• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    冀东秦家峪中元古界高于庄组锰矿成因:来自矿物学和地球化学的制约

    靳松 马鹏飞 郭华 余文超 许灵通 林茜

    靳松, 马鹏飞, 郭华, 余文超, 许灵通, 林茜, 2022. 冀东秦家峪中元古界高于庄组锰矿成因:来自矿物学和地球化学的制约. 地球科学, 47(1): 277-289. doi: 10.3799/dqkx.2021.055
    引用本文: 靳松, 马鹏飞, 郭华, 余文超, 许灵通, 林茜, 2022. 冀东秦家峪中元古界高于庄组锰矿成因:来自矿物学和地球化学的制约. 地球科学, 47(1): 277-289. doi: 10.3799/dqkx.2021.055
    Jin Song, Ma Pengfei, Guo Hua, Yu Wenchao, Xu Lingtong, Lin Qian, 2022. Genesis of Mesoproterozoic Gaoyuzhuang Formation Manganese Ore in Qinjiayu, East Hebei: Constraints from Mineralogical and Geochemical Evidences. Earth Science, 47(1): 277-289. doi: 10.3799/dqkx.2021.055
    Citation: Jin Song, Ma Pengfei, Guo Hua, Yu Wenchao, Xu Lingtong, Lin Qian, 2022. Genesis of Mesoproterozoic Gaoyuzhuang Formation Manganese Ore in Qinjiayu, East Hebei: Constraints from Mineralogical and Geochemical Evidences. Earth Science, 47(1): 277-289. doi: 10.3799/dqkx.2021.055

    冀东秦家峪中元古界高于庄组锰矿成因:来自矿物学和地球化学的制约

    doi: 10.3799/dqkx.2021.055
    基金项目: 

    国家自然科学基金项目 41402091

    河北省地矿局博士后科研工作站项目 454-0602-YBN-Z9E4

    河北省高层次人才工程培养经费资助项目 B2020005007

    河北省高层次人才工程培养经费资助项目 A2016002031

    河北省自然科学基金项目 D2021334001

    详细信息
      作者简介:

      靳松(1982-), 男, 高级工程师, 博士, 主要从事岩石地球化学研究.ORCID: 0000-0002-3717-830X.E-mail: js521@163.com

      通讯作者:

      郭华, ORCID: 0000-0002-7291-8991.E-mail: hguo@cug.edu.cn

    • 中图分类号: P611

    Genesis of Mesoproterozoic Gaoyuzhuang Formation Manganese Ore in Qinjiayu, East Hebei: Constraints from Mineralogical and Geochemical Evidences

    • 摘要:

      冀东秦家峪锰矿赋存于中元古界蓟县系高于庄组二段底部含锰岩系内,其成因尚不明确. 以秦家峪锰矿ZK58-2钻孔样品为研究对象,通过显微薄片观察、电子探针分析及全岩地球化学分析等方法,探讨了高于庄组锰矿的锰质来源和沉积环境对成矿的贡献. 显微薄片观察、电子探针分析表明,原生矿带中含锰矿物主要为菱锰矿、铁镁菱锰矿、钙菱锰矿、锰方解石等含锰碳酸盐矿物. 主量元素分析显示,相对于底板样品,锰矿层样品(Mn>8%)的TiO2、SiO2、Al2O3、K2O、Na2O含量较低,Mn含量与Al2O3呈负相关. 锰矿层样品和底板样品微量元素相对于上地壳(UCC)未表现出特别富集的特征,富集系数显示仅Th、U轻微富集. Th/U及自生Th/U比值具有相似的地层变化趋势,与较低的Fe/Mn比值共同指示沉积水体以次氧化环境为主. UCC标准化的稀土元素配分曲线较为平坦,不存在显著的Ce异常(Ce/Ce*=1.00±0.02,n=39),具有较低的Y/Ho比值. 初始87Sr/86Sr比值介于0.713 383~0.725 378之间,平均值为0.720 180,与Al2O3含量呈负相关. 秦家峪锰矿矿物学及地球化学特征表明,高于庄组含锰岩系的锰质来源于热液与陆源风化双重输入,其与裂谷盆地演化、古海洋氧化以及海平面变化等多种因素共同制约着高于庄组锰矿的形成.

       

    • 图  1  燕辽坳拉槽高于庄期岩相古地理图

      Fig.  1.  Lithofacies paleogeographic map of the northern Yanliao aulacogen in the Gaoyuzhuang period

      图  2  秦家峪ZK58-2钻孔岩性柱状图

      Fig.  2.  Lithological column of drilling core ZK58-2 in Qinjiayu area, Qianxi County, Hebei Province

      图  3  ZK58-2钻孔岩石薄片照片(a~c)及电子探针背散射照片(d~f)

      Q. 石英;Rds.菱锰矿;Cbn.碳酸盐矿物;Py.黄铁矿;Kfs.钾长石

      Fig.  3.  Optical (a‒c) and BSE (d‒f) micrographs of drilling core ZK58-2

      图  4  ZK58-2钻孔样品碳酸盐矿物电子探针分析结果,(Mg+Fe)CO3-CaCO3-MnCO3三角图展示了碳酸盐岩矿物组成

      Fig.  4.  EMPA results of drilling core ZK58-2 carbonates minerals, (Mg+Fe)CO3-CaCO3-MnCO3 ternary diagram showing the component of carbonate minerals

      图  5  ZK58-2钻孔主量元素相关性二元图

      红色表示锰矿层样品,黑色表示底板样品

      Fig.  5.  Cross-plots of major elements of drilling core ZK58-2

      图  6  ZK58-2钻孔样品UCC标准化的微量元素蛛网图(a)及富集系数蛛网图(b)

      红色表示锰矿层样品,黑色表示底板样品

      Fig.  6.  UCC-normalized trace element distribution pattern(a)and enrichmemt factor distribution pattern (b)of drilling core ZK58-2 samples

      图  7  ZK58-2钻孔UCC标准化的稀土元素配分模式

      红色表示锰矿层样品,黑色表示底板样品

      Fig.  7.  UCC-normalized REE+Y distribution pattern of drilling core ZK58-2 samples

      图  8  ZK58-2钻孔Mn、总稀土含量、Ce/Ce*、Th/U比值、自生Th/U比值变化趋势

      红色表示锰矿层样品,黑色表示底板样品

      Fig.  8.  Mn, REE+Y, Ce/Ce*, Th/U ratio and authigenic Th/U ratio variation tendency of drilling core ZK58-2 samples

      图  9  ZK58-2钻孔锰矿层初始87Sr/86Sr比值与Al含量相关性

      Fig.  9.  Initial 87Sr/86Sr vs. Al diagram of drilling core ZK58-2 manganese ore samples

      表  1  秦家峪锰矿ZK58⁃2钻孔电子探针分析结果

      Table  1.   EMPA results of drilling core ZK58-2 in the Qinjiayu manganese ore deposit

      点号 1 2 4 5 6 7 9 12 13 14 15 16 17 20 21 25 28 30 31 33
      CaO 3.817 13.332 24.904 8.446 13.65 2.908 21.909 54.062 6.65 5.739 5.026 5.942 4.776 28.518 53.828 6.825 5.079 26.963 2.608 5.287
      MgO 12.822 8.749 4.466 3.991 6.754 13.014 10.374 0.021 2.322 2.522 2.845 1.957 3.575 9.809 0.019 1.603 7.208 5.612 3.798 2.504
      MnO 23.417 21.404 10.033 33.037 25.337 24.371 17.735 0.075 36.847 37.206 36.224 39.249 37.927 10.548 0.21 41.16 34.974 14.711 43.395 38.944
      FeO 6.727 4.025 14.502 2.657 3.200 7.223 3.839 0.153 9.715 9.140 9.787 6.559 7.249 8.084 0.294 3.457 8.768 5.612 3.614 6.331
      CO2 35.635 35.751 42.221 33.101 35.757 36.026 41.864 42.580 36.556 35.930 35.510 35.159 35.613 44.575 42.564 53.045 38.915 39.842 35.321 34.913
      总计 82.418 83.261 96.126 81.232 84.698 83.542 95.721 96.891 92.090 90.537 89.392 88.866 89.140 101.534 96.915 87.796 94.944 92.740 88.736 87.979
      CaCO3 8.4 29.3 46.3 20.0 30.0 6.3 41.1 99.6 14.3 12.5 11.1 13.3 10.5 50.2 99.2 15.4 10.2 53.1 5.8 11.9
      MgCO3 39.3 26.7 25.9 13.2 20.6 39.4 27.0 0.1 6.9 7.7 8.7 6.1 11.0 24.0 0.0 5.0 20.2 15.4 11.7 7.8
      MnCO3 40.8 37.1 21.3 61.9 43.9 42.0 26.3 0.1 62.5 64.2 63.3 69.2 66.1 14.7 0.3 73.5 55.7 22.9 76.2 69.2
      FeCO3 11.6 6.9 6.5 4.9 5.5 12.3 5.6 0.2 16.3 15.6 16.9 11.4 12.5 11.1 0.4 6.1 13.8 8.6 6.3 11.1
      注:CaCO3、MgCO3、MnCO3、FeCO3的单位为mol%,其他元素含量的单位为%.
      下载: 导出CSV
    • [1] Algeo, T. J., Tribovillard, N. . 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3-4): 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001
      [2] Banner, J. L. . 2004. Radiogenic Isotopes: Systematics and Applications to Earth Surface Processes and Chemical Stratigraphy. Earth-Science Reviews, 65(3-4): 141-194. https://doi.org/10.1016/s0012-8252(03)00086-2
      [3] Bau, M. . 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323-333. https://doi.org/10.1007/s004100050159
      [4] Bau, M., Schmidt, K., Koschinsky, A., et al. 2014. Discriminating between Different Genetic Types of Marine Ferro-Manganese Crusts and Nodules Based on Rare Earth Elements and Yttrium. Chemical Geology, 381: 1-9. https://doi.org/10.1016/j.chemgeo.2014.05.004
      [5] Dong, Z.G., Zhang, L.C., Wang, C.L., et al. 2020. Progress and Problems in Understanding Sedimentary Manganese Carbonate Metallogenesis. Mineral Deposits, 39(2): 237-255 (in Chinese with English abstract).
      [6] Du, Y.S., Zhou, Q., Yu, W.C., et al. 2015. Linking the Cryogenian Manganese Metallogenic Process in the Southeast Margin of Yangtze Block to Break-Up of Rodinia Supercontinent and Sturtian Glaciation. Geological Science and Technology Information, 34(6): 1-7 (in Chinese with English abstract).
      [7] Du, Y.S., Zhou, Q., Zhang, L.C., et al. 2020. Major Geological Events and Large-Scale Sedimentary Mineralization (Generation of the Preface). Journal of Palaeogeography (Chinese Edition), 22(5): 807-811 (in Chinese with English abstract).
      [8] Fang, H., Tang, D. J., Shi, X. Y., et al. 2020. Manganese-Rich Deposits in the Mesoproterozoic Gaoyuzhuang Formation (ca. 1.58 Ga), North China Platform: Genesis and Paleoenvironmental Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 559: 109966. https://doi.org/10.1016/j.palaeo.2020.109966
      [9] Guo, H., Du, Y.S., Huang, J.H., et al. 2010. Habitat Types and Palaeoenvironments of the Mesoproterozoic Gaoyuzhuang Formation in Pingquan, Hebei Province. Journal of Palaeogeography, 12(3): 269-280 (in Chinese with English abstract).
      [10] Jin, S., Guo, H., Yu, W.C., et al. 2020. Evolution of Yanliao Aulacogen in the Paleo-Mesoproterozoic and Its Control on Manganese Deposit. Journal of Palaeogeography (Chinese Edition), 22(5): 841-854 (in Chinese with English abstract).
      [11] Kusky, T., Li, J. H., Santosh, M. . 2007. The Paleoproterozoic North Hebei Orogen: North China Craton's Collisional Suture with the Columbia Supercontinent. Gondwana Research, 12(1-2): 4-28. https://doi.org/10.1016/j.gr.2006.11.012
      [12] Li, H.K., Zhu, S.X., Xiang, Z.Q., et al. 2010. Zircon U-Pb Dating on Tuff Bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further Constraints on the New Subdivision of the Mesoproterozoic Stratigraphy in the Northern North China Craton. Acta Petrologica Sinica, 26(7): 2131-2140 (in Chinese with English abstract).
      [13] Liu, Z.C., Zhou, Q., Yan, J.X., et al. 2019. Structure of Zunyi Rift Basin in Guizhou Province during the Permian and Its Controlling on Manganese Deposits. Journal of Palaeogeography (Chinese Edition), 21(3): 517-526 (in Chinese with English abstract).
      [14] Meng, Q. R., Wei, H. H., Qu, Y. Q., et al. 2011. Stratigraphic and Sedimentary Records of the Rift to Drift Evolution of the Northern North China Craton at the Paleo- to Mesoproterozoic Transition. Gondwana Research, 20(1): 205-218. https://doi.org/10.1016/j.gr.2010.12.010
      [15] Ning, W. B., Wang, J. P., Xiao, D., et al. 2019. Electron Probe Microanalysis of Monazite and Its Applications to U-Th-Pb Dating of Geological Samples. Journal of Earth Science, 30(5): 952-963. https://doi.org/10.1007/s12583-019-1020-8
      [16] Pan, J.G., Qu, Y.Q., Ma, R., et al. 2013. Sedimentary and Tectonic Evolution of the Meso-Neoproterozoic Strata in the Northern Margin of the North China Block. Geological Journal of China Universities, 19(1): 109-122 (in Chinese with English abstract).
      [17] Poulton, S. W., Canfield, D. E. . 2011. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History. Elements, 7(2): 107-112. https://doi.org/10.2113/gselements.7.2.107
      [18] Qiao, X.F., Wang, Y.B. . 2014. Discussions on the Lower Boundary Age of the Mesoproterozoic and Basin Tectonic Evolution of the Mesoproterozoic in North China Craton. Acta Geologica Sinica, 88(9): 1623-1637 (in Chinese with English abstract).
      [19] Richter, F. M., Rowley, D. B., DePaolo, D. J. . 1992. Sr Isotope Evolution of Seawater: The Role of Tectonics. Earth and Planetary Science Letters, 109(1-2): 11-23. https://doi.org/10.1016/0012-821x(92)90070-c
      [20] Rogers, J. J. W., Santosh, M. . 2009. Tectonics and Surface Effects of the Supercontinent Columbia. Gondwana Research, 15(3-4): 373-380. https://doi.org/10.1016/j.gr.2008.06.008
      [21] Roy, S. . 2006. Sedimentary Manganese Metallogenesis in Response to the Evolution of the Earth System. Earth-Science Reviews, 77(4): 273-305. https://doi.org/10.1016/j.earscirev.2006.03.004
      [22] Shang, M. H., Tang, D. J., Shi, X. Y., et al. 2019. A Pulse of Oxygen Increase in the Early Mesoproterozoic Ocean at ca. 1.57-1.56 Ga. Earth and Planetary Science Letters, 527: 115797. https://doi.org/10.1016/j.epsl.2019.115797
      [23] Tian, H., Zhang, J., Li, H.K., et al. 2015. Zircon LA-MC-ICPMS U-Pb Dating of Tuff from Mesoproterozoic Gaoyuzhuang Formation in Jixian County of North China and Its Geological Significance. Acta Geoscientica Sinica, 36(5): 647-658 (in Chinese with English abstract).
      [24] Tribovillard, N., Algeo, T. J., Lyons, T., et al. 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      [25] Vereshchagin, O. S., Perova, E. N., Brusnitsyn, A. I., et al. 2019. Ferro-Manganese Nodules from the Kara Sea: Mineralogy, Geochemistry and Genesis. Ore Geology Reviews, 106: 192-204. https://doi.org/10.1016/j.oregeorev.2019.01.023
      [26] Wan, Y.S., Xie, H.Q., Dong, C.Y., et al. 2020. Timing of Tectonothermal Events in Archean Basement of the North China Craton. Earth Science, 45(9): 3119-3160 (in Chinese with English abstract).
      [27] Wang, J. P., Li, X. W., Ning, W. B., et al. 2019a. Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin, 131(11-12): 1943-1964. https://doi.org/10.1130/b35138.1
      [28] Wang, P., Algeo, T. J., Zhou, Q., et al. 2019b. Large Accumulations of 34S-Enriched Pyrite in a Low-Sulfate Marine Basin: The Sturtian Nanhua Basin, South China. Precambrian Research, 335: 105504. https://doi.org/10.1016/j.precamres.2019.105504
      [29] Wang, K.M., Luo, S.S. . 2010. Geochemical Characteristics of Manganese-Bearing Sequences of Gaoyuzhuang Formation in the North Hebei Depression. Mineral Resources and Geology, 24(2): 187-192 (in Chinese with English abstract).
      [30] Wignall P.B., Twitchett R.J. . 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, 272(5265): 1155-1158. https://doi.org/10.1126/science.272.5265.1155
      [31] Xu, L.G. . 2020. Sedimentary Manganese Formation and Its Link with Paleo-Oceanic Environment. Mineral Deposits, 39(6): 959-973 (in Chinese with English abstract).
      [32] Yu, W. C., Algeo, T. J., Du, Y. S., et al. 2016a. Genesis of Cryogenian Datangpo Manganese Deposit: Hydrothermal Influence and Episodic Post-Glacial Ventilation of Nanhua Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 321-337. https://doi.org/10.1016/j.palaeo.2016.05.023
      [33] Yu, C. X., Virtasalo, J. J., Österholm, P., et al. 2016b. Manganese Accumulation and Solid-Phase Speciation in a 3.5 m Thick Mud Sequence from the Estuary of an Acidic and Mn-Rich Creek, Northern Baltic Sea. Chemical Geology, 437: 56-66. https://doi.org/10.1016/j.chemgeo.2016.05.016
      [34] Yu, W.C., Du, Y.S., Zhou, Q., et al. 2016. Provenance of Nanhuan Datangpo Formation Manganese Mn Deposit in Songtao Area, East Guizhou Province: Evidence from Sr Isotope. Earth Science, 41(7): 1110-1120 (in Chinese with English abstract).
      [35] Yu, W.C., Du, Y.S., Zhou, Q., et al. 2020. Coupling between Metallogenesis of the Cryogenian Datangpo-Type Manganese Deposit in South China and Major Geological Events. Journal of Palaeogeography (Chinese Edition), 22(5): 855-871 (in Chinese with English abstract).
      [36] Zhang, F.F., Yan, B., Guo, Y.L., et al. 2013. Precipitation Form of Manganese Ore Deposits in Gucheng, Hubei Province, and Its Paleoenvironment Implication. Acta Geologica Sinica, 87(2): 245-258 (in Chinese with English abstract).
      [37] Zhang, K., Zhu, X. K., Wood, R. A., et al. 2018. Oxygenation of the Mesoproterozoic Ocean and the Evolution of Complex Eukaryotes. Nature Geoscience, 11(5): 345-350. https://doi.org/10.1038/s41561-018-0111-y
      [38] Zhang, X.L., Wu, C.L., Zhou, Q., et al. 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644 (in Chinese with English abstract).
      [39] Zheng, Y., Anderson, R. F., van Geen, A., et al. 2000. Authigenic Molybdenum Formation in Marine Sediments: A Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64(24): 4165-4178. https://doi.org/10.1016/s0016-7037(00)00495-6
      [40] Zhu, S.X., Zhu, M.Y., Knoll, A. H., et al. 2016. Decimetre-Scale Multicellular Eukaryotes from the 1.56-Billion-Year-Old Gaoyuzhuang Formation in North China. Nature Communications, 7: 11500. https://doi.org/10.1038/ncomms11500
      [41] Zhu, X.K., Peng, Q.Y., Zhang, R.B., et al. 2013. Geological and Geochemical Characteristics of the Daotuo Super-Large Manganese Ore Deposit at Songtao County in Guizhou Province. Acta Geologica Sinica, 87(9): 1335-1348 (in Chinese with English abstract).
      [42] 董志国, 张连昌, 王长乐, 等. 2020. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题. 矿床地质, 39(2): 237-255. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002003.htm
      [43] 杜远生, 周琦, 余文超, 等. 2015. Rodinia超大陆裂解、Sturtian冰期事件和扬子地块东南缘大规模锰成矿作用. 地质科技情报, 34(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506001.htm
      [44] 杜远生, 周琦, 张连昌, 等. 2020. 重大地质事件与大规模沉积成矿作用(代序言). 古地理学报, 22(5): 807-811. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202005001.htm
      [45] 郭华, 杜远生, 黄俊华, 等. 2010. 河北平泉中元古界高于庄组生境型及古环境. 古地理学报, 12(3): 269-280. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201003005.htm
      [46] 靳松, 郭华, 余文超, 等. 2020. 燕辽坳拉槽古‒中元古代裂谷盆地演化及其对锰矿沉积的控制作用. 古地理学报, 22(5): 841-854. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202005004.htm
      [47] 李怀坤, 朱士兴, 相振群, 等. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007016.htm
      [48] 刘志臣, 周琦, 颜佳新, 等. 2019. 二叠纪贵州遵义次级裂谷盆地结构及其对锰矿的控制作用. 古地理学报, 21(3): 517-526. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201903012.htm
      [49] 潘建国, 曲永强, 马瑞, 等. 2013. 华北地块北缘中新元古界沉积构造演化. 高校地质学报, 19(1): 109-122. doi: 10.3969/j.issn.1006-7493.2013.01.015
      [50] 乔秀夫, 王彦斌. 2014. 华北克拉通中元古界底界年龄与盆地性质讨论. 地质学报, 88(9): 1623-1637. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201409001.htm
      [51] 田辉, 张健, 李怀坤, 等. 2015. 蓟县中元古代高于庄组凝灰岩锆石LA-MC-ICPMS U-Pb定年及其地质意义. 地球学报, 36(5): 647-658. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201505014.htm
      [52] 万渝生, 颉颃强, 董春艳, 等. 2020. 华北克拉通太古宙构造热事件时代及演化. 地球科学, 45(9): 3119-3160. doi: 10.3799/dqkx.2020.121
      [53] 汪凯明, 罗顺社. 2010. 冀北坳陷高于庄组含锰岩层地球化学特征. 矿产与地质, 24(2): 187-192. doi: 10.3969/j.issn.1001-5663.2010.02.016
      [54] 徐林刚. 2020. 沉积型锰矿床的形成及其与古海洋环境的协同演化. 矿床地质, 39(6): 959-973. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202006001.htm
      [55] 余文超, 杜远生, 周琦, 等. 2016. 黔东松桃南华系大塘坡组锰矿层物源: 来自Sr同位素的证据. 地球科学, 41(7): 1110-1120. doi: 10.3799/dqkx.2016.092
      [56] 余文超, 杜远生, 周琦, 等. 2020. 华南成冰纪"大塘坡式"锰矿沉积成矿作用与重大地质事件的耦合关系. 古地理学报, 22(5): 855-871. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202005005.htm
      [57] 张飞飞, 闫斌, 郭跃玲, 等. 2013. 湖北古城锰矿的沉淀形式及其古环境意义. 地质学报, 87(2): 245-258. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302011.htm
      [58] 张夏林, 吴冲龙, 周琦, 等. 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384
      [59] 朱祥坤, 彭乾云, 张仁彪, 等. 2013. 贵州省松桃县道坨超大型锰矿床地质地球化学特征. 地质学报, 87(9): 1335-1348. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309011.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  739
    • HTML全文浏览量:  84
    • PDF下载量:  51
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-04-26
    • 网络出版日期:  2022-02-11
    • 刊出日期:  2022-01-20

    目录

      /

      返回文章
      返回