marpetgeo.2014.07.001
      [4] Cui, T., Xie, X. N., Ren, J. Y., et al., 2008. Dynamic Mechanism of Anomalous Post-Rift Subsidence in the Yinggehai Basin. Earth Science, 33(3): 349-356 (in Chinese with English abstract).
      [5] Ding, W. W., 2021. Continental Margin Dynamics of South China Sea: From Continental Break-Up to Seafloor Spreading. Earth Science, 46(3): 790-800 (in Chinese with English abstract).
      [6] Dung, B. V., Tuan, H. A., van Kieu, N., et al., 2018. Depositional Environment and Reservoir Quality of Miocene Sediments in the Central Part of the Nam Con Son Basin, Southern Vietnam Shelf. Marine and Petroleum Geology, 97: 672-689. https://doi.org/10.1016/j.marpetgeo.2018.05.004
      [7] Franke, D., Savva, D., Pubellier, M., et al., 2014. The Final Rifting Evolution in the South China Sea. Marine and Petroleum Geology, 58: 704-720. https://doi.org/10.1016/j.marpetgeo.2013.11.020
      [8] Lee, T. Y., Lawver, L. A., 1995. Cenozoic Plate Reconstruction of Southeast Asia. Tectonophysics, 251(1-4): 85-138. https://doi.org/10.1016/0040-1951(95)00023-2
      [9] Lei, C., Ren, J. Y., Zhang, J., 2015. Tectonic Province Divisions in the South China Sea: Implications for Basin Geodynamics. Earth Science, 40(4): 744-762 (in Chinese with English abstract). http://www.cqvip.com/qk/94035x/201504/664551720.html
      [10] Li, C. F., Song, T. R., 2012. Magnetic Recording of the Cenozoic Oceanic Crustal Accretion and Evolution of the South China Sea Basin. Chinese Science Bulletin, 57(20): 1879-1895 (in Chinese). doi: 10.1360/csb2012-57-20-1879
      [11] Lin, C. S., Chu, F. Y., Gao, J. Y., et al., 2007. On Tectonic Movement in the South China Sea during the Cenozoic. Acta Oceanologica Sinica, 29(4): 87-96 (in Chinese with English abstract).
      [12] Liu, H. L., Yan, P., Zhang, B. Y., et al., 2004. Role of the Wan-Na Fault System in the Western Nansha Islands (Southern South China Sea). Journal of Asian Earth Sciences, 23(2): 221-233. https://doi.org/10.1016/S1367-9120(03)00121-4
      [13] Liu, H. L., Yao, Y. J., Shen, B. Y., et al., 2015. On Linkage of Western Boundary Faults of the South China Sea. Earth Science, 40(4): 615-632 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201504003.htm
      [14] Lü, C., Wu, S. G., Yao, Y. J., et al., 2013. Development and Controlling Factors of Miocene Carbonate Platform in the Nam Con Son Basin, Southwestern South China Sea. Marine and Petroleum Geology, 45: 55-68. https://doi.org/10.1016/j.marpetgeo.2013.04.014
      [15] Mansor, M. Y., Rahman, A. H. A., Menier, D., et al., 2014. Structural Evolution of Malay Basin, Its Link to Sunda Block Tectonics. Marine and Petroleum Geology, 58: 736-748. https://doi.org/10.1016/j.marpetgeo.2014.05.003
      [16] Matthews, S. J., Fraser, A. J., Lowe, S., et al., 1997. Structure, Stratigraphy and Petroleum Geology of the SE Nam Con Son Basin, Offshore Vietnam. Geological Society, London, Special Publications, 126(1): 89-106. https://doi.org/10.1144/gsl.sp.1997.126.01.07
      [17] Ngoc, P. B., Nghi, T., Tin, N. T., et al., 2017. Petrographic Characteristics and Depositional Environment Evolution of Middle Miocene Sediments in the Thien Ung-Mang Cau Structure of Nam Con Son Basin. Indonesian Journal on Geoscience, 4(3): 143-157. https://doi.org/10.17014/ijog.4.3.143-157
      [18] Rangin, C., Klein, M., Roques, D., et al., 1995. The Red River Fault System in the Tonkin Gulf, Vietnam. Tectonophysics, 243(3-4): 209-222. https://doi.org/10.1016/0040-1951(94)00207-P
      [19] Savva, D., Pubellier, M., Franke, D., et al., 2014. Different Expressions of Rifting on the South China Sea Margins. Marine and Petroleum Geology, 58: 579-598. https://doi.org/10.1016/j.marpetgeo.2014.05.023
      [20] Sun, Z., Li, F. C., Lin, J., et al., 2020. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789 (in Chinese with English abstract).
      [21] Sun, Z., Zhou, D., Wu, S. M., et al., 2009. Patterns and Dynamics of Rifting on Passive Continental Margin from Shelf to Slope of the Northern South China Sea: Evidence from 3D Analogue Modeling. Journal of Earth Science, 20(1): 136-146. https://doi.org/10.1007/s12583-009-0011-6
      [22] Wang, B. Y., Zhang, J., Ai, Y. F., 2020. Analysis of Tectonic Evolution Characteristics of Wan'an Basin in the Southwest of the South China Sea. Journal of University of Chinese Academy of Sciences, 37(6): 784-792 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZKYB202006009.htm
      [23] Wang, P. C., Li, S. Z., Guo, L. L., et al., 2017. Opening of the South China Sea (SCS): A Joint Effect of Dextral Strike-Slip Pull-Apart and Proto-SCS Slab Pull. Earth Science Frontiers, 24(4): 294-319 (in Chinese with English abstract). http://www.cqvip.com/main/none.aspx?lngid=672510546
      [24] Wu, D., Zhu, X. M., Zhu, S. F., et al., 2015. Characteristics and Main Controlling Factors of Cenozoic Sequence Stratigraphy in Wan'an Basin, Nansha Islands. Lithologic Reservoirs, 27(2): 46-54 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=664282269
      [25] Xie, X. N., Ren, J. Y., Wang, Z. F., et al., 2015. Difference of Tectonic Evolution of Continental Marginal Basins of South China Sea and Relationship with SCS Spreading. Earth Science Frontiers, 22(1): 77-87 (in Chinese with English abstract). http://www.cqvip.com/QK/98600X/201501/662674861.html
      [26] Yang, C. P., Yao, Y. J., Li, X. J., et al., 2011. Cenozoic Sequence Stratigraphy and Lithostratigraphic Traps in Wan'an Basin, the Southwestern South China Sea. Earth Science, 36(5): 845-852 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201105012.htm
      [27] Yang, M. Z., Wang, M. J., Liang, J. Q., et al., 2003. Tectonic Subsidence and Its Control on Hydrocarbon Resources in the Wan'an Basin in the South China Sea. Marine Geology & Quaternary Geology, 23(2): 85-88 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200302013.htm
      [28] Yang, Z., Zhang, G. X., Zhang, L., 2016. The Evolution and Main Controlling Factors of Reef and Carbonate Platform in Wan'an Basin. Earth Science, 41(8): 1349-1360 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201608007.htm
      [29] Yao, B. C., Wan, L., Liu, Z. H., et al., 2004. Tectonic Significance and Its Petroleum Effect of the Wan'an Tectonic Movement in the South of the South China Sea. Marine Geology & Quaternary Geology, 24(1): 69-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200401010.htm
      [30] Yao, Y. J., Lü, C. L., Wang, L. J., et al., 2018. Tectonic Evolution and Genetic Mechanism of the Wan'an Basin, Southern South China Sea. Acta Oceanologica Sinica, 40(5): 62-74 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC201805006&dbcode=CJFD&year=2018&dflag=pdfdown
      [31] Yao, Y. J., Yang, C. P., Li, X. J., et al., 2013. The Seismic Reflection Characteristics and Tectonic Significance of the Tectonic Revolutionary Surface of Mid-Miocene (T3 Seismic Interface) in the Southern South China Sea. Chinese Journal of Geophysics, 56(4): 1274-1286 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201304024.htm
      [32] Zhang, G. X., 1996. The Formation, Crust Extension and Strike-Slip Tectionics of Wan'an Basin. Geological Research of South China Sea, (8): 14-23 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHDZ199600001.htm
      [33] Zhao, Z. G., Liu, S. X., Xie, X. J., et al., 2016. Hydrocarbon Geological Characteristics and Reservoir Forming Conditions in Wan'an Basin, South China Sea. China Offshore Oil and Gas, 28(4): 9-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201604002.htm
      [34] Zhao, Z. X., Sun, Z., Chen, G. H., et al., 2011. Cenozoic Structural Characteristics and Subsidence Evolution in Nansha. Earth Science, 36(5): 815-822 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201105008.htm
      [35] Zhu, R. W., Yao, Y. J., Liu, H. L., et al., 2021. Tectonic Contact Relationship of Continental Margins of the Southwest Sub-Basin, South China Sea in Late Mesozoic. Earth Science, 46(3): 885-898 (in Chinese with English abstract).
      [36] 陈强, 金庆焕, 2017. 南海西部万安断裂活动特征及其对万安盆地的控制作用. 海洋地质前沿, 33(10): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201710001.htm
      [37] 崔涛, 解习农, 任建业, 等, 2008. 莺歌海盆地异常裂后沉降的动力学机制. 地球科学, 33(3): 349-356. doi: 10.3321/j.issn:1000-2383.2008.03.008
      [38] 丁巍伟, 2021. 南海大陆边缘动力学: 从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303
      [39] 雷超, 任建业, 张静, 2015. 南海构造变形分区及成盆过程. 地球科学, 40(4): 744-762. doi: 10.3799/dqkx.2015.062
      [40] 李春峰, 宋陶然, 2012. 南海新生代洋壳扩张与深部演化的磁异常记录. 科学通报, 57(20): 1879-1895. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220007.htm
      [41] 林长松, 初凤友, 高金耀, 等, 2007. 论南海新生代的构造运动. 海洋学报, 29(4): 87-96. doi: 10.3321/j.issn:0253-4193.2007.04.010
      [42] 刘海龄, 姚永坚, 沈宝云, 等, 2015. 南海西缘结合带的贯通性. 地球科学, 40(4): 615-632. doi: 10.3799/dqkx.2015.049
      [43] 孙珍, 李付成, 林间, 等, 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789.
      [44] 王蓓羽, 张健, 艾依飞, 2020. 南海西南部万安盆地新生代沉降分析及构造意义. 中国科学院大学学报, 37(6): 784-792. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB202006009.htm
      [45] 王鹏程, 李三忠, 郭玲莉, 等, 2017. 南海打开模式: 右行走滑拉分与古南海俯冲拖曳. 地学前缘, 24(4): 294-319. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704034.htm
      [46] 吴冬, 朱筱敏, 朱世发, 等, 2015. 南沙万安盆地新生界层序特征和主控因素. 岩性油气藏, 27(2): 46-54. doi: 10.3969/j.issn.1673-8926.2015.02.008
      [47] 解习农, 任建业, 王振峰, 等, 2015. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系. 地学前缘, 22(1): 77-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501009.htm
      [48] 杨楚鹏, 姚永坚, 李学杰, 等, 2011. 万安盆地新生代层序地层格架与岩性地层圈闭. 地球科学, 36(5): 845-852. doi: 10.3799/dqkx.2011.088
      [49] 杨木壮, 王明君, 梁金强, 等, 2003. 南海万安盆地构造沉降及其油气成藏控制作用. 海洋地质与第四纪地质, 23(2): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200302013.htm
      [50] 杨振, 张光学, 张莉, 2016. 万安盆地生物礁及碳酸盐台地的发育演化及控制因素. 地球科学, 41(8): 1349-1360. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201608007.htm
      [51] 姚伯初, 万玲, 刘振湖, 等, 2004. 南海南部海域新生代万安运动的构造意义及其油气资源效应. 海洋地质与第四纪地质, 24(1): 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200401010.htm
      [52] 姚永坚, 吕彩丽, 王利杰, 等, 2018. 南沙海区万安盆地构造演化与成因机制. 海洋学报, 40(5): 62-74. doi: 10.3969/j.issn.0253-4193.2018.05.006
      [53] 姚永坚, 杨楚鹏, 李学杰, 等, 2013. 南海南部海域中中新世(T3界面)构造变革界面地震反射特征及构造含义. 地球物理学报, 56(4): 1274-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304024.htm
      [54] 张光学, 1996. 地壳伸展及走滑与万安盆地的形成. (8): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-NHDZ199600001.htm
      [55] 赵志刚, 刘世翔, 谢晓军, 等, 2016. 万安盆地油气地质特征及成藏条件. 中国海上油气, 28(4): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201604002.htm
      [56] 赵中贤, 孙珍, 陈广浩, 等, 2011. 南沙海域新生代构造特征和沉降演化. 地球科学, 36(5): 815-822. doi: 10.3799/dqkx.2011.084
      [57] 朱荣伟, 姚永坚, 刘海龄, 等, 2021. 南海西南次海盆两侧陆缘中生代晚期构造接触关系. 地球科学, 46(3): 885-898. doi: 10.3799/dqkx.2020.369
    • 加载中
    图(10)
    计量
    • 文章访问数:  552
    • HTML全文浏览量:  171
    • PDF下载量:  63
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-18
    • 网络出版日期:  2021-10-14
    • 刊出日期:  2021-10-14

    目录

      /

      返回文章
      返回