Semi-Automatic Extraction of Triangular Facet Attitude Based on Edge Extraction Algorithm
-
摘要: 岩层三角面的准确识别和快速检测是利用遥感技术获取地表地层产状信息的有效途径.提出了利用高分辨率卫星遥感立体像对,通过自动迭代调整高斯分布模型方差的Canny边缘检测算法实现岩层三角面半自动检测和地层产状快速提取方法.以南天山吐格尔明背斜为实验区,使用Worldview-2立体像对构建数字高程模型和0.5 m分辨率的数字正射影像,利用岩层三角面检测算法提取实验区的岩层三角面和产状.结果表明,提出的方法客观高效,提取准确率达到90.2%,能够准确反映构造趋势的变化,为复杂构造带的地表建模和构造分析提供依据.Abstract: Accurate identification and rapid detection of triangular facet is an effective way to use remote sensing technology to obtain stratum attitude information. In this paper, it proposes a method for semi-automatic detection of triangular facet and rapid extraction of bedding attitude. Using high-resolution satellite remote sensing stero image pairs, the method is based on Canny edge detection algorithm with an automatic iterative adjustment of Gaussian distribution model variance. Taking Tugerming anticline in the South Tianshan Mountains as the experimental area, a digital elevation model and digital orthophoto maps with the resolution of 0.5 m were constructed using Worldview-2 stereo pairs, and 81 triangular facets in the experimental area were extracted. The result shows that the method proposed in this paper is objective and efficient, and the extraction accuracy rate reaches 90.2%. The extracted attitude accurately reflect the changes in structure, providing a basis for surface modeling and structural analysis of complex structural belts.
-
表 1 立体像对元数据信息表
Table 1. The metadata information of the stereo-imagery
文件名 行数 列数 成像时间 太阳高度角 太阳方位角 传感器高度角 传感器方位角 云量 东左像 18OCT01053450 24 568 15 948 2019-10-10T11:42:13 44.1° 167.1° 67.5° 355° 0 东右像 18OCT01053617 24 568 15 948 2019-10-10T11:40:24 44.2° 167.6° 63.6° 211.8° 0 西左像 18SEP18051308 28 360 25 836 2019-10-10T11:42:51 47.4° 156° 58.2° 71.4° 0 西右像 18SEP18051322 28 360 25 836 2019-10-10T11:40:57 47.5° 156.5° 55.2° 140.4° 0 -
[1] Berger, Z., Williams, T.H.L., Anderson, D.W., 1992. Geological Stereo Mapping of Geologic Structures with SPOT Satellite Data. Bull. Am. Assoc. Petrol. Geol., 76(1): 101-120. http://aapgbull.geoscienceworld.org/content/76/1/101 [2] Bilotti, F., Shaw, J.H., Brennan, P.A., 2000. Quantitative Structural Analysis with Stereoscopic Remote Sensing Imagery. AAPG Bulletin, 84(6): 727-740. https://doi.org/10.1306/a96733d8-1738-11d7-8645000102c1865d [3] Canny, J., 1986. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6): 679-698. http://www.researchgate.net/publication/301840781_A_computational_approach_to_edge_detection_IEEE_Transactions_on_Pattern_Analysis_and_Machine_Intelligence [4] Chen, N.H., Ni, N.N., Kapp, P., et al., 2015. Structural Analysis of the Hero Range in the Qaidam Basin, Northwestern China, Using Integrated UAV, Terrestrial LiDAR, Landsat 8, and 3-D Seismic Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(9): 4581-4591. https://doi.org/10.1109/JSTARS.2015.2440171 [5] Chen, N.H., Wang, X., Yang, S.F., 2007. Quantitative Extraction of Shallow Stratum Information Based on CORONA Imagery. Journal of Zhejiang University (Engineering Science), 41(4): 662-667(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZDZC200704026.htm [6] Cracknell, M. J., Roach, M., Green, D., et al., 2013. Estimating Bedding Orientation from High-Resolution Digital Elevation Models. IEEE Transactions on Geoscience and Remote Sensing, 51(5): 2949-2959. https://doi.org/10.1109/TGRS.2012.2217502 [7] Ding, H., Yao, A.Q., 2012. DEM Generation and Analysis Using IKONOS Stereo Pairs. Science of Surveying and Mapping, 37(1): 179-181(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-CHKD201201062.htm [8] Foroutan, M., Zimbelman, J.R., 2017. Semi-Automatic Mapping of Linear-Trending Bedforms Using 'Self-Organizing Maps' Algorithm. Geomorphology, 293: 156-166. https://doi.org/10.1016/j.geomorph.2017.05.016 [9] Guo, Q.Q., Li, S.L., Liu, Z.M., 2016. Platform of Online Interpretation and Attitude Measurement for Faults Using High Resolution Remote Sensing Image. Remote Sensing for Land & Resources, 28(1): 190-196(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GTYG201601029.htm [10] He, D.F., Yuan, H., Li, D., et al., 2011. Chronology, Geochemistry and Tectonic Setting of Granites at the Core of Tugerming Anticline, Tarim Basin: Indications of Paleozoic Extensional and Compressional Cycle at the Northern Margin of Tarim Continental Block. Acta Petrologica Sinica, 27(1): 133-146(in Chinese with English abstract). http://www.oalib.com/paper/1475929 [11] Jin, M.S., Wu, J.L., Chen, L., et al., 2015. Application of High-Resolution Remote Sensing Data Combined with 3D Approach Geological Investigation in the Eastern Kunlun Mountain Area. Mineral Exploration, 6(5): 609-614(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSJS201505016.htm [12] Liu, H.G., Ran, Y.K., Li, A., et al., 2011. Attitude Extraction of Shallow Stratum Based on P5 Stereo Images and GeoEye-1 Image. Seismology and Geology, 33(4): 951-962(in Chinese with English abstract). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2476369 [13] Liu, C.J., Ding, L.Q., Sun, D.Y., 2011. Automatic Fuzzy Clustering Analysis and Geometric Information Acquisition of Rock Mass Discontinuities Based on Laser Point Cloud Data. Chinese Journal of Rock Mechanics and Engineering, 30(2): 358-364(in Chinese with English abstract). http://www.researchgate.net/publication/289214117_Automatic_fuzzy_clustering_analysis_and_geometric_information_acquisition_of_rock_mass_discontinuities_based_on_laser_point_cloud_data [14] Liu, X., Lü, X.B., Wu, C.M., et al., 2020. Topographic Correction Method for High Spatial Resolution Remote Sensing Data in Mountainous Area. Earth Science, 45(2): 645-662(in Chinese with English abstract). [15] Philipson, W.R., 1960. Manual of Photographic Interpretation. American Society for Photogrammetry, Washington D.C. . [16] Sang, X.J., 2018. Application of UAV and Deep Learning in Geological Survey: A Case Study of Xingcheng City in Liaoning and Beishan Area in Gansu Province(Dissertation). Jilin University, Changchun(in Chinese with English abstract). [17] Song, B.W., Zhang, K.X., Xu, Y.D., et al., 2020. Paleogene Tectonic-Stratigraphic Realms and Sedimentary Sequence in China. Earth Science, 45(12): 4352-4369(in Chinese with English abstract). http://www.researchgate.net/publication/352838064_Neogene_tectonic-stratigraphic_realms_and_sedimentary_sequence_in_China [18] Vasuki, Y., Holden, E.J., Kovesi, P., et al., 2013. A Geological Structure Mapping Tool Using Photogrammetric Data. ASEG Extended Abstracts, 1-4. https://doi.org/10.1071/ASEG2013ab144 [19] Wang, L, . 2016. DEM Extracted by Stereo Images of High Resolution Satellite and Accuracy Analysis in Plateau(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract). [20] Wang, S.Y., Ai, M., Wu, C.Y., et al., 2018. Application of DEM Generation Technology from High Resolution Satellite Image in Quantitative Active Tectonics Study: A Case Study of Fault Scarps in the Southern Margin of Kumishi Basin. Seismology and Geology, 40(5): 999-1017(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_seismology-geology_thesis/0201270242403.html [21] Yang, H.B., Yang, X.P., Huang, X.N., et al., 2016. Data Comparative Analysis between SFM Data and DGPS Data: A Case Study from Fault Scarp in the East Bank of Hongshuiba River, Northern Margin of the Qilian Shan. Seismology and Geology, 38(4): 1030-1046(in Chinese with English abstract). http://www.researchgate.net/publication/313597914_Data_comparative_analysis_between_SfM_data_and_DGPS_data_A_case_study_from_fault_scarp_in_the_east_bank_of_Hongshuiba_River_northern_margin_of_the_Qilian_Shan [22] Zhu, L.P., 1994. Geology Remote Sensing. Geological Publishing House, Beijing(in Chinese). [23] 陈宁华, 汪新, 杨树锋, 2007. 基于CORONA影像的浅层地层信息定量提取. 浙江大学学报(工学版), 41(4): 662-667. doi: 10.3785/j.issn.1008-973X.2007.04.027 [24] 丁辉, 姚安强, 2012. 利用IKONOS立体像对提取DEM精度的实验. 测绘科学, 37(1): 179-181. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201201062.htm [25] 郭啟倩, 李盛乐, 刘珠妹, 2016. 断层高分辨率遥感在线解译及产状测量平台. 国土资源遥感, 28(1): 190-196. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201601029.htm [26] 何登发, 袁航, 李涤, 等, 2011. 吐格尔明背斜核部花岗岩的年代学、地球化学与构造环境及其对塔里木地块北缘古生代伸展聚敛旋回的揭示. 岩石学报, 27(1): 133-146. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101009.htm [27] 金谋顺, 吴君丽, 陈玲, 等, 2015. 高分遥感数据结合三维技术在东昆仑地区地质调查中的应用. 矿产勘查, 6(5): 609-614. doi: 10.3969/j.issn.1674-7801.2015.05.016 [28] 刘昌军, 丁留谦, 孙东亚, 2011. 基于激光点云数据的岩体结构面全自动模糊群聚分析及几何信息获取. 岩石力学与工程学报, 30(2): 358-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102021.htm [29] 刘华国, 冉勇康, 李安, 等, 2011. 基于P5像对与GeoEye-1影像的近地表地层产状的提取. 地震地质, 33(4): 951-962. doi: 10.3969/j.issn.0253-4967.2011.04.018 [30] 柳潇, 吕新彪, 吴春明, 等, 2020. 面向高空间分辨率遥感影像的山区地形校正方法. 地球科学, 45(2): 645-662. doi: 10.3799/dqkx.2019.012 [31] 桑学佳, 2018. 无人机及深度学习在地质调查中的应用(博士学位论文). 长春: 吉林大学. [32] 宋博文, 张克信, 徐亚东, 等, 2020. 中国古近纪构造-地层区划及地层格架. 地球科学, 45(12): 4352-4369. doi: 10.3799/dqkx.2020.122 [33] 王蕾, 2016. 高原地区高分辨率卫星立体像对提取DEM及精度分析(硕士学位论文). 成都: 成都理工大学. [34] 汪思妤, 艾明, 吴传勇, 等, 2018. 高分辨率卫星影像提取DEM技术在活动构造定量研究中的应用: 以库米什盆地南缘断裂陡坎为例. 地震地质, 40(5): 999-1017. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201805005.htm [35] 杨海波, 杨晓平, 黄雄南, 等, 2016. 移动摄影测量数据与差分GPS数据的对比分析: 以祁连山北麓洪水坝河东岸断层陡坎为例. 地震地质, 38(4): 1030-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201604018.htm [36] 朱亮璞, 1994. 遥感地质学. 北京: 地质出版社.