• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东太平洋CCFZ区多金属结核元素富集机制:来自结核剖面原位微区分析

    张聪 李小虎 李洁 祝飞扬 董彦辉 初凤友

    张聪, 李小虎, 李洁, 祝飞扬, 董彦辉, 初凤友, 2022. 东太平洋CCFZ区多金属结核元素富集机制:来自结核剖面原位微区分析. 地球科学, 47(2): 742-756. doi: 10.3799/dqkx.2021.063
    引用本文: 张聪, 李小虎, 李洁, 祝飞扬, 董彦辉, 初凤友, 2022. 东太平洋CCFZ区多金属结核元素富集机制:来自结核剖面原位微区分析. 地球科学, 47(2): 742-756. doi: 10.3799/dqkx.2021.063
    Zhang Cong, Li Xiaohu, Li Jie, Zhu Feiyang, Dong Yanhui, Chu Fengyou, 2022. Elements Enrichment Mechanism of Polymetallic Nodules in CCFZ area of Eastern Pacific Ocean: In-Situ Microanalysis of Nodule Profile. Earth Science, 47(2): 742-756. doi: 10.3799/dqkx.2021.063
    Citation: Zhang Cong, Li Xiaohu, Li Jie, Zhu Feiyang, Dong Yanhui, Chu Fengyou, 2022. Elements Enrichment Mechanism of Polymetallic Nodules in CCFZ area of Eastern Pacific Ocean: In-Situ Microanalysis of Nodule Profile. Earth Science, 47(2): 742-756. doi: 10.3799/dqkx.2021.063

    东太平洋CCFZ区多金属结核元素富集机制:来自结核剖面原位微区分析

    doi: 10.3799/dqkx.2021.063
    基金项目: 

    中国大洋协会“十三五”资源环境项目 DY135-N1-1

    中国大洋协会“十三五”资源环境项目 DY135-G2-1-03

    中国大洋协会“十三五”资源环境项目 DY135-S2-2-05

    中央级公益性科研院所基本科研业务费专项 JT1701

    中国地质调查局地质调查项目 DD20191043

    详细信息
      作者简介:

      张聪(1992-), 男, 硕士研究生, 主要从事海底资源与成矿系统的研究.ORCID: 0000-0002-0011-2913.E-Mail: zhangcong365@outlook.com

      通讯作者:

      李小虎, E-Mail: xhli@sio.org.cn

    • 中图分类号: P744.3

    Elements Enrichment Mechanism of Polymetallic Nodules in CCFZ area of Eastern Pacific Ocean: In-Situ Microanalysis of Nodule Profile

    • 摘要: 多金属结核微层原位微区分析能够更好地揭示结核生长过程中元素的赋存和迁移过程,为认识多金属结核元素富集机制和成因提供新的证据.通过使用电子探针(EPMA)和激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)等手段对采集自东太平洋克拉里昂-克利珀顿断裂区(CCFZ区)的多金属结核进行了分析研究.研究结果表明,结核矿物主要为水羟锰矿、10Å锰矿和FeOOH,锰铁矿物圈层由内而外可划分为4个明显的层组:L1、L2、L3和L4,Mn和Fe的平均含量分别为32.2和13.3%、39.1和5.2%、37.0和3.4%、33.1和7.8%,Mn/Fe值整体表现为增大的趋势,对应Mn/Fe值分别为2.8、16.6、19.7和10.6,Co+Ni+Cu含量变化与之相似,平均含量分别为1.9%、3.3%、3.8%和3.0%.元素含量关系表明,Co主要赋存在水成成因的水羟锰矿中,Ni、Cu主要赋存在Mn相矿物中,但成岩成因的10Å锰矿对Ni、Cu等元素的富集能力强于水羟锰矿;结合元素组成和显微构造将其划分为水成型层、混合型层、成岩型层和混合型层,结核整体的生长作用趋势从水成型转变为成岩型.

       

    • 图  1  研究区范围及采样点位置

      Fig.  1.  Study area and sampling location

      图  2  结核样品手标本照片和结核剖面

      图中红点为原位点测试位置,黄色线处为线扫描和面扫描区域

      Fig.  2.  Morphological features and inner structures of the polymetallic nodules

      图  3  结核各圈层上的显微构造

      区域A、B为面扫描区域,L2a、L2b分别代表暗、亮色矿物带

      Fig.  3.  Microstructure of nodule layers

      图  4  结核各圈层中金属元素的含量变化

      Fig.  4.  Variation of metal elements in different layers of nodules

      图  5  结核中由内而外Mn/Fe值变化趋势图

      Fig.  5.  Trend of Mn / Fe values from inside to outside in nodules

      图  6  结核中由内而外REY、Ni、Cu和Co含量变化图

      Fig.  6.  Variation of Rey, Ni, Cu and Co contents in nodules from inside to outside

      图  7  结核剖面圈层元素面扫描图

      扫描区域见图 2图 3所示

      Fig.  7.  Elements scanning areas in nodule section

      图  8  多金属结核成因类型三角图解

      水成和成岩型点分别被虚线框圈

      Fig.  8.  Triangular diagram of the genesis of polymetallic nodules

      图  9  结核圈层测点的CeSN/CeSN* vs Nd和CeSN/CeSN* vs YSN/HoSN判别图

      Fig.  9.  CeSN/CeSN* vs Nd和CeSN/CeSN* vs YSN/HoSN diagram of the genesis of polymetallic nodules

      图  10  结核内部Mn、Fe含量变化图

      Fig.  10.  Variation diagram of Mn and Fe contents inthe nodule

      图  11  结核剖面中Cu、Ni、Co、REY随Mn、Fe含量变化图

      Fig.  11.  Variation of Cu, Ni, CO and REY with Mn and Fe contents in nodule section

      图  12  结核剖面中Mn、Fe相矿物与Cu、Ni、Co、REY元素关系协变图

      Fig.  12.  Covariance diagram of relationship between Mn, Fe phase minerals and Cu, Ni, CO, REY elements in nodule section

      图  13  各圈层的稀土模式配分图

      Fig.  13.  REY distribution patterns of each layer of the sample, normalised to PAAS

    • [1] Bau, M., Koschinsky, A., Dulski, P., et al., 1996. Comparison of the Partitioning Behaviours of Yttrium, Rare Earth Elements, and Titanium between Hydrogenetic Marine Ferromanganese Crusts and Seawater. Geochimica et Cosmochimica Acta, 60(10): 1709-1725. https://doi.org/10.1016/0016-7037(96)00063-4
      [2] Benites, M., Millo, C., Hein, J., et al., 2018. Integrated Geochemical and Morphological Data Provide Insights into the Genesis of Ferromanganese Nodules. Minerals, 8(11): 488. https://doi.org/10.3390/min8110488
      [3] Bodei, S., Manceau, A., Geoffroy, N., et al., 2007. Formation of Todorokite from Vernadite in Ni-Rich Hemipelagic Sediments. Geochimica et Cosmochimica Acta, 71(23): 5698-5716. https://doi.org/10.1016/j.gca.2007.07.020
      [4] Burns, R. G., Fuerstenau, D. W., 1966. Electron-Probe Determination of Inter-Element Relationships in Manganese Nodules. American Mineralogist, 51: 895-902
      [5] Burns, R. G, 1976. The Uptake of Cobalt into Ferromanganese Nodules, Soils, and Synthetic Manganese (IV) Oxides. Geochimica et Cosmochimica Acta, 40(1): 95-102. https://doi.org/10.1016/0016-7037(76)90197-6
      [6] Calvert, S. E., Price, N. B, 1977. Geochemical Variation in Ferromanganese Nodules and Associated Sediments from the Pacific Ocean. Marine Chemistry, 5(1): 43-74. https://doi.org/10.1016/0304-4203(77)90014-7
      [7] Deng, Y.N., Ren, J.B., Guo, Q.J., et al., 2019. Trace Elements Geochemistry Characteristics of Seawater and Porewater in Deep-Water Basin, Western Pacific. Earth Science, 44(9): 3101-3114(in Chinese with English abstract).
      [8] Dimitrova, D., Milakovska, Z., Peytcheva, I., et al., 2014. Trace Element and REY Composition of Polymetallic Nodules from the Eastern Clarion-Clipperton Zone Determined by In-Situ LA-ICP-MS Analysis. Comptes Rendus Del Académie Bulgare Des Sciences: Sciences Mathématiques et Naturelles, 67(2): 267-274.
      [9] Dominik, Z., Ukasz, M., Kotliński, R. A., et al., 2018. Geochemistry of Cobalt-Rich Ferromanganese Crusts from the Perth Abyssal Plain (E Indian Ocean). Ore Geology Reviews, 101: 520-531. https://doi.org/10.1016/j.oregeorev.2018.08.004
      [10] Dymond, J., Lyle, M., Finney, B., et al., 1984. Ferromanganese Nodules from MANOP Sites H, S, and R-Control of Mineralogical and Chemical Composition by Multiple Accretionary Processes. Geochimica et Cosmochimica Acta, 48(5): 931-949. https://doi.org/10.1016/0016-7037(84)90186-8
      [11] Guan, Y., Sun, X. M., Shi, G. Y., et al., 2017. Rare Earth Elements Composition and Constraint on the Genesis of the Polymetallic Crusts and Nodules in the South China Sea. Acta Geologica Sinica-English Edition, 91(5): 1751-1766. https://doi.org/10.1111/1755-6724.13409
      [12] Guan, Y., Ren, Y. Z., Sun, X. M., et al., 2019. Fine Scale Study of Major and Trace Elements in the Fe-Mn Nodules from the South China Sea and Their Metallogenic Constraints. Marine Geology, 416: 105978. https://doi.org/10.1016/j.margeo.2019.105978
      [13] Han, C.F., Yao, D., Xu, D. Y, 1994. Growth History of Manganese Nodules in Central Pacific Ocean. Marine Geology & Quaternary Geology, 14(4): 33-41 (in Chinese with English abstract).
      [14] He, G.W., Sun, X.M., Yang, S.X., et al., 2011. A Comparison of REE Geochemistry between Polymetallic Nodules and Cobalt-Rich Crusts in the Pacific Ocean. Geology in China, 38(2): 462-472(in Chinese with English abstract).
      [15] Hein, J. R., Mizell, K., Koschinsky, A., et al., 2013. Deep-Ocean Mineral Deposits as a Source of Critical Metals for High-and Green-Technology Applications: Comparison with Land-Based Resources. Ore Geology Reviews, 51: 1-14. https://doi.org/10.1016/j.oregeorev.2012.12.001
      [16] Hein, J. R., Koschinsky, A., 2014. Deep-Ocean Ferromanganese Crusts and Nodules. Treatise on Geochemistry. Amsterdam: Elsevier, 2014: 273-291. https://doi.org/10.1016/b978-0-08-095975-7.01111-6
      [17] Jiang, X. J., Lin, X. H., Yao, D., et al., 2010. Enrichment Mechanisms of Rare Earth Elements in Marine Hydrogenic Ferromanganese Crusts. Science China Earth Sciences, 54(2): 197-203. https://doi.org/10.1007/s11430-010-4070-4
      [18] Koschinsky, A., Halbach, P, 1995. Sequential Leaching of Marine Ferromanganese Precipitates: Genetic Implications. Geochimica et Cosmochimica Acta, 59(24): 5113-5132. https://doi.org/10.1016/0016-7037(95)00358-4
      [19] Lei, G. B., Bostrom, K, 1995. Mineralogical Control on Transition Metal Distributions in Marine Manganese Nodules. Marine Geology, 123(3/4): 253-261. https://doi.org/10.1016/0025-3227(95)00022-Q
      [20] Lei, G. B, 1996. Crystal Structures and Metal Uptake Capacity of 10-Manganates: an Overview. Marine Geology, 133(1/2): 103-112. https://doi.org/10.1016/0025-3227(96)00010-2
      [21] Li, D. F., Fu, Y., Liu, Q. F., et al., 2020a. High-Resolution LA-ICP-MS Mapping of Deep-Sea Polymetallic Micronodules and Its Implications on Element Mobility. Gondwana Research, 81: 461-474. https://doi.org/10.1016/j.gr.2019.12.009
      [22] Li, D. F., Fu, Y., Sun, X. M., et al., 2020b. Critical Metal Enrichment Mechanism of Deep-Sea Hydrogenetic Nodules: Insights from Mineralogy and Element Mobility. Ore Geology Reviews, 118: 103371. https://doi.org/10.1016/j.oregeorev.2020.103371
      [23] Liu, J. H., 1992. Geochemistry of REE of Deep Sea Sediments in the Eastern Pacific Ocean. Marine Geology & Quaternary Geology, 12(2): 35-44(in Chinese with English abstract).
      [24] Manheim, F. T., Lane-Bostwick, C. M, 1988. Cobalt in Ferromanganese Crusts as a Monitor of Hydrothermal Discharge on the Pacific Sea Floor. Nature, 335(6185): 59-62. https://doi.org/10.1038/335059a0
      [25] Manceau, A., Lanson, M., Takahashi, Y., 2014. Mineralogy and Crystal Chemistry of Mn, Fe, Co, Ni, and Cu in a Deep-Sea Pacific Polymetallic Nodule. American Mineralogist, 99(10): 2068-2083. https://doi.org/10.2138/am-2014-4742
      [26] Menendez, A., James, R. H., Lichtschlag, A., et al., 2019. Controls on the Chemical Composition of Ferromanganese Nodules in the Clarion-Clipperton Fracture Zone, Eastern Equatorial Pacific. Marine Geology, 409: 1-14. https://doi.org/10.1016/j.margeo.2018.12.004
      [27] Piper, D. Z, 1974. Rare Earth Elements in Ferromanganese Nodules and other Marine Phases. Geochimica et Cosmochimica Acta, 38(7): 1007-1022. https://doi.org/10.1016/0016-7037(74)90002-7
      [28] Radziejewska, T., 2014. Characteristics of the Sub-Equatorial North-Eastern Pacific Ocean's Abyss, with a Particular Reference to the Clarion-Clipperton Fracture Zone. Meiobenthos in the Sub-Equatorial Pacific Abyss, 15: 1-12. https://doi.org/10.1007/978-3-642-41458-9_2
      [29] Ren, J.B., Deng, X.G., Deng, Y.N., et al., 2019. Rare Earth Element Characteristics and Its Geological Implications for Seawater from Cobalt-Rich Ferromanganese Crust Exploration Contract Area of China. Earth Science, 44(10): 3529-3540(in Chinese with English abstract).
      [30] Reykhard, L. Y., Shulga, N. A, 2019. Fe-Mn Nodule Morphotypes from the NE Clarion-Clipperton Fracture Zone, Pacific Ocean: Comparison of Mineralogy, Geochemistry and Genesis. Ore Geology Reviews, 110: 102933. https://doi.org/10.1016/j.oregeorev.2019.102933
      [31] Skornyakova, N. S., Murdmaa, I. O, 1992. Local Variations in Distribution and Composition of Ferromanganese Nodules in the Clarion-Clipperton Nodule Province. Marine Geology, 103(1/2/3): 381-405. https://doi.org/10.1016/0025-3227(92)90028-G
      [32] Takahashi, Y., Manceau, A., Geoffroy, N., et al., 2007. Chemical and Structural Control of the Partitioning of Co, Ce, and Pb in Marine Ferromanganese Oxides. Geochimica et Cosmochimica Acta, 71(4): 984-1008. https://doi.org/10.1016/j.gca.2006.11.016
      [33] Usui, A, 1979. Nickel and Copper Accumplation as Essential Elements in 10-Å Manganite of Deep-Sea Manganese Nodules. Nature, 279(5712): 411-413. https://doi.org/10.1038/279411a0
      [34] Wegorzewski, A. V., Kuhn, T, 2014. The Influence of Suboxic Diagenesis on the Formation of Manganese Nodules in the Clarion Clipperton Nodule Belt of the Pacific Ocean. Marine Geology, 357: 123-138. https://doi.org/10.1016/j.margeo.2014.07.004
      [35] Wegorzewski, A. V., Kuhn, T., Dohrmann, R., et al., 2015. Mineralogical Characterization of Individual Growth Structures of Mn-Nodules with Different Ni+Cu Content from the Central Pacific Ocean. American Mineralogist, 100(11/12): 2497-2508. https://doi.org/10.2138/am-2015-5122
      [36] Zhang, H.S., Zhao, P.D., Hu, G. D, 2004. Geochemical Features of Multi-Metallic Crust in the Middle Pacific Ocean. Earth Science, 29(3): 340-346(in Chinese with English abstract).
      [37] Zhang, Z. G., Du, Y. S., Wu, C. H., et al., 2013. Growth of a Polymetallic Nodule from the Northwestern Continental Margin of the South China Sea and Its Response to Changes in the Paleoceanographical Environment of the Late Cenozoic. Science China Earth Sciences, 56(3): 453-463. https://doi.org/10.1007/s11430-012-4535-8.
      [38] Zhang, Z. G., Fang, N. Q., Du, Y. S., et al., 2009. Geochemical Characteristics and Their Causative Mechanism of Polymetallic Nodules from the Northwest Continental Margin of the South China. Earth Science, 34(6) 955-962(in Chinese with English abstract).
      [39] Zhao, G.T., He, Y.Y., Chen, C., et al., 2011. Comparison of the Mineral and Geochemistry Characteristics between Co-Rich Crusts and Ferromanganese Nodules from the Pacific Ocean. Periodical of Ocean University of China, 41(5): 85-93 (in Chinese with English abstract).
      [40] 邓义楠, 任江波, 郭庆军, 等, 2019. 西太平洋深水盆地海水及孔隙水的微量元素地球化学特征. 地球科学, 44(9): 3101-3114. doi: 10.3799/dqkx.2017.562
      [41] 韩昌甫, 姚德, 许东禹, 1994. 多金属结核的生长历史. 海洋地质与第四纪地质, 14(4): 33-41.
      [42] 何高文, 孙晓明, 杨胜雄, 等, 2011. 太平洋多金属结核和富钴结壳稀土元素地球化学对比及其地质意义. 中国地质, 38(2): 462-472. doi: 10.3969/j.issn.1000-3657.2011.02.020
      [43] 姜学钧, 林学辉, 姚德, 等, 2011. 稀土元素在水成型海洋铁锰结壳中的富集特征及机制. 中国科学: 地球科学, 41(2): 197-204. doi: 10.3969/j.issn.1000-3045.2011.02.013
      [44] 刘季花, 1992. 太平洋东部深海沉积物稀土元素地球化学. 海洋地质与第四纪地质, 12(2): 35-44.
      [45] 任江波, 邓希光, 邓义楠, 等, 2019. 中国富钴结壳合同区海水的稀土元素特征及其意义. 地球科学. 44(10): 3529. doi: 10.3799/dqkx.2018.258
      [46] 张振国, 方念乔, 杜远生, 等, 2009. 南海西北陆缘多金属结核地球化学特征及成因. 地球科学, 34(6): 955-962. doi: 10.3321/j.issn:1000-2383.2009.06.010
      [47] 赵广涛, 何雨旸, 陈淳, 等, 2011. 太平洋铁锰结核与富Co结壳的矿物地球化学比较研究. 中国海洋大学学报(自然科学版), 41(5): 85-93.
    • 加载中
    图(13)
    计量
    • 文章访问数:  510
    • HTML全文浏览量:  131
    • PDF下载量:  59
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-03-19
    • 刊出日期:  2022-02-25

    目录

      /

      返回文章
      返回