Genesis of E-MORB-Like Mafic Dykes in Southwestern Fujian Province, SE China: Evidence from Geochemistry, Zircon U-Pb Geochronology and Sr-Nd Isotope
-
摘要: 闽西南地区发育富集洋脊玄武岩(E-MORB)地球化学特征的基性岩墙,这对研究晚中生代中国东南部的构造岩浆作用具有重要指示意义.利用岩石学、锆石U-Pb年代学、元素地球化学、同位素地球化学等方法对早白垩世闽西南基性岩墙进行研究,岩墙以辉绿岩和角闪辉长辉绿岩为主,属于中-低钾岩石系列,Mg#值为55.80~66.38.锆石U-Pb年龄为117.4±3.8 Ma,为早白垩世晚期岩浆活动的产物.样品富集Rb、Ba、U、K、LREE等元素,无明显Nb、Ta、Ti亏损,显示出E-MORB的地球化学特征;(87Sr/86Sr)i=0.706 50~0.710 19、εNd(t)=-0.9~4.0,同位素Sr中等富集、Nd弱亏损.成岩过程有少量橄榄石和单斜辉石的分离结晶作用,无明显地壳混染作用.由于太平洋板块受南岭E-W向巨厚岩石圈的阻碍,导致板片下插速率与邻区产生差异,局部撕裂形成板片窗,软流圈地幔物质沿“窗口”上涌并卷裹起板片上的海洋沉积物,在上升中发生交代作用形成具有E-MORB特征的地幔岩.在早白垩世晚期的大陆拉张-陆内初始裂谷背景下,伴随软流圈上涌富集地幔岩发生部分熔融,形成的基性岩浆上侵形成了闽西南基性岩墙.Abstract: E-MORB-like mafic dykes are exposed in Southwest Fujian Province and record key information of tectonic-magmatism in Southeast China during Late Cenozoic. A comprehensive research of petrology, zircon U-Pb dating, elemental geochemistry and isotope geochemistry was carried out. Mafic dykes are composed of dolerite and hornblende gabbro dolerite, and possess middle-low potassic features, with the Mg# values range from 55.80 to 66.38. Zircon U-Pb dating yield an age of 117.4±3.8 Ma, indicating that mafic dykes were emplaced at end of Early Cretaceous. Dykes enrich in Rb, Ba, U, K and LREE, without obvious depletion of Nb, Ta and Ti, which is consist with the E-MORB geochemical affinities. Samples have positive εNd(t) (-0.9 to 4.0), and (87Sr/86Sr)i values range from 0.706 50 to 0.710 19. Geochemical compositions show that the olivine and clinopyroxene fractionation have occurred and crustal contamination did not played an important role during the emplacement. We propose a slab window model to interpret the formation of mafic dykes. Subduction speed of Pacific plate beneath Nanling area was decreased by the overlying thickened lithosphere, which lead to the subduction velocity of the plate to be different from that of the adjacent area, and resulted in the formation of slab windows. Asthenospheric material could rise through slab windows, and carried and interacted with oceanic sediments, forming the E-MORB-like mantle rocks. With the upwelling of asthenosphere, E-MORB-like mantle materials will undergo partially melt and the resulting melts will emplace to form mafic dykes with a continental extensional-intracontinental rift setting at end of Early Cretaceous.
-
Key words:
- mafic dyke /
- E-MORB /
- zircon U-Pb geochronology /
- geochemistry /
- Southwest Fujian
-
图 1 中国东南部中生代岩浆岩分布简图(a)和工作区地质简图(b)
a据Zhou et al.(2006)修改; b据黄泉祯等(1998)修改
Fig. 1. Distribution of Mesozoic granite-volcanic rocks in Southeast China (a) and overview map showing the distribution of mafic dykes in the Southwest Fujian (b)
图 5 闽西南基性岩墙TAS(a)与SiO2-K2O(b)图解
图a引自Middlemost(1994); 图b底图引自Rickwood(1989); a.Ir-Irvine分界线, 上方为碱性, 下方为亚碱性; 1.橄榄辉长岩; 2a.碱性辉长岩; 2b.亚碱性辉长岩; 3.辉长闪长岩; 4.闪长岩; 5.花岗闪长岩; 6.花岗岩; 7.硅英岩; 8.二长辉长岩; 9.二长闪长岩; 10.二长岩; 11.石英二长岩; 12.正长岩; 13.副长石辉长岩; 14.副长石二长闪长岩; 15.副长石二长正长岩; 16.副长正长岩; 17.副长深成岩; 18.霓方钠岩/磷霞岩/粗白榴岩
Fig. 5. K2O+Na2O vs. SiO2 diagram (a), K2O vs. SiO2 diagram (b) for mafic dykes from Southwest Fujian
图 6 闽西南基性岩墙MgO横坐标Hark图解
新生代玄武岩数据引自Zou et al.(2000); Ho et al.(2003); Li et al.(2015); 杨金豹(2015).中侏罗世玄武岩孔兴功(2001); Li et al.(2003); Wang et al.(2005)
Fig. 6. Hark diagrams for the mafic dykes from Southwest Fujian
图 7 闽西南基性岩墙稀土元素配分模式图(a)与微量元素蛛网图(b)
球粒陨石与MORB标准化数据、OIB、N-MORB、E-MORB均引自Sun and McDonough(1989); 新生代玄武岩数据引自Zou et al.(2000); Ho et al.(2003); Li et al.(2015); 杨金豹(2015); 中侏罗世玄武岩孔兴功(2001); Li et al.(2003); Wang et al.(2005)
Fig. 7. Chondrite-normalized rare earth element patterns (a) and MORB-normalized trace element diagram (b) for the mafic dykes from Southwest Fujian
图 8 闽西南基性岩墙Sr-Nd同位素图
EMⅠ, EMⅡ, DMM, HIMU引自Zindler and Hart(1986); 福建新生代玄武岩引自Zou et al.(2000); Ho et al.(2003); 南岭中侏罗世玄武岩引自孔兴功(2001); Li et al.(2003); Wang et al.(2005); Zhou et al.(2006)
Fig. 8. (87Sr/86Sr)i vs. (143Nd/144Nd)i for the mafic dykes from Southwest Fujian
图 9 闽西南基性岩墙Th/Yb-Ce/Nb和La/Yb-Ti/(Yb×1 000)判别图
PM(原始地幔)、MORB(洋中脊玄武岩)、OIB(洋岛玄武岩) 引自Sun and McDonough(1989); CC(大陆地壳)引自Wedepohl(1995)
Fig. 9. Th/Yb vs.Ce/Nb and La/Yb vs.Ti/(Yb×1 000) discriminant diagrams of the mafic dykes from Southwest Fujian
图 10 闽西南基性岩墙以Nb/Yb为横坐标的相关判别图解
图a、b底图引自Pearce(2008); 图c~h底图引自Green(2006); Maurice et al.(2012)
Fig. 10. Nb/Yb discriminant diagrams for mafic dykes from Southwest Fujian
图 11 闽西南基性岩墙Y/15-La/10-Nb/8(a)、Hf/3-Th-Ta(b)、Th/Zr-Nb/Zr(c)构造判别图解
N-MORB.N型大洋中脊玄武岩; E-MOEB.E型大洋中脊玄武岩; WPA.板内碱性玄武岩; CAB.钙碱性玄武岩; IAB.岛弧拉斑玄武岩; BABB.弧后盆地玄武岩; WPB.板内玄武岩; Ⅰ.N-MORB.Ⅱ1.陆缘岛弧火山岩; Ⅱ2.陆缘火山玄武岩; Ⅲ.大洋板内玄武岩海山玄武岩; Ⅳ1.陆内初始、陆缘裂谷拉斑玄武岩; Ⅳ2.大陆拉张玄武岩; Ⅳ3.大陆碰撞玄武岩区; Ⅴ.地幔热柱玄武岩; 图a底图引自Cabanis and Lecolle(1989); 图b底图引自Wood(1980); 图c底图孙书勤等(2003)
Fig. 11. Y/15-La/10-Nb/8 (a) and Hf/3-Th-Ta (b) and Nb/Zr-Th/Zr (c) tectonic setting discriminants diagrams for mafic dykes from Southwest Fujian
表 1 闽西南晚中生代基性岩墙与各端元微量元素浓度比值对比
Table 1. Comparison of trace element ratios for different end-members and the Late Mesozoic mafic dykes from the Southwest Fujian
CC PM N-MORB OIB 大洋沉积物 EPR(E-MORB) 本文 Zr/Nb 10.7 15.7 31.8 5.8 7.07~40.5 (11.5) 1.99~21.6 (5.70) 12.3~16.8 (14.5) La/Nb 1.58 0.96 1.07 0.77 1.81~4.32 (2.63) 0.49~0.95 (0.61) 1.12~1.71 (1.36) Ba/Nb 30.8 9.8 2.7 7.29 10.8~511 (68.2) 4.77~8.57 (6.01) 9.8~41.5 (22.5) Rb/Nb 4.12 0.89 0.24 0.65 4.43~10.5 (7.05) 0.39~0.81 (0.53) 0.87~12.1 (5.31) K/Nb 1 870 351 258 250 1 308~2 866 (1 726) 129~422 (210) 230~1 278 (672) Th/Nb 0.45 0.12 0.052 0.083 0.21~1.44 (0.67) 0.058~0.085 (0.072) 0.15~0.39 (0.24) Th/La 0.28 0.12 0.048 0.11 0.15~0.53 (0.26) 0.069~0.149 (0.12) 0.12~0.23 (0.17) Ba/La 19.5 10.2 2.52 9.46 10.6~141 (25.8) 5.81~12.5 (9.96) 7.44~31.5 (15.9) Ba/Th 68.7 82.2 52.5 87.5 14.8~554 (100) 65.9~131 (83.6) 47.6~198 (90.9) 注: CC (大陆地壳)引自Wedepohl(1995); PM、N-MORB、OIB引自Sun and McDonough(1989); 大洋沉积物引自Plank and Ludden(1992); EPR(东太平洋中脊)引自 Shimizu et al.(2016) ; 括号内为平均值.
中生代以来, 太平洋板块持续向NW俯冲于中国东南部大陆板块之下, 俯冲板片将大洋沉积物带入地幔内, 在地幔中其发生了低度部分熔融作用, 产生的熔体与地幔橄榄岩发生地幔交代作用, 形成具有E-MORB地球化学特征的富集地幔岩(Niu et al., 2002 ), 伴随着软流圈地幔强烈上涌将富集地幔岩携带上升到浅部, 绝热减压发生部分熔融, 形成了具有E-MORB特征的闽西南基性岩墙原始岩浆. -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That Do Not Report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [2] Arevalo, R. Jr., McDonough, W.F., Luong, M., 2009. The K/U Ratio of the Silicate Earth: Insights into Mantle Composition, Structure and Thermal Evolution. Earth and Planetary Science Letters, 278(3-4): 361-369. https://doi.org/10.1016/j.epsl.2008.12.023 [3] Cabanis, B., Lecolle, M., 1989. Le Diagramme La/10-Y/15-N/8: Un Outil Pour La Discrimination Des Séries Volcaniques et La Mise en Évidence Des Processus De Mélange et/ou de Contamination Crustale. Comptes Rendues de la Academie des Sciences Série IIA, 309(20): 2023-2029. http://ci.nii.ac.jp/naid/80004995562 [4] Cao, J.J., Hu, R.Z., Xie, G.Q., et al., 2009. Geochemistry and Genesis of Mafic Dikes from the Coastal Areas of Guangdong Province, China. Acta Petrologica Sinica, 25(4): 984-1000(in Chinese with English abstract). [5] Cen, T., Li, W.X., Wang, X.C., et al., 2016. Petrogenesis of Early Jurassic Basalts in Southern Jiangxi Province, South China: Implications for the Thermal State of the Mesozoic Mantle beneath South China. Lithos, 256-257: 311-330. https://doi.org/10.1016/j.lithos.2016.03.022 [6] Chen, X.Y., Wang, Y.J., Han, H.P., et al., 2014. Geochemical and Geochronological Characteristics of Triassic Basic Dikes in SW Hainan Island and Its Tectonic Implications. Journal of Jilin University (Earth Science Edition), 44(3): 835-847(in Chinese with English abstract). [7] Cui, Y.Y., Zhao, Z.D., Jiang, T., et al., 2013. Geochronology, Geochemistry and Petrogenesis of the Early Paleozoic Granitoids in Southern Jiangxi Province, China. Acta Petrologica Sinica, 29(11): 4011-4024(in Chinese with English abstract). [8] Dilek, Y., 2006. Collision Tectonics of the Mediterranean Region: Causes and Consequences. Geological Society of America Special Papers, 409: 1-13. https://doi.org/10.1130/2006.2409(01) [9] Ding, C., Zhao, Z.D., Yang, J.B., et al., 2015. Geochronology, Geochemistry of the Cretaceous Granitoids and Mafic to Intermediate Dykes in Shishi Area, Coastal Fujian Province. Acta Petrologica Sinica, 31(5): 1433-1447(in Chinese with English abstract). [10] Dong, C.W., Yan, Q., Zhang, D.R., et al., 2010. Late Mesozoic Extension in the Coastal Area of Zhejiang and Fujian Provinces: A Petrologic Indicator from the Dongji Island Mafic Dike Swarms. Acta Petrologica Sinica, 26(4): 1195-1203(in Chinese with English abstract). [11] Dong, C.W., Zhou, C., Gu, H.Y., et al., 2011. The Age Difference, Geochemistry and Petrogenesis of Mafic Dikes and Host Granites from Meizhou Island in Fujian Province. Journal of Jilin University (Earth Science Edition), 41(3): 735-744(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201103015.htm [12] Donnelly, K.E., Goldstein, S.L., Langmuir, C.H., et al., 2004. Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics. Earth and Planetary Science Letters, 226(3-4): 347-366. https://doi.org/10.1016/j.epsl.2004.07.019 [13] Ernst, R.E., 2014. Large Iigneous Provinces. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9781139025300 [14] Fitton, J.G., Saunders, A.D., Norry, M.J., et al., 1997. Thermal and Chemical Structure of the Iceland Plume. Earth and Planetary Science Letters, 153(3-4): 197-208. https://doi.org/10.1016/s0012-821x(97)00170-2 [15] Gilder, S.A., Gill, J., Coe, R.S., et al., 1996. Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China. Journal of Geophysical Research: Solid Earth, 101(B7): 16137-16154. https://doi.org/10.1029/96jb00662 [16] Green, N.L., 2006. Influence of Slab Thermal Structure on Basalt Source Regions and Melting Conditions: REE and HFSE Constraints from the Garibaldi Volcanic Belt, Northern Cascadia Subduction System. Lithos, 87(1-2): 23-49. https://doi.org/10.1016/j.lithos.2005.05.003 [17] Hall, L.S., Mahoney, J.J., Sinton, J.M., et al., 2006. Spatial and Temporal Distribution of AC-Like Asthenospheric Component in the Rano Rahi Seamount Field, East Pacific Rise, 15°-19°S. Geochemistry, Geophysics, Geosystems, 7(3): Q03009. https://doi.org/10.1029/2005gc000994 [18] Hirschmann, M.M., Stolper, E.M., 1996. A Possible Role for Garnet Pyroxenite in the Origin of the "Garnet Signature" in MORB. Contributions to Mineralogy and Petrology, 124(2): 185-208. https://doi.org/10.1007/s004100050184 [19] Ho, K.S., Chen, J.C., Lo, C.H., et al., 2003. 40Ar-39Ar Dating and Geochemical Characteristics of Late Cenozoic Basaltic Rocks from the Zhejiang-Fujian Region, SE China: Eruption Ages, Magma Evolution and Petrogenesis. Chemical Geology, 197(1-4): 287-318. https://doi.org/10.1016/s0009-2541(02)00399-6 [20] Hofmann, A.W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821x(88)90132-x [21] Hou, G.T., Santosh, M., Qian, X.L., et al., 2008. Configuration of the Late Paleoproterozoic Supercontinent Columbia: Insights from Radiating Mafic Dyke Swarms. Gondwana Research, 14(3): 395-409. https://doi.org/10.1016/j.gr.2008.01.010 [22] Huang, Q.Z., Zhuang, J.M., Zheng, J.S., et al., 1998. Directions on Geological Map at Scale of 1: 500 000 of Fujian Province. Fujian Map Publishing Press, Fuzhou, Attached Drawings, 1-4(in Chinese). [23] Jia, L.H., Mao, J.W., Liu, P., et al., 2020. Crust-Mantle Interaction during Subduction Zone Processes: Insight from Late Mesozoic Ⅰ-Type Granites in Eastern Guangdong, SE China. Journal of Asian Earth Sciences, 192: 104284. https://doi.org/10.1016/j.jseaes.2020.104284 [24] John, B.M., Zhou, X.H., Li, J.L., 1990. Formation and Tectonic Evolution of Southeastern China and Taiwan: Isotopic and Geochemical Constraints. Tectonophysics, 183(1-4): 145-160. https://doi.org/10.1016/0040-1951(90)90413-3 [25] Kong, X.G., 2001. Geochemisty Perogenesis of Early Yanshanian Volcanic and the Relationship of Uranium Deposit, South Jiangxi Province (Dissertation). Nanjing University, Nanjing, 7-18(in Chinese with English abstract). [26] Lapierre, H., Jahn, B.M., Charvet, J., et al., 1997. Mesozoic Felsic Arc Magmatism and Continental Olivine Tholeiites in Zhejiang Province and Their Relationship with the Tectonic Activity in Southeastern China. Tectonophysics, 274(4): 321-338. https://doi.org/10.1016/s0040-1951(97)00009-7 [27] Lei, Z.L., Zeng, G., Wang, X.J., et al., 2019. Mantle Source Lithology of Late Mesozoic Mafic Dikes in Southeastern China. Earth Science, 44(4): 1159-1168(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904008.htm [28] Li, X.H., Chen, Z.G., Liu, D.Y., et al., 2003. Jurassic Gabbro-Granite-Syenite Suites from Southern Jiangxi Province, SE China: Age, Origin, and Tectonic Significance. International Geology Review, 45(10): 898-921. https://doi.org/10.2747/0020-6814.45.10.898 [29] Li, X.H., Hu, R.Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. Geochimica, 26(2): 14-31(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqhx702.003.htm [30] Li, X.H., Li, Z.X., Li, W.X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1-2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018 [31] Li, Y.Q., Ma, C.Q., Robinson, P.T., et al., 2015. Recycling of Oceanic Crust from a Stagnant Slab in the Mantle Transition Zone: Evidence from Cenozoic Continental Basalts in Zhejiang Province, SE China. Lithos, 230: 146-165. https://doi.org/10.1016/j.lithos.2015.05.021 [32] Li, Z.X., Li, X.H., 2007. Formation of the 1 300 km Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1 [33] Liang, X.R., Wei, G.J., Li, X.H., et al., 2003. Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple Collectors-Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). Geochimica, 32(1): 92-97(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200301012.htm [34] Liu, L., Xu, X.S., Xia, Y., 2016. Asynchronizing Paleo-Pacific Slab Rollback beneath SE China: Insights from the Episodic Late Mesozoic Volcanism. Gondwana Research, 37: 397-407. https://doi.org/10.1016/j.gr.2015.09.009 [35] Liu, X., Wang, Q., Ma, L., et al., 2020. Petrogenesis of Late Jurassic Two-Mica Granites and Associated Diorites and Syenite Porphyries in Guangzhou, SE China. Lithos, 364-365: 105537. https://doi.org/10.1016/j.lithos.2020.105537 [36] Maurice, A.E., Basta, F.F., Khiamy, A.A., 2012. Neoproterozoic Nascent Island Arc Volcanism from the Nubian Shield of Egypt: Magma Genesis and Generation of Continental Crust in Intra-Oceanic Arcs. Lithos, 132-133: 1-20. https://doi.org/10.1016/j.lithos.2011.11.013 [37] Meng, L.F., Li, Z.X., Chen, H.L., et al., 2012. Geochronological and Geochemical Results from Mesozoic Basalts in Southern South China Block Support the Flat-Slab Subduction Model. Lithos, 132-133: 127-140. https://doi.org/10.1016/j.lithos.2011.11.022 [38] Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [39] Niu, Y.L., Regelous, M., Wendt, I.J., et al., 2002. Geochemistry of Near-EPR Seamounts: Importance of Source vs. Process and the Origin of Enriched Mantle Component. Earth and Planetary Science Letters, 199(3-4): 327-345. https://doi.org/10.1016/s0012-821x(02)00591-5 [40] Pearce, J.A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [41] Peng, P., 2015. Precambrian Mafic Dyke Swarms in the North China Craton and Their Geological Implications. Science China Earth Sciences, 58(5): 649-675. https://doi.org/10.1007/s11430-014-5026-x [42] Plank, T., Ludden, J.N., 1992. Geochemistry of Sediments in the Argo Abyssal Plain at Site 765: A Continental Margin Reference Section for Sediment Recycling in Subduction Zones. In: Gradstein, F.M., Ludden, J.N., et al., eds., Proc. ODP, Sci. Results, 123: College Station, TX (Ocean Drilling Program), 167-189. https://doi.org/10.2973/odp.proc.sr.123.158.1992 [43] Qi, L., Hu, J., Gregoire, D.C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51: 507-513. https://doi.org/10.1016/s0039-9140(99)00318-5 [44] Qin, S.C., Fan, W.M., Guo, F., et al., 2010. Petrogenesis of Late Mesozoic Diabase Dikes in Zhejiang-Fujian Provinces: Constraints from Ar-Ar Dating and Geochemistry. Acta Petrologica Sinica, 26(11): 3295-3306(in Chinese with English abstract). [45] Rickwood, P.C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5 [46] Shimizu, K., Saal, A.E., Myers, C.E., et al., 2016. Two-Component Mantle Melting-Mixing Model for the Generation of Mid-Ocean Ridge Basalts: Implications for the Volatile Content of the Pacific Upper Mantle. Geochimica et Cosmochimica Acta, 176: 44-80. https://doi.org/10.1016/j.gca.2015.10.033 [47] Shu, L.S., Zhou, X.M., Deng, P., et al., 2009. Mesozoic Tectonic Evolution of the Southeast China Block: New Insights from Basin Analysis. Journal of Asian Earth Sciences, 34(3): 376-391. https://doi.org/10.1016/j.jseaes.2008.06.004 [48] Smith, M.C., Perfit, M.R., Fornari, D.J., et al., 2001. Magmatic Processes and Segmentation at a Fast Spreading Mid-Ocean Ridge: Detailed Investigation of an Axial Discontinuity on the East Pacific Rise Crest at 9°37'N. Geochemistry, Geophysics, Geosystems, 2(10): 2000GC000134. https://doi.org/10.1029/2000gc000134 [49] Song, M.J., Shu, L.S., Santosh, M., 2017. Early Mesozoic Intracontinental Orogeny and Stress Transmission in South China: Evidence from Triassic Peraluminous Granites. Journal of the Geological Society, 174(3): 591-607. https://doi.org/10.1144/jgs2016-098 [50] Srivastava, R.K., Söderlund, U., Ernst, R.E., et al., 2019. Precambrian Mafic Dyke Swarms in the Singhbhum Craton (Eastern India) and Their Links with Dyke Swarms of the Eastern Dharwar Craton (Southern India). Precambrian Research, 329: 5-17. https://doi.org/10.1016/j.precamres.2018.08.001 [51] Sun, S.Q., Wang, Y.L., Zhang, C.J., 2003. Discrimination of the Tectonic Settings of Basalts by Th, Nb and Zr. Geological Review, 49(1): 40-47(in Chinese with English abstract). [52] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [53] Sun, T., Zhou, X.M., Chen, P.R., et al., 2005. Strongly Peraluminous Granites of Mesozoic in Eastern Nanling Range, Southern China: Petrogenesis and Implications for Tectonics. Science in China Earth Sciences, 48(2): 165-174. https://doi.org/10.1360/03yd0042 [54] Tang, L.M., Chen, H.L., Dong, C.W., et al., 2010. Late Mesozoic Tectonic Extension in SE China: Evidence from the Basic Dike Swarms in Hainan Island, China. Acta Petrologica Sinica, 26(4): 1204-1216(in Chinese with English abstract). http://www.oalib.com/paper/1475368 [55] Wang, G.C., Jiang, Y.H., Liu, Z., et al., 2016. Multiple Origins for the Middle Jurassic to Early Cretaceous High-K Calc-Alkaline Ⅰ-Type Granites in Northwestern Fujian Province, SE China and Tectonic Implications. Lithos, 246-247: 197-211. https://doi.org/10.1016/j.lithos.2015.12.022 [56] Wang, L.X., Ma, C.Q., Zhang, C., et al., 2018. Halogen Geochemistry of I- and A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478: 164-182. https://doi.org/10.1016/j.chemgeo.2017.09.033 [57] Wang, Y.J., Fan, W.M., Peng, T.P., et al., 2005. Elemental and Sr-Nd Isotopic Systematics of the Early Mesozoic Volcanic Sequence in Southern Jiangxi Province, South China: Petrogenesis and Tectonic Implications. International Journal of Earth Sciences, 94(1): 53-65. https://doi.org/10.1007/s00531-004-0441-4 [58] Wang, Y.J., Fan, W.M., Zhang, G.W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. doi: 10.1016/j.gr.2012.02.019 [59] Wedepohl, K.H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2 [60] Wood, D.A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. https://doi.org/10.1016/0012-821x(80)90116-8 [61] Xie, G.Q., Hu, R.Z., Mao, J.W., et al., 2006. K-Ar Dating, Geochemical, and Sr-Nd-Pb Isotopic Systematics of Late Mesozoic Mafic Dikes, Southern Jiangxi Province, Southeast China: Petrogenesis and Tectonic Implications. International Geology Review, 48(11): 1023-1051. https://doi.org/10.2747/0020-6814.48.11.1023 [62] Xu, X.B., Zhang, Y.Q., Jia, D., et al., 2009. Early Mesozoic Geotectonic Processes in South China. Geology in China, 36(3): 573-593(in Chinese with English abstract). [63] Yang, J.B., 2015. Petrological and Geochemical Studies of the Cenozoic Basalts and Hosted Peridotite Xenoliths in Zhejiang and Fujian Provinces (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [64] Yang, J.B., Zhao, Z.D., Hou, Q.Y., et al., 2018. Petrogenesis of Cretaceous (133-84 Ma) Intermediate Dykes and Host Granites in Southeastern China: Implications for Lithospheric Extension, Continental Crustal Growth, and Geodynamics of Palaeo-Pacific Subduction. Lithos, 296-299: 195-211. https://doi.org/10.1016/j.lithos.2017.10.022 [65] Yuan, H.L., Gao, S., Dai, M.N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003 [66] Zhang, B., Guo, F., Zhang, X.B., et al., 2019. Early Cretaceous Subduction of Paleo-Pacific Ocean in the Coastal Region of SE China: Petrological and Geochemical Constraints from the Mafic Intrusions. Lithos, 334-335: 8-24. https://doi.org/10.1016/j.lithos.2019.03.010 [67] Zhang, B.T., Chen, P.R., Ling, H.F., et al., 2004. Geochemistry and Petrogenesis of the Middle Jurassic Rhyolite, Southern Jiangxi: Trace Element and Pb-Nd-Sr Isotope Geochemical Constraints on the Upper Crustal Origin. Acta Petrologica Sinica, 20(3): 511-520(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_ysxb98200403015.aspx [68] Zhang, D., Zhao, K.D., Chen, W., et al., 2018. Early Jurassic Mafic Dykes from the Aigao Uranium Ore Deposit in South China: Geochronology, Petrogenesis and Relationship with Uranium Mineralization. Lithos, 308-309: 118-133. https://doi.org/10.1016/j.lithos.2018.02.028 [69] Zhang, G.S., Liu, S.W., Han, W.H., et al., 2017. Baddeleyite U-Pb Age and Geochemical Data of the Mafic Dykes from South Qinling: Constraints on the Lithospheric Extension. Geological Journal, 52: 272-285. https://doi.org/10.1002/gj.3074 [70] Zhang, G.S., Wen, H.J., Hu, R.Z., et al., 2007. Genesis and Dynamic Setting of Mafic Dikes in Southeastern Fujian: Evidence from Sr-Nd Isotopic and Major and Trace Element Geochemistry. Acta Petrologica Sinica, 23(4): 793-804(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB200704011.htm [71] Zhang, G.S., Wen, H.J., Hu, R.Z., et al., 2007. Geochemistry of Late Mesozoic Mafic Dykes in Western Fujian Province of China: Sr-Nd Isotope and Trace Element Constraints. Chinese Journal of Geochemistry, 26(2): 143-156. https://doi.org/10.1007/s11631-007-0143-2 [72] Zhang, J.H., Wang, H.C., Guo, J.H., et al., 2020. Metamorphic Mafic Dykes from Tianzhen-Huai'an Area: Transformation Criteria of the Late Paleoproterozoic. Earth Sciences, 45(9): 3239-3257 (in Chinese with English abstract). [73] Zhao, J.H., Hu, R.Z., Liu, S., 2004. Geochemistry, Petrogenesis, and Tectonic Significance of Mesozoic Mafic Dikes, Fujian Province, Southeastern China. International Geology Review, 46(6): 542-557. https://doi.org/10.2747/0020-6814.46.6.542 [74] Zhao, J.H., Hu, R.Z., Zhou, M.F., et al., 2007. Elemental and Sr-Nd-Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 144(6): 937-952. doi: 10.1017/S0016756807003834 [75] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 [76] Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 [77] Zou, H.B., Zindler, A., Xu, X.S., et al., 2000. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 171(1-2): 33-47. https://doi.org/10.1016/s0009-2541(00)00243-6 [78] 曹建劲, 胡瑞忠, 谢桂青, 等, 2009. 广东沿海地区基性岩脉地球化学及成因. 岩石学报, 25(4): 984-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200904023.htm [79] 陈新跃, 王岳军, 韩会平, 等, 2014. 琼西南三叠纪基性岩脉年代学、地球化学特征及其构造意义. 吉林大学学报(地球科学版), 44(3): 835-847. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201403010.htm [80] 崔圆圆, 赵志丹, 蒋婷, 等, 2013. 赣南早古生代晚期花岗岩类年代学、地球化学及岩石成因. 岩石学报, 29(11): 4011-4024. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311030.htm [81] 丁聪, 赵志丹, 杨金豹, 等, 2015. 福建石狮白垩纪花岗岩与中基性脉岩的年代学与地球化学. 岩石学报, 31(5): 1433-1447. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505018.htm [82] 董传万, 闫强, 张登荣, 等, 2010. 浙闽沿海晚中生代伸展构造的岩石学标志: 东极岛镁铁质岩墙群. 岩石学报, 26(4): 1195-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004018.htm [83] 董传万, 周超, 顾虹艳, 等, 2011. 福建湄州岛镁铁质岩墙群与寄主花岗岩的形成时差、地球化学及成因. 吉林大学学报(地球科学), 41(3): 735-744. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201103015.htm [84] 黄泉祯, 庄建民, 郑声俭, 等, 1998. 福建省地质图(1: 500 000)说明书. 福州: 福建省地图出版社, 附图, 1-4. [85] 孔兴功, 2001. 赣南燕山早期火山岩地球化学成因及与铀成矿关系(博士学位论文). 南京: 南京大学, 7-18. [86] 雷祝梁, 曾罡, 王小均, 等, 2019. 中国东南部晚中生代基性岩脉地幔源区的岩性演化历史. 地球科学, 44(4): 1159-1170. doi: 10.3799/dqkx.2019.021 [87] 李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004 [88] 梁细荣, 韦刚健, 李献华, 等, 2003. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值. 地球化学, 32(1): 92-97. doi: 10.3969/j.issn.1672-9250.2003.01.016 [89] 秦社彩, 范蔚茗, 郭锋, 等, 2010. 浙闽晚中生代辉绿岩脉的岩石成因: 年代学与地球化学制约. 岩石学报, 26(11): 3295-3306. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011012.htm [90] 孙书勤, 汪云亮, 张成江, 2003. 玄武岩类岩石大地构造环境的Th、Nb、Zr判别. 地质论评, 49(1): 40-47. doi: 10.3321/j.issn:0371-5736.2003.01.006 [91] 唐立梅, 陈汉林, 董传万, 等, 2010. 中国东南部晚中生代构造伸展作用: 来自海南岛基性岩墙群的证据. 岩石学报, 26(4): 1204-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004019.htm [92] 徐先兵, 张岳桥, 贾东, 等, 2009. 华南早中生代大地构造过程. 中国地质, 36(3): 573-593. doi: 10.3969/j.issn.1000-3657.2009.03.007 [93] 杨金豹, 2015. 浙闽地区新生代玄武岩和地幔捕虏体岩石学与地球化学(博士学位论文). 北京: 中国地质大学. [94] 章邦桐, 陈培荣, 凌洪飞, 等, 2004. 赣南中侏罗世流纹岩地球化学及成因研究: 上地壳成因的微量元素和Pb-Nd-Sr同位素地球化学制约. 岩石学报, 20(3): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403015.htm [95] 张贵山, 温汉捷, 胡瑞忠, 等, 2007. 闽东南基性岩脉成因及动力学背景研究: Sr-Nd同位素、元素地球化学. 岩石学报, 23(4): 793-804. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704011.htm [96] 张家辉, 王惠初, 郭敬辉, 等, 2020. 天镇-怀安地区变质基性岩墙群: 华北克拉通古元古代末期碰撞-伸展构造体制转换标志. 地球科学, 45(9): 3239-3257. doi: 10.3799/dqkx.2020.125 -
dqkxzx-46-12-4230-附表3.xlsx dqkxzx-46-12-4230-附表1.xlsx dqkxzx-46-12-4230-附表2.xlsx