• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    闽西南E-MORB型基性岩墙成因:来自地球化学、锆石U-Pb年代学及Sr-Nd同位素证据

    张贵山 彭仁 温汉捷 赵志琦 张磊 邱红信 孟乾坤

    张贵山, 彭仁, 温汉捷, 赵志琦, 张磊, 邱红信, 孟乾坤, 2021. 闽西南E-MORB型基性岩墙成因:来自地球化学、锆石U-Pb年代学及Sr-Nd同位素证据. 地球科学, 46(12): 4230-4246. doi: 10.3799/dqkx.2021.062
    引用本文: 张贵山, 彭仁, 温汉捷, 赵志琦, 张磊, 邱红信, 孟乾坤, 2021. 闽西南E-MORB型基性岩墙成因:来自地球化学、锆石U-Pb年代学及Sr-Nd同位素证据. 地球科学, 46(12): 4230-4246. doi: 10.3799/dqkx.2021.062
    Zhang Guishan, Peng Ren, Wen Hanjie, Zhao Zhiqi, Zhang Lei, Qiu Hongxin, Meng Qiankun, 2021. Genesis of E-MORB-Like Mafic Dykes in Southwestern Fujian Province, SE China: Evidence from Geochemistry, Zircon U-Pb Geochronology and Sr-Nd Isotope. Earth Science, 46(12): 4230-4246. doi: 10.3799/dqkx.2021.062
    Citation: Zhang Guishan, Peng Ren, Wen Hanjie, Zhao Zhiqi, Zhang Lei, Qiu Hongxin, Meng Qiankun, 2021. Genesis of E-MORB-Like Mafic Dykes in Southwestern Fujian Province, SE China: Evidence from Geochemistry, Zircon U-Pb Geochronology and Sr-Nd Isotope. Earth Science, 46(12): 4230-4246. doi: 10.3799/dqkx.2021.062

    闽西南E-MORB型基性岩墙成因:来自地球化学、锆石U-Pb年代学及Sr-Nd同位素证据

    doi: 10.3799/dqkx.2021.062
    基金项目: 

    国家自然科学基金面上项目 41073027

    中央高校基本业务费项目 2013G2271018

    中央高校基本业务费项目 310827172003

    详细信息
      作者简介:

      张贵山(1971-), 男, 教授, 主要从事岩石地球化学研究.ORCID: 0000-0002-4813-1128.E-mail: zygszh@chd.edu.cn

      通讯作者:

      温汉捷, ORCID: 0000-0003-1961-4144.E-mail: wenhanjie@vip.gyig.ac.cn

    • 中图分类号: P597;P581

    Genesis of E-MORB-Like Mafic Dykes in Southwestern Fujian Province, SE China: Evidence from Geochemistry, Zircon U-Pb Geochronology and Sr-Nd Isotope

    • 摘要: 闽西南地区发育富集洋脊玄武岩(E-MORB)地球化学特征的基性岩墙,这对研究晚中生代中国东南部的构造岩浆作用具有重要指示意义.利用岩石学、锆石U-Pb年代学、元素地球化学、同位素地球化学等方法对早白垩世闽西南基性岩墙进行研究,岩墙以辉绿岩和角闪辉长辉绿岩为主,属于中-低钾岩石系列,Mg#值为55.80~66.38.锆石U-Pb年龄为117.4±3.8 Ma,为早白垩世晚期岩浆活动的产物.样品富集Rb、Ba、U、K、LREE等元素,无明显Nb、Ta、Ti亏损,显示出E-MORB的地球化学特征;(87Sr/86Sr)i=0.706 50~0.710 19、εNdt)=-0.9~4.0,同位素Sr中等富集、Nd弱亏损.成岩过程有少量橄榄石和单斜辉石的分离结晶作用,无明显地壳混染作用.由于太平洋板块受南岭E-W向巨厚岩石圈的阻碍,导致板片下插速率与邻区产生差异,局部撕裂形成板片窗,软流圈地幔物质沿“窗口”上涌并卷裹起板片上的海洋沉积物,在上升中发生交代作用形成具有E-MORB特征的地幔岩.在早白垩世晚期的大陆拉张-陆内初始裂谷背景下,伴随软流圈上涌富集地幔岩发生部分熔融,形成的基性岩浆上侵形成了闽西南基性岩墙.

       

    • 图  1  中国东南部中生代岩浆岩分布简图(a)和工作区地质简图(b)

      a据Zhou et al.(2006)修改; b据黄泉祯等(1998)修改

      Fig.  1.  Distribution of Mesozoic granite-volcanic rocks in Southeast China (a) and overview map showing the distribution of mafic dykes in the Southwest Fujian (b)

      图  2  闽西南基性岩墙标本与镜下正交偏光照片

      Pl.斜长石, Cpx.单斜辉石, Chl.绿泥石, Ilm.钛铁矿

      Fig.  2.  Orthogonal polarized photographs of the mafic dykes in Southwest Fujian

      图  3  闽西南基性岩墙锆石颗粒部分CL图像及LA-ICP-MS分析点

      Fig.  3.  Representative cathodoluminescence (CL) images for zircons from dykes

      图  4  闽西南基性岩墙锆石U-Pb年龄图解

      Fig.  4.  Zircon U-Pb concordia plots and calculated 206Pb/238U ages of mafic dykes in the Southwest Fujian

      图  5  闽西南基性岩墙TAS(a)与SiO2-K2O(b)图解

      图a引自Middlemost(1994); 图b底图引自Rickwood(1989); a.Ir-Irvine分界线, 上方为碱性, 下方为亚碱性; 1.橄榄辉长岩; 2a.碱性辉长岩; 2b.亚碱性辉长岩; 3.辉长闪长岩; 4.闪长岩; 5.花岗闪长岩; 6.花岗岩; 7.硅英岩; 8.二长辉长岩; 9.二长闪长岩; 10.二长岩; 11.石英二长岩; 12.正长岩; 13.副长石辉长岩; 14.副长石二长闪长岩; 15.副长石二长正长岩; 16.副长正长岩; 17.副长深成岩; 18.霓方钠岩/磷霞岩/粗白榴岩

      Fig.  5.  K2O+Na2O vs. SiO2 diagram (a), K2O vs. SiO2 diagram (b) for mafic dykes from Southwest Fujian

      图  6  闽西南基性岩墙MgO横坐标Hark图解

      新生代玄武岩数据引自Zou et al.(2000); Ho et al.(2003); Li et al.(2015); 杨金豹(2015).中侏罗世玄武岩孔兴功(2001); Li et al.(2003); Wang et al.(2005)

      Fig.  6.  Hark diagrams for the mafic dykes from Southwest Fujian

      图  7  闽西南基性岩墙稀土元素配分模式图(a)与微量元素蛛网图(b)

      球粒陨石与MORB标准化数据、OIB、N-MORB、E-MORB均引自Sun and McDonough(1989); 新生代玄武岩数据引自Zou et al.(2000); Ho et al.(2003); Li et al.(2015); 杨金豹(2015); 中侏罗世玄武岩孔兴功(2001); Li et al.(2003); Wang et al.(2005)

      Fig.  7.  Chondrite-normalized rare earth element patterns (a) and MORB-normalized trace element diagram (b) for the mafic dykes from Southwest Fujian

      图  8  闽西南基性岩墙Sr-Nd同位素图

      EMⅠ, EMⅡ, DMM, HIMU引自Zindler and Hart(1986); 福建新生代玄武岩引自Zou et al.(2000); Ho et al.(2003); 南岭中侏罗世玄武岩引自孔兴功(2001); Li et al.(2003); Wang et al.(2005); Zhou et al.(2006)

      Fig.  8.  (87Sr/86Sr)i vs. (143Nd/144Nd)i for the mafic dykes from Southwest Fujian

      图  9  闽西南基性岩墙Th/Yb-Ce/Nb和La/Yb-Ti/(Yb×1 000)判别图

      PM(原始地幔)、MORB(洋中脊玄武岩)、OIB(洋岛玄武岩) 引自Sun and McDonough(1989); CC(大陆地壳)引自Wedepohl(1995)

      Fig.  9.  Th/Yb vs.Ce/Nb and La/Yb vs.Ti/(Yb×1 000) discriminant diagrams of the mafic dykes from Southwest Fujian

      图  10  闽西南基性岩墙以Nb/Yb为横坐标的相关判别图解

      图a、b底图引自Pearce(2008); 图c~h底图引自Green(2006); Maurice et al.(2012)

      Fig.  10.  Nb/Yb discriminant diagrams for mafic dykes from Southwest Fujian

      图  11  闽西南基性岩墙Y/15-La/10-Nb/8(a)、Hf/3-Th-Ta(b)、Th/Zr-Nb/Zr(c)构造判别图解

      N-MORB.N型大洋中脊玄武岩; E-MOEB.E型大洋中脊玄武岩; WPA.板内碱性玄武岩; CAB.钙碱性玄武岩; IAB.岛弧拉斑玄武岩; BABB.弧后盆地玄武岩; WPB.板内玄武岩; Ⅰ.N-MORB.Ⅱ1.陆缘岛弧火山岩; Ⅱ2.陆缘火山玄武岩; Ⅲ.大洋板内玄武岩海山玄武岩; Ⅳ1.陆内初始、陆缘裂谷拉斑玄武岩; Ⅳ2.大陆拉张玄武岩; Ⅳ3.大陆碰撞玄武岩区; Ⅴ.地幔热柱玄武岩; 图a底图引自Cabanis and Lecolle(1989); 图b底图引自Wood(1980); 图c底图孙书勤等(2003)

      Fig.  11.  Y/15-La/10-Nb/8 (a) and Hf/3-Th-Ta (b) and Nb/Zr-Th/Zr (c) tectonic setting discriminants diagrams for mafic dykes from Southwest Fujian

      图  12  闽西南基性岩墙形成的大地构造演化模式

      Fig.  12.  Geotectonic evolution model of mafic dyke formation in Southwest Fujian

      表  1  闽西南晚中生代基性岩墙与各端元微量元素浓度比值对比

      Table  1.   Comparison of trace element ratios for different end-members and the Late Mesozoic mafic dykes from the Southwest Fujian

      CC PM N-MORB OIB 大洋沉积物 EPR(E-MORB) 本文
      Zr/Nb 10.7 15.7 31.8 5.8 7.07~40.5 (11.5) 1.99~21.6 (5.70) 12.3~16.8 (14.5)
      La/Nb 1.58 0.96 1.07 0.77 1.81~4.32 (2.63) 0.49~0.95 (0.61) 1.12~1.71 (1.36)
      Ba/Nb 30.8 9.8 2.7 7.29 10.8~511 (68.2) 4.77~8.57 (6.01) 9.8~41.5 (22.5)
      Rb/Nb 4.12 0.89 0.24 0.65 4.43~10.5 (7.05) 0.39~0.81 (0.53) 0.87~12.1 (5.31)
      K/Nb 1 870 351 258 250 1 308~2 866 (1 726) 129~422 (210) 230~1 278 (672)
      Th/Nb 0.45 0.12 0.052 0.083 0.21~1.44 (0.67) 0.058~0.085 (0.072) 0.15~0.39 (0.24)
      Th/La 0.28 0.12 0.048 0.11 0.15~0.53 (0.26) 0.069~0.149 (0.12) 0.12~0.23 (0.17)
      Ba/La 19.5 10.2 2.52 9.46 10.6~141 (25.8) 5.81~12.5 (9.96) 7.44~31.5 (15.9)
      Ba/Th 68.7 82.2 52.5 87.5 14.8~554 (100) 65.9~131 (83.6) 47.6~198 (90.9)
      注: CC (大陆地壳)引自Wedepohl(1995); PM、N-MORB、OIB引自Sun and McDonough(1989); 大洋沉积物引自Plank and Ludden(1992); EPR(东太平洋中脊)引自Shimizu et al.(2016); 括号内为平均值.
      中生代以来, 太平洋板块持续向NW俯冲于中国东南部大陆板块之下, 俯冲板片将大洋沉积物带入地幔内, 在地幔中其发生了低度部分熔融作用, 产生的熔体与地幔橄榄岩发生地幔交代作用, 形成具有E-MORB地球化学特征的富集地幔岩(Niu et al., 2002), 伴随着软流圈地幔强烈上涌将富集地幔岩携带上升到浅部, 绝热减压发生部分熔融, 形成了具有E-MORB特征的闽西南基性岩墙原始岩浆.
      下载: 导出CSV
    • [1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That Do Not Report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X
      [2] Arevalo, R. Jr., McDonough, W.F., Luong, M., 2009. The K/U Ratio of the Silicate Earth: Insights into Mantle Composition, Structure and Thermal Evolution. Earth and Planetary Science Letters, 278(3-4): 361-369. https://doi.org/10.1016/j.epsl.2008.12.023
      [3] Cabanis, B., Lecolle, M., 1989. Le Diagramme La/10-Y/15-N/8: Un Outil Pour La Discrimination Des Séries Volcaniques et La Mise en Évidence Des Processus De Mélange et/ou de Contamination Crustale. Comptes Rendues de la Academie des Sciences Série IIA, 309(20): 2023-2029. http://ci.nii.ac.jp/naid/80004995562
      [4] Cao, J.J., Hu, R.Z., Xie, G.Q., et al., 2009. Geochemistry and Genesis of Mafic Dikes from the Coastal Areas of Guangdong Province, China. Acta Petrologica Sinica, 25(4): 984-1000(in Chinese with English abstract).
      [5] Cen, T., Li, W.X., Wang, X.C., et al., 2016. Petrogenesis of Early Jurassic Basalts in Southern Jiangxi Province, South China: Implications for the Thermal State of the Mesozoic Mantle beneath South China. Lithos, 256-257: 311-330. https://doi.org/10.1016/j.lithos.2016.03.022
      [6] Chen, X.Y., Wang, Y.J., Han, H.P., et al., 2014. Geochemical and Geochronological Characteristics of Triassic Basic Dikes in SW Hainan Island and Its Tectonic Implications. Journal of Jilin University (Earth Science Edition), 44(3): 835-847(in Chinese with English abstract).
      [7] Cui, Y.Y., Zhao, Z.D., Jiang, T., et al., 2013. Geochronology, Geochemistry and Petrogenesis of the Early Paleozoic Granitoids in Southern Jiangxi Province, China. Acta Petrologica Sinica, 29(11): 4011-4024(in Chinese with English abstract).
      [8] Dilek, Y., 2006. Collision Tectonics of the Mediterranean Region: Causes and Consequences. Geological Society of America Special Papers, 409: 1-13. https://doi.org/10.1130/2006.2409(01)
      [9] Ding, C., Zhao, Z.D., Yang, J.B., et al., 2015. Geochronology, Geochemistry of the Cretaceous Granitoids and Mafic to Intermediate Dykes in Shishi Area, Coastal Fujian Province. Acta Petrologica Sinica, 31(5): 1433-1447(in Chinese with English abstract).
      [10] Dong, C.W., Yan, Q., Zhang, D.R., et al., 2010. Late Mesozoic Extension in the Coastal Area of Zhejiang and Fujian Provinces: A Petrologic Indicator from the Dongji Island Mafic Dike Swarms. Acta Petrologica Sinica, 26(4): 1195-1203(in Chinese with English abstract).
      [11] Dong, C.W., Zhou, C., Gu, H.Y., et al., 2011. The Age Difference, Geochemistry and Petrogenesis of Mafic Dikes and Host Granites from Meizhou Island in Fujian Province. Journal of Jilin University (Earth Science Edition), 41(3): 735-744(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201103015.htm
      [12] Donnelly, K.E., Goldstein, S.L., Langmuir, C.H., et al., 2004. Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics. Earth and Planetary Science Letters, 226(3-4): 347-366. https://doi.org/10.1016/j.epsl.2004.07.019
      [13] Ernst, R.E., 2014. Large Iigneous Provinces. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9781139025300
      [14] Fitton, J.G., Saunders, A.D., Norry, M.J., et al., 1997. Thermal and Chemical Structure of the Iceland Plume. Earth and Planetary Science Letters, 153(3-4): 197-208. https://doi.org/10.1016/s0012-821x(97)00170-2
      [15] Gilder, S.A., Gill, J., Coe, R.S., et al., 1996. Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China. Journal of Geophysical Research: Solid Earth, 101(B7): 16137-16154. https://doi.org/10.1029/96jb00662
      [16] Green, N.L., 2006. Influence of Slab Thermal Structure on Basalt Source Regions and Melting Conditions: REE and HFSE Constraints from the Garibaldi Volcanic Belt, Northern Cascadia Subduction System. Lithos, 87(1-2): 23-49. https://doi.org/10.1016/j.lithos.2005.05.003
      [17] Hall, L.S., Mahoney, J.J., Sinton, J.M., et al., 2006. Spatial and Temporal Distribution of AC-Like Asthenospheric Component in the Rano Rahi Seamount Field, East Pacific Rise, 15°-19°S. Geochemistry, Geophysics, Geosystems, 7(3): Q03009. https://doi.org/10.1029/2005gc000994
      [18] Hirschmann, M.M., Stolper, E.M., 1996. A Possible Role for Garnet Pyroxenite in the Origin of the "Garnet Signature" in MORB. Contributions to Mineralogy and Petrology, 124(2): 185-208. https://doi.org/10.1007/s004100050184
      [19] Ho, K.S., Chen, J.C., Lo, C.H., et al., 2003. 40Ar-39Ar Dating and Geochemical Characteristics of Late Cenozoic Basaltic Rocks from the Zhejiang-Fujian Region, SE China: Eruption Ages, Magma Evolution and Petrogenesis. Chemical Geology, 197(1-4): 287-318. https://doi.org/10.1016/s0009-2541(02)00399-6
      [20] Hofmann, A.W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821x(88)90132-x
      [21] Hou, G.T., Santosh, M., Qian, X.L., et al., 2008. Configuration of the Late Paleoproterozoic Supercontinent Columbia: Insights from Radiating Mafic Dyke Swarms. Gondwana Research, 14(3): 395-409. https://doi.org/10.1016/j.gr.2008.01.010
      [22] Huang, Q.Z., Zhuang, J.M., Zheng, J.S., et al., 1998. Directions on Geological Map at Scale of 1: 500 000 of Fujian Province. Fujian Map Publishing Press, Fuzhou, Attached Drawings, 1-4(in Chinese).
      [23] Jia, L.H., Mao, J.W., Liu, P., et al., 2020. Crust-Mantle Interaction during Subduction Zone Processes: Insight from Late Mesozoic Ⅰ-Type Granites in Eastern Guangdong, SE China. Journal of Asian Earth Sciences, 192: 104284. https://doi.org/10.1016/j.jseaes.2020.104284
      [24] John, B.M., Zhou, X.H., Li, J.L., 1990. Formation and Tectonic Evolution of Southeastern China and Taiwan: Isotopic and Geochemical Constraints. Tectonophysics, 183(1-4): 145-160. https://doi.org/10.1016/0040-1951(90)90413-3
      [25] Kong, X.G., 2001. Geochemisty Perogenesis of Early Yanshanian Volcanic and the Relationship of Uranium Deposit, South Jiangxi Province (Dissertation). Nanjing University, Nanjing, 7-18(in Chinese with English abstract).
      [26] Lapierre, H., Jahn, B.M., Charvet, J., et al., 1997. Mesozoic Felsic Arc Magmatism and Continental Olivine Tholeiites in Zhejiang Province and Their Relationship with the Tectonic Activity in Southeastern China. Tectonophysics, 274(4): 321-338. https://doi.org/10.1016/s0040-1951(97)00009-7
      [27] Lei, Z.L., Zeng, G., Wang, X.J., et al., 2019. Mantle Source Lithology of Late Mesozoic Mafic Dikes in Southeastern China. Earth Science, 44(4): 1159-1168(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904008.htm
      [28] Li, X.H., Chen, Z.G., Liu, D.Y., et al., 2003. Jurassic Gabbro-Granite-Syenite Suites from Southern Jiangxi Province, SE China: Age, Origin, and Tectonic Significance. International Geology Review, 45(10): 898-921. https://doi.org/10.2747/0020-6814.45.10.898
      [29] Li, X.H., Hu, R.Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. Geochimica, 26(2): 14-31(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqhx702.003.htm
      [30] Li, X.H., Li, Z.X., Li, W.X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1-2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018
      [31] Li, Y.Q., Ma, C.Q., Robinson, P.T., et al., 2015. Recycling of Oceanic Crust from a Stagnant Slab in the Mantle Transition Zone: Evidence from Cenozoic Continental Basalts in Zhejiang Province, SE China. Lithos, 230: 146-165. https://doi.org/10.1016/j.lithos.2015.05.021
      [32] Li, Z.X., Li, X.H., 2007. Formation of the 1 300 km Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
      [33] Liang, X.R., Wei, G.J., Li, X.H., et al., 2003. Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple Collectors-Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). Geochimica, 32(1): 92-97(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200301012.htm
      [34] Liu, L., Xu, X.S., Xia, Y., 2016. Asynchronizing Paleo-Pacific Slab Rollback beneath SE China: Insights from the Episodic Late Mesozoic Volcanism. Gondwana Research, 37: 397-407. https://doi.org/10.1016/j.gr.2015.09.009
      [35] Liu, X., Wang, Q., Ma, L., et al., 2020. Petrogenesis of Late Jurassic Two-Mica Granites and Associated Diorites and Syenite Porphyries in Guangzhou, SE China. Lithos, 364-365: 105537. https://doi.org/10.1016/j.lithos.2020.105537
      [36] Maurice, A.E., Basta, F.F., Khiamy, A.A., 2012. Neoproterozoic Nascent Island Arc Volcanism from the Nubian Shield of Egypt: Magma Genesis and Generation of Continental Crust in Intra-Oceanic Arcs. Lithos, 132-133: 1-20. https://doi.org/10.1016/j.lithos.2011.11.013
      [37] Meng, L.F., Li, Z.X., Chen, H.L., et al., 2012. Geochronological and Geochemical Results from Mesozoic Basalts in Southern South China Block Support the Flat-Slab Subduction Model. Lithos, 132-133: 127-140. https://doi.org/10.1016/j.lithos.2011.11.022
      [38] Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [39] Niu, Y.L., Regelous, M., Wendt, I.J., et al., 2002. Geochemistry of Near-EPR Seamounts: Importance of Source vs. Process and the Origin of Enriched Mantle Component. Earth and Planetary Science Letters, 199(3-4): 327-345. https://doi.org/10.1016/s0012-821x(02)00591-5
      [40] Pearce, J.A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
      [41] Peng, P., 2015. Precambrian Mafic Dyke Swarms in the North China Craton and Their Geological Implications. Science China Earth Sciences, 58(5): 649-675. https://doi.org/10.1007/s11430-014-5026-x
      [42] Plank, T., Ludden, J.N., 1992. Geochemistry of Sediments in the Argo Abyssal Plain at Site 765: A Continental Margin Reference Section for Sediment Recycling in Subduction Zones. In: Gradstein, F.M., Ludden, J.N., et al., eds., Proc. ODP, Sci. Results, 123: College Station, TX (Ocean Drilling Program), 167-189. https://doi.org/10.2973/odp.proc.sr.123.158.1992
      [43] Qi, L., Hu, J., Gregoire, D.C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51: 507-513. https://doi.org/10.1016/s0039-9140(99)00318-5
      [44] Qin, S.C., Fan, W.M., Guo, F., et al., 2010. Petrogenesis of Late Mesozoic Diabase Dikes in Zhejiang-Fujian Provinces: Constraints from Ar-Ar Dating and Geochemistry. Acta Petrologica Sinica, 26(11): 3295-3306(in Chinese with English abstract).
      [45] Rickwood, P.C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      [46] Shimizu, K., Saal, A.E., Myers, C.E., et al., 2016. Two-Component Mantle Melting-Mixing Model for the Generation of Mid-Ocean Ridge Basalts: Implications for the Volatile Content of the Pacific Upper Mantle. Geochimica et Cosmochimica Acta, 176: 44-80. https://doi.org/10.1016/j.gca.2015.10.033
      [47] Shu, L.S., Zhou, X.M., Deng, P., et al., 2009. Mesozoic Tectonic Evolution of the Southeast China Block: New Insights from Basin Analysis. Journal of Asian Earth Sciences, 34(3): 376-391. https://doi.org/10.1016/j.jseaes.2008.06.004
      [48] Smith, M.C., Perfit, M.R., Fornari, D.J., et al., 2001. Magmatic Processes and Segmentation at a Fast Spreading Mid-Ocean Ridge: Detailed Investigation of an Axial Discontinuity on the East Pacific Rise Crest at 9°37'N. Geochemistry, Geophysics, Geosystems, 2(10): 2000GC000134. https://doi.org/10.1029/2000gc000134
      [49] Song, M.J., Shu, L.S., Santosh, M., 2017. Early Mesozoic Intracontinental Orogeny and Stress Transmission in South China: Evidence from Triassic Peraluminous Granites. Journal of the Geological Society, 174(3): 591-607. https://doi.org/10.1144/jgs2016-098
      [50] Srivastava, R.K., Söderlund, U., Ernst, R.E., et al., 2019. Precambrian Mafic Dyke Swarms in the Singhbhum Craton (Eastern India) and Their Links with Dyke Swarms of the Eastern Dharwar Craton (Southern India). Precambrian Research, 329: 5-17. https://doi.org/10.1016/j.precamres.2018.08.001
      [51] Sun, S.Q., Wang, Y.L., Zhang, C.J., 2003. Discrimination of the Tectonic Settings of Basalts by Th, Nb and Zr. Geological Review, 49(1): 40-47(in Chinese with English abstract).
      [52] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [53] Sun, T., Zhou, X.M., Chen, P.R., et al., 2005. Strongly Peraluminous Granites of Mesozoic in Eastern Nanling Range, Southern China: Petrogenesis and Implications for Tectonics. Science in China Earth Sciences, 48(2): 165-174. https://doi.org/10.1360/03yd0042
      [54] Tang, L.M., Chen, H.L., Dong, C.W., et al., 2010. Late Mesozoic Tectonic Extension in SE China: Evidence from the Basic Dike Swarms in Hainan Island, China. Acta Petrologica Sinica, 26(4): 1204-1216(in Chinese with English abstract). http://www.oalib.com/paper/1475368
      [55] Wang, G.C., Jiang, Y.H., Liu, Z., et al., 2016. Multiple Origins for the Middle Jurassic to Early Cretaceous High-K Calc-Alkaline Ⅰ-Type Granites in Northwestern Fujian Province, SE China and Tectonic Implications. Lithos, 246-247: 197-211. https://doi.org/10.1016/j.lithos.2015.12.022
      [56] Wang, L.X., Ma, C.Q., Zhang, C., et al., 2018. Halogen Geochemistry of I- and A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478: 164-182. https://doi.org/10.1016/j.chemgeo.2017.09.033
      [57] Wang, Y.J., Fan, W.M., Peng, T.P., et al., 2005. Elemental and Sr-Nd Isotopic Systematics of the Early Mesozoic Volcanic Sequence in Southern Jiangxi Province, South China: Petrogenesis and Tectonic Implications. International Journal of Earth Sciences, 94(1): 53-65. https://doi.org/10.1007/s00531-004-0441-4
      [58] Wang, Y.J., Fan, W.M., Zhang, G.W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. doi: 10.1016/j.gr.2012.02.019
      [59] Wedepohl, K.H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2
      [60] Wood, D.A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. https://doi.org/10.1016/0012-821x(80)90116-8
      [61] Xie, G.Q., Hu, R.Z., Mao, J.W., et al., 2006. K-Ar Dating, Geochemical, and Sr-Nd-Pb Isotopic Systematics of Late Mesozoic Mafic Dikes, Southern Jiangxi Province, Southeast China: Petrogenesis and Tectonic Implications. International Geology Review, 48(11): 1023-1051. https://doi.org/10.2747/0020-6814.48.11.1023
      [62] Xu, X.B., Zhang, Y.Q., Jia, D., et al., 2009. Early Mesozoic Geotectonic Processes in South China. Geology in China, 36(3): 573-593(in Chinese with English abstract).
      [63] Yang, J.B., 2015. Petrological and Geochemical Studies of the Cenozoic Basalts and Hosted Peridotite Xenoliths in Zhejiang and Fujian Provinces (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      [64] Yang, J.B., Zhao, Z.D., Hou, Q.Y., et al., 2018. Petrogenesis of Cretaceous (133-84 Ma) Intermediate Dykes and Host Granites in Southeastern China: Implications for Lithospheric Extension, Continental Crustal Growth, and Geodynamics of Palaeo-Pacific Subduction. Lithos, 296-299: 195-211. https://doi.org/10.1016/j.lithos.2017.10.022
      [65] Yuan, H.L., Gao, S., Dai, M.N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003
      [66] Zhang, B., Guo, F., Zhang, X.B., et al., 2019. Early Cretaceous Subduction of Paleo-Pacific Ocean in the Coastal Region of SE China: Petrological and Geochemical Constraints from the Mafic Intrusions. Lithos, 334-335: 8-24. https://doi.org/10.1016/j.lithos.2019.03.010
      [67] Zhang, B.T., Chen, P.R., Ling, H.F., et al., 2004. Geochemistry and Petrogenesis of the Middle Jurassic Rhyolite, Southern Jiangxi: Trace Element and Pb-Nd-Sr Isotope Geochemical Constraints on the Upper Crustal Origin. Acta Petrologica Sinica, 20(3): 511-520(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_ysxb98200403015.aspx
      [68] Zhang, D., Zhao, K.D., Chen, W., et al., 2018. Early Jurassic Mafic Dykes from the Aigao Uranium Ore Deposit in South China: Geochronology, Petrogenesis and Relationship with Uranium Mineralization. Lithos, 308-309: 118-133. https://doi.org/10.1016/j.lithos.2018.02.028
      [69] Zhang, G.S., Liu, S.W., Han, W.H., et al., 2017. Baddeleyite U-Pb Age and Geochemical Data of the Mafic Dykes from South Qinling: Constraints on the Lithospheric Extension. Geological Journal, 52: 272-285. https://doi.org/10.1002/gj.3074
      [70] Zhang, G.S., Wen, H.J., Hu, R.Z., et al., 2007. Genesis and Dynamic Setting of Mafic Dikes in Southeastern Fujian: Evidence from Sr-Nd Isotopic and Major and Trace Element Geochemistry. Acta Petrologica Sinica, 23(4): 793-804(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB200704011.htm
      [71] Zhang, G.S., Wen, H.J., Hu, R.Z., et al., 2007. Geochemistry of Late Mesozoic Mafic Dykes in Western Fujian Province of China: Sr-Nd Isotope and Trace Element Constraints. Chinese Journal of Geochemistry, 26(2): 143-156. https://doi.org/10.1007/s11631-007-0143-2
      [72] Zhang, J.H., Wang, H.C., Guo, J.H., et al., 2020. Metamorphic Mafic Dykes from Tianzhen-Huai'an Area: Transformation Criteria of the Late Paleoproterozoic. Earth Sciences, 45(9): 3239-3257 (in Chinese with English abstract).
      [73] Zhao, J.H., Hu, R.Z., Liu, S., 2004. Geochemistry, Petrogenesis, and Tectonic Significance of Mesozoic Mafic Dikes, Fujian Province, Southeastern China. International Geology Review, 46(6): 542-557. https://doi.org/10.2747/0020-6814.46.6.542
      [74] Zhao, J.H., Hu, R.Z., Zhou, M.F., et al., 2007. Elemental and Sr-Nd-Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 144(6): 937-952. doi: 10.1017/S0016756807003834
      [75] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
      [76] Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
      [77] Zou, H.B., Zindler, A., Xu, X.S., et al., 2000. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 171(1-2): 33-47. https://doi.org/10.1016/s0009-2541(00)00243-6
      [78] 曹建劲, 胡瑞忠, 谢桂青, 等, 2009. 广东沿海地区基性岩脉地球化学及成因. 岩石学报, 25(4): 984-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200904023.htm
      [79] 陈新跃, 王岳军, 韩会平, 等, 2014. 琼西南三叠纪基性岩脉年代学、地球化学特征及其构造意义. 吉林大学学报(地球科学版), 44(3): 835-847. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201403010.htm
      [80] 崔圆圆, 赵志丹, 蒋婷, 等, 2013. 赣南早古生代晚期花岗岩类年代学、地球化学及岩石成因. 岩石学报, 29(11): 4011-4024. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311030.htm
      [81] 丁聪, 赵志丹, 杨金豹, 等, 2015. 福建石狮白垩纪花岗岩与中基性脉岩的年代学与地球化学. 岩石学报, 31(5): 1433-1447. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505018.htm
      [82] 董传万, 闫强, 张登荣, 等, 2010. 浙闽沿海晚中生代伸展构造的岩石学标志: 东极岛镁铁质岩墙群. 岩石学报, 26(4): 1195-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004018.htm
      [83] 董传万, 周超, 顾虹艳, 等, 2011. 福建湄州岛镁铁质岩墙群与寄主花岗岩的形成时差、地球化学及成因. 吉林大学学报(地球科学), 41(3): 735-744. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201103015.htm
      [84] 黄泉祯, 庄建民, 郑声俭, 等, 1998. 福建省地质图(1: 500 000)说明书. 福州: 福建省地图出版社, 附图, 1-4.
      [85] 孔兴功, 2001. 赣南燕山早期火山岩地球化学成因及与铀成矿关系(博士学位论文). 南京: 南京大学, 7-18.
      [86] 雷祝梁, 曾罡, 王小均, 等, 2019. 中国东南部晚中生代基性岩脉地幔源区的岩性演化历史. 地球科学, 44(4): 1159-1170. doi: 10.3799/dqkx.2019.021
      [87] 李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004
      [88] 梁细荣, 韦刚健, 李献华, 等, 2003. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值. 地球化学, 32(1): 92-97. doi: 10.3969/j.issn.1672-9250.2003.01.016
      [89] 秦社彩, 范蔚茗, 郭锋, 等, 2010. 浙闽晚中生代辉绿岩脉的岩石成因: 年代学与地球化学制约. 岩石学报, 26(11): 3295-3306. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011012.htm
      [90] 孙书勤, 汪云亮, 张成江, 2003. 玄武岩类岩石大地构造环境的Th、Nb、Zr判别. 地质论评, 49(1): 40-47. doi: 10.3321/j.issn:0371-5736.2003.01.006
      [91] 唐立梅, 陈汉林, 董传万, 等, 2010. 中国东南部晚中生代构造伸展作用: 来自海南岛基性岩墙群的证据. 岩石学报, 26(4): 1204-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004019.htm
      [92] 徐先兵, 张岳桥, 贾东, 等, 2009. 华南早中生代大地构造过程. 中国地质, 36(3): 573-593. doi: 10.3969/j.issn.1000-3657.2009.03.007
      [93] 杨金豹, 2015. 浙闽地区新生代玄武岩和地幔捕虏体岩石学与地球化学(博士学位论文). 北京: 中国地质大学.
      [94] 章邦桐, 陈培荣, 凌洪飞, 等, 2004. 赣南中侏罗世流纹岩地球化学及成因研究: 上地壳成因的微量元素和Pb-Nd-Sr同位素地球化学制约. 岩石学报, 20(3): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403015.htm
      [95] 张贵山, 温汉捷, 胡瑞忠, 等, 2007. 闽东南基性岩脉成因及动力学背景研究: Sr-Nd同位素、元素地球化学. 岩石学报, 23(4): 793-804. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704011.htm
      [96] 张家辉, 王惠初, 郭敬辉, 等, 2020. 天镇-怀安地区变质基性岩墙群: 华北克拉通古元古代末期碰撞-伸展构造体制转换标志. 地球科学, 45(9): 3239-3257. doi: 10.3799/dqkx.2020.125
    • dqkxzx-46-12-4230-附表3.xlsx
      dqkxzx-46-12-4230-附表1.xlsx
      dqkxzx-46-12-4230-附表2.xlsx
    • 加载中
    图(12) / 表(1)
    计量
    • 文章访问数:  741
    • HTML全文浏览量:  154
    • PDF下载量:  72
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-02-11
    • 刊出日期:  2021-12-15

    目录

      /

      返回文章
      返回