• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于边缘提取算法的岩层三角面产状半自动提取

    林楠 徐遥辰 高博文 翁旭华 陈宁华

    林楠, 徐遥辰, 高博文, 翁旭华, 陈宁华, 2021. 基于边缘提取算法的岩层三角面产状半自动提取. 地球科学, 46(10): 3753-3763. doi: 10.3799/dqkx.2021.060
    引用本文: 林楠, 徐遥辰, 高博文, 翁旭华, 陈宁华, 2021. 基于边缘提取算法的岩层三角面产状半自动提取. 地球科学, 46(10): 3753-3763. doi: 10.3799/dqkx.2021.060
    Lin Nan, Xu Yaochen, Gao Bowen, Weng Xuhua, Chen Ninghua, 2021. Semi-Automatic Extraction of Triangular Facet Attitude Based on Edge Extraction Algorithm. Earth Science, 46(10): 3753-3763. doi: 10.3799/dqkx.2021.060
    Citation: Lin Nan, Xu Yaochen, Gao Bowen, Weng Xuhua, Chen Ninghua, 2021. Semi-Automatic Extraction of Triangular Facet Attitude Based on Edge Extraction Algorithm. Earth Science, 46(10): 3753-3763. doi: 10.3799/dqkx.2021.060

    基于边缘提取算法的岩层三角面产状半自动提取

    doi: 10.3799/dqkx.2021.060
    基金项目: 

    国家自然科学基金项目 41372205

    详细信息
      作者简介:

      林楠(1996-), 男, 硕士研究生, 主要从事遥感地质研究.ORCID: 0000-0003-0145-4576.E-mail: 21838012@zju.edu.cn

      通讯作者:

      陈宁华, ORCID: 0000-0001-9401-9711.E-mail: geo316@zju.edu.cn

    • 中图分类号: P627

    Semi-Automatic Extraction of Triangular Facet Attitude Based on Edge Extraction Algorithm

    • 摘要: 岩层三角面的准确识别和快速检测是利用遥感技术获取地表地层产状信息的有效途径.提出了利用高分辨率卫星遥感立体像对,通过自动迭代调整高斯分布模型方差的Canny边缘检测算法实现岩层三角面半自动检测和地层产状快速提取方法.以南天山吐格尔明背斜为实验区,使用Worldview-2立体像对构建数字高程模型和0.5 m分辨率的数字正射影像,利用岩层三角面检测算法提取实验区的岩层三角面和产状.结果表明,提出的方法客观高效,提取准确率达到90.2%,能够准确反映构造趋势的变化,为复杂构造带的地表建模和构造分析提供依据.

       

    • 图  1  基于边缘检测算法和高分辨率立体像对的地层三角面产状提取方法总流程

      Fig.  1.  The flow chart of facet attitude extraction of stratigraphic triangle based on edge extraction algorithm and high-resolution remote sensing stereo pair

      图  2  不同高斯分布模型方差σ对边缘检测的影响

      红色线条表示边缘

      Fig.  2.  Influence of different Gaussian distribution model variances σ on edge detection

      图  3  自动迭代调整σ流程图

      Fig.  3.  Flow chart of automatic iterative adjustment of σ

      图  4  研究区概况

      a. 研究区地质背景,红色方框为图 4b的研究区位置;b. 研究区影像和本文方法提取的产状标注,红星位置为图 4c;c. Worldview-2影像上的三角面示意图

      Fig.  4.  Overview of the study area

      图  5  地层三角面产状提取实例(位于图 4b红星区域)

      a. 地层三角面边缘提取三维视图;b. 边缘提取展示窗口

      Fig.  5.  An example of the attitude extraction, the triangular facet located in the red star in Fig. 4b

      图  6  平面拟合实例

      a.基于提取三维坐标点集拟合产状面;b.数据点与拟合平面的高程差分布直方图

      Fig.  6.  Plane fitting example

      图  7  研究区典型三角面

      Fig.  7.  The typical triangular facet of the study area

      图  8  人工解译产状和拟合产状的极射赤平投影密度图

      Fig.  8.  Stereographic comparisons of pole-to-plane of manually extracted attitude and semi-automatic extraced attitude

      图  9  人工解译产状-拟合产状对应图

      倾向图虚线代表±20°误差,倾角图虚线代表±10°误差,符号代表该点提取线条的决定系数

      Fig.  9.  Manual interpreted attitude versus fitted plane attitude

      图  10  近水平岩层面边缘点的高程及与拟合平面的高程差

      Fig.  10.  Elevation of the edge points of the rock triangular facet, and the elevation difference with the fitted plane

      表  1  立体像对元数据信息表

      Table  1.   The metadata information of the stereo-imagery

      文件名 行数 列数 成像时间 太阳高度角 太阳方位角 传感器高度角 传感器方位角 云量
      东左像 18OCT01053450 24 568 15 948 2019-10-10T11:42:13 44.1° 167.1° 67.5° 355° 0
      东右像 18OCT01053617 24 568 15 948 2019-10-10T11:40:24 44.2° 167.6° 63.6° 211.8° 0
      西左像 18SEP18051308 28 360 25 836 2019-10-10T11:42:51 47.4° 156° 58.2° 71.4° 0
      西右像 18SEP18051322 28 360 25 836 2019-10-10T11:40:57 47.5° 156.5° 55.2° 140.4° 0
      下载: 导出CSV
    • [1] Berger, Z., Williams, T.H.L., Anderson, D.W., 1992. Geological Stereo Mapping of Geologic Structures with SPOT Satellite Data. Bull. Am. Assoc. Petrol. Geol., 76(1): 101-120. http://aapgbull.geoscienceworld.org/content/76/1/101
      [2] Bilotti, F., Shaw, J.H., Brennan, P.A., 2000. Quantitative Structural Analysis with Stereoscopic Remote Sensing Imagery. AAPG Bulletin, 84(6): 727-740. https://doi.org/10.1306/a96733d8-1738-11d7-8645000102c1865d
      [3] Canny, J., 1986. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6): 679-698. http://www.researchgate.net/publication/301840781_A_computational_approach_to_edge_detection_IEEE_Transactions_on_Pattern_Analysis_and_Machine_Intelligence
      [4] Chen, N.H., Ni, N.N., Kapp, P., et al., 2015. Structural Analysis of the Hero Range in the Qaidam Basin, Northwestern China, Using Integrated UAV, Terrestrial LiDAR, Landsat 8, and 3-D Seismic Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(9): 4581-4591. https://doi.org/10.1109/JSTARS.2015.2440171
      [5] Chen, N.H., Wang, X., Yang, S.F., 2007. Quantitative Extraction of Shallow Stratum Information Based on CORONA Imagery. Journal of Zhejiang University (Engineering Science), 41(4): 662-667(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZDZC200704026.htm
      [6] Cracknell, M. J., Roach, M., Green, D., et al., 2013. Estimating Bedding Orientation from High-Resolution Digital Elevation Models. IEEE Transactions on Geoscience and Remote Sensing, 51(5): 2949-2959. https://doi.org/10.1109/TGRS.2012.2217502
      [7] Ding, H., Yao, A.Q., 2012. DEM Generation and Analysis Using IKONOS Stereo Pairs. Science of Surveying and Mapping, 37(1): 179-181(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-CHKD201201062.htm
      [8] Foroutan, M., Zimbelman, J.R., 2017. Semi-Automatic Mapping of Linear-Trending Bedforms Using 'Self-Organizing Maps' Algorithm. Geomorphology, 293: 156-166. https://doi.org/10.1016/j.geomorph.2017.05.016
      [9] Guo, Q.Q., Li, S.L., Liu, Z.M., 2016. Platform of Online Interpretation and Attitude Measurement for Faults Using High Resolution Remote Sensing Image. Remote Sensing for Land & Resources, 28(1): 190-196(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GTYG201601029.htm
      [10] He, D.F., Yuan, H., Li, D., et al., 2011. Chronology, Geochemistry and Tectonic Setting of Granites at the Core of Tugerming Anticline, Tarim Basin: Indications of Paleozoic Extensional and Compressional Cycle at the Northern Margin of Tarim Continental Block. Acta Petrologica Sinica, 27(1): 133-146(in Chinese with English abstract). http://www.oalib.com/paper/1475929
      [11] Jin, M.S., Wu, J.L., Chen, L., et al., 2015. Application of High-Resolution Remote Sensing Data Combined with 3D Approach Geological Investigation in the Eastern Kunlun Mountain Area. Mineral Exploration, 6(5): 609-614(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSJS201505016.htm
      [12] Liu, H.G., Ran, Y.K., Li, A., et al., 2011. Attitude Extraction of Shallow Stratum Based on P5 Stereo Images and GeoEye-1 Image. Seismology and Geology, 33(4): 951-962(in Chinese with English abstract). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2476369
      [13] Liu, C.J., Ding, L.Q., Sun, D.Y., 2011. Automatic Fuzzy Clustering Analysis and Geometric Information Acquisition of Rock Mass Discontinuities Based on Laser Point Cloud Data. Chinese Journal of Rock Mechanics and Engineering, 30(2): 358-364(in Chinese with English abstract). http://www.researchgate.net/publication/289214117_Automatic_fuzzy_clustering_analysis_and_geometric_information_acquisition_of_rock_mass_discontinuities_based_on_laser_point_cloud_data
      [14] Liu, X., Lü, X.B., Wu, C.M., et al., 2020. Topographic Correction Method for High Spatial Resolution Remote Sensing Data in Mountainous Area. Earth Science, 45(2): 645-662(in Chinese with English abstract).
      [15] Philipson, W.R., 1960. Manual of Photographic Interpretation. American Society for Photogrammetry, Washington D.C. .
      [16] Sang, X.J., 2018. Application of UAV and Deep Learning in Geological Survey: A Case Study of Xingcheng City in Liaoning and Beishan Area in Gansu Province(Dissertation). Jilin University, Changchun(in Chinese with English abstract).
      [17] Song, B.W., Zhang, K.X., Xu, Y.D., et al., 2020. Paleogene Tectonic-Stratigraphic Realms and Sedimentary Sequence in China. Earth Science, 45(12): 4352-4369(in Chinese with English abstract). http://www.researchgate.net/publication/352838064_Neogene_tectonic-stratigraphic_realms_and_sedimentary_sequence_in_China
      [18] Vasuki, Y., Holden, E.J., Kovesi, P., et al., 2013. A Geological Structure Mapping Tool Using Photogrammetric Data. ASEG Extended Abstracts, 1-4. https://doi.org/10.1071/ASEG2013ab144
      [19] Wang, L, . 2016. DEM Extracted by Stereo Images of High Resolution Satellite and Accuracy Analysis in Plateau(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      [20] Wang, S.Y., Ai, M., Wu, C.Y., et al., 2018. Application of DEM Generation Technology from High Resolution Satellite Image in Quantitative Active Tectonics Study: A Case Study of Fault Scarps in the Southern Margin of Kumishi Basin. Seismology and Geology, 40(5): 999-1017(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_seismology-geology_thesis/0201270242403.html
      [21] Yang, H.B., Yang, X.P., Huang, X.N., et al., 2016. Data Comparative Analysis between SFM Data and DGPS Data: A Case Study from Fault Scarp in the East Bank of Hongshuiba River, Northern Margin of the Qilian Shan. Seismology and Geology, 38(4): 1030-1046(in Chinese with English abstract). http://www.researchgate.net/publication/313597914_Data_comparative_analysis_between_SfM_data_and_DGPS_data_A_case_study_from_fault_scarp_in_the_east_bank_of_Hongshuiba_River_northern_margin_of_the_Qilian_Shan
      [22] Zhu, L.P., 1994. Geology Remote Sensing. Geological Publishing House, Beijing(in Chinese).
      [23] 陈宁华, 汪新, 杨树锋, 2007. 基于CORONA影像的浅层地层信息定量提取. 浙江大学学报(工学版), 41(4): 662-667. doi: 10.3785/j.issn.1008-973X.2007.04.027
      [24] 丁辉, 姚安强, 2012. 利用IKONOS立体像对提取DEM精度的实验. 测绘科学, 37(1): 179-181. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201201062.htm
      [25] 郭啟倩, 李盛乐, 刘珠妹, 2016. 断层高分辨率遥感在线解译及产状测量平台. 国土资源遥感, 28(1): 190-196. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201601029.htm
      [26] 何登发, 袁航, 李涤, 等, 2011. 吐格尔明背斜核部花岗岩的年代学、地球化学与构造环境及其对塔里木地块北缘古生代伸展聚敛旋回的揭示. 岩石学报, 27(1): 133-146. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101009.htm
      [27] 金谋顺, 吴君丽, 陈玲, 等, 2015. 高分遥感数据结合三维技术在东昆仑地区地质调查中的应用. 矿产勘查, 6(5): 609-614. doi: 10.3969/j.issn.1674-7801.2015.05.016
      [28] 刘昌军, 丁留谦, 孙东亚, 2011. 基于激光点云数据的岩体结构面全自动模糊群聚分析及几何信息获取. 岩石力学与工程学报, 30(2): 358-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102021.htm
      [29] 刘华国, 冉勇康, 李安, 等, 2011. 基于P5像对与GeoEye-1影像的近地表地层产状的提取. 地震地质, 33(4): 951-962. doi: 10.3969/j.issn.0253-4967.2011.04.018
      [30] 柳潇, 吕新彪, 吴春明, 等, 2020. 面向高空间分辨率遥感影像的山区地形校正方法. 地球科学, 45(2): 645-662. doi: 10.3799/dqkx.2019.012
      [31] 桑学佳, 2018. 无人机及深度学习在地质调查中的应用(博士学位论文). 长春: 吉林大学.
      [32] 宋博文, 张克信, 徐亚东, 等, 2020. 中国古近纪构造-地层区划及地层格架. 地球科学, 45(12): 4352-4369. doi: 10.3799/dqkx.2020.122
      [33] 王蕾, 2016. 高原地区高分辨率卫星立体像对提取DEM及精度分析(硕士学位论文). 成都: 成都理工大学.
      [34] 汪思妤, 艾明, 吴传勇, 等, 2018. 高分辨率卫星影像提取DEM技术在活动构造定量研究中的应用: 以库米什盆地南缘断裂陡坎为例. 地震地质, 40(5): 999-1017. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201805005.htm
      [35] 杨海波, 杨晓平, 黄雄南, 等, 2016. 移动摄影测量数据与差分GPS数据的对比分析: 以祁连山北麓洪水坝河东岸断层陡坎为例. 地震地质, 38(4): 1030-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201604018.htm
      [36] 朱亮璞, 1994. 遥感地质学. 北京: 地质出版社.
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  554
    • HTML全文浏览量:  174
    • PDF下载量:  24
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-03-30
    • 网络出版日期:  2021-11-03
    • 刊出日期:  2021-11-03

    目录

      /

      返回文章
      返回