Genesis of Mesoproterozoic Gaoyuzhuang Formation Manganese Ore in Qinjiayu, East Hebei: Constraints from Mineralogical and Geochemical Evidences
-
摘要:
冀东秦家峪锰矿赋存于中元古界蓟县系高于庄组二段底部含锰岩系内,其成因尚不明确. 以秦家峪锰矿ZK58-2钻孔样品为研究对象,通过显微薄片观察、电子探针分析及全岩地球化学分析等方法,探讨了高于庄组锰矿的锰质来源和沉积环境对成矿的贡献. 显微薄片观察、电子探针分析表明,原生矿带中含锰矿物主要为菱锰矿、铁镁菱锰矿、钙菱锰矿、锰方解石等含锰碳酸盐矿物. 主量元素分析显示,相对于底板样品,锰矿层样品(Mn>8%)的TiO2、SiO2、Al2O3、K2O、Na2O含量较低,Mn含量与Al2O3呈负相关. 锰矿层样品和底板样品微量元素相对于上地壳(UCC)未表现出特别富集的特征,富集系数显示仅Th、U轻微富集. Th/U及自生Th/U比值具有相似的地层变化趋势,与较低的Fe/Mn比值共同指示沉积水体以次氧化环境为主. UCC标准化的稀土元素配分曲线较为平坦,不存在显著的Ce异常(Ce/Ce*=1.00±0.02,n=39),具有较低的Y/Ho比值. 初始87Sr/86Sr比值介于0.713 383~0.725 378之间,平均值为0.720 180,与Al2O3含量呈负相关. 秦家峪锰矿矿物学及地球化学特征表明,高于庄组含锰岩系的锰质来源于热液与陆源风化双重输入,其与裂谷盆地演化、古海洋氧化以及海平面变化等多种因素共同制约着高于庄组锰矿的形成.
Abstract:The Qinjiayu manganese ore in East Hebei occur mainly in manganese-bearing rock series at the bottom of the second member of the Mesoproterozoic Gaoyuzhuang Formation, however, the cause of manganese ore is unclear. In this paper, it uses microscopic observation, electronic microprobe analysis and whole rock geochemical analysis based on the drilling core ZK58-2 samples to provide information on the manganese sources and sedimentary environments which contribute to manganese mineralization. Microscopic examination and electronic microprobe analysis show that manganese-bearing minerals of primary ore belt samples are dominated by rhodochrosite, Fe-Mg rhodochrosite, Ca rhodochrosite and Mn calcite. Compared with based samples, the major elements of the manganese ore belt samples show low TiO2, SiO2, Al2O3, K2O and Na2O contents. Besides, all samples show negative correlation between manganese and Al2O3 contents. The trace elements of all samples show no enrichment relative to the upper crust content (UCC), except Th and U. Th/U ratios and authigenic Th/U ratios have similar stratigraphical tendency, with low Fe/Mn ratios, indicating that paleo-ocean environment was dominated by oxic-suboxic conditions. UCC-normalized REE+Y patterns are flat, showing no Ce anomaly (Ce/Ce*=1.00±0.02, n=39) and low Y/Ho ratios. Initial 87Sr/86Sr ratios of Mn ore belt are between 0.713 383 and 0.725 378, having an average value of 0.720 180, showing a negative correlation with Al2O3 contents. Comprehensive sedimentary and geochemical analyses show that Mn sourced from both hydrothermal fluids and continental weathering input. Manganese sources, combined with paleo-ocean oxidation and sea level fluctuations, controlled the Gaoyuzhuang manganese ore.
-
Key words:
- Qinjiayu /
- Gaoyuzhuang Formation /
- manganese ore /
- paleoenvironment /
- geochemistry
-
表 1 秦家峪锰矿ZK58⁃2钻孔电子探针分析结果
Table 1. EMPA results of drilling core ZK58-2 in the Qinjiayu manganese ore deposit
点号 1 2 4 5 6 7 9 12 13 14 15 16 17 20 21 25 28 30 31 33 CaO 3.817 13.332 24.904 8.446 13.65 2.908 21.909 54.062 6.65 5.739 5.026 5.942 4.776 28.518 53.828 6.825 5.079 26.963 2.608 5.287 MgO 12.822 8.749 4.466 3.991 6.754 13.014 10.374 0.021 2.322 2.522 2.845 1.957 3.575 9.809 0.019 1.603 7.208 5.612 3.798 2.504 MnO 23.417 21.404 10.033 33.037 25.337 24.371 17.735 0.075 36.847 37.206 36.224 39.249 37.927 10.548 0.21 41.16 34.974 14.711 43.395 38.944 FeO 6.727 4.025 14.502 2.657 3.200 7.223 3.839 0.153 9.715 9.140 9.787 6.559 7.249 8.084 0.294 3.457 8.768 5.612 3.614 6.331 CO2 35.635 35.751 42.221 33.101 35.757 36.026 41.864 42.580 36.556 35.930 35.510 35.159 35.613 44.575 42.564 53.045 38.915 39.842 35.321 34.913 总计 82.418 83.261 96.126 81.232 84.698 83.542 95.721 96.891 92.090 90.537 89.392 88.866 89.140 101.534 96.915 87.796 94.944 92.740 88.736 87.979 CaCO3 8.4 29.3 46.3 20.0 30.0 6.3 41.1 99.6 14.3 12.5 11.1 13.3 10.5 50.2 99.2 15.4 10.2 53.1 5.8 11.9 MgCO3 39.3 26.7 25.9 13.2 20.6 39.4 27.0 0.1 6.9 7.7 8.7 6.1 11.0 24.0 0.0 5.0 20.2 15.4 11.7 7.8 MnCO3 40.8 37.1 21.3 61.9 43.9 42.0 26.3 0.1 62.5 64.2 63.3 69.2 66.1 14.7 0.3 73.5 55.7 22.9 76.2 69.2 FeCO3 11.6 6.9 6.5 4.9 5.5 12.3 5.6 0.2 16.3 15.6 16.9 11.4 12.5 11.1 0.4 6.1 13.8 8.6 6.3 11.1 注:CaCO3、MgCO3、MnCO3、FeCO3的单位为mol%,其他元素含量的单位为%. -
[1] Algeo, T. J., Tribovillard, N. . 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3-4): 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001 [2] Banner, J. L. . 2004. Radiogenic Isotopes: Systematics and Applications to Earth Surface Processes and Chemical Stratigraphy. Earth-Science Reviews, 65(3-4): 141-194. https://doi.org/10.1016/s0012-8252(03)00086-2 [3] Bau, M. . 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323-333. https://doi.org/10.1007/s004100050159 [4] Bau, M., Schmidt, K., Koschinsky, A., et al. 2014. Discriminating between Different Genetic Types of Marine Ferro-Manganese Crusts and Nodules Based on Rare Earth Elements and Yttrium. Chemical Geology, 381: 1-9. https://doi.org/10.1016/j.chemgeo.2014.05.004 [5] Dong, Z.G., Zhang, L.C., Wang, C.L., et al. 2020. Progress and Problems in Understanding Sedimentary Manganese Carbonate Metallogenesis. Mineral Deposits, 39(2): 237-255 (in Chinese with English abstract). [6] Du, Y.S., Zhou, Q., Yu, W.C., et al. 2015. Linking the Cryogenian Manganese Metallogenic Process in the Southeast Margin of Yangtze Block to Break-Up of Rodinia Supercontinent and Sturtian Glaciation. Geological Science and Technology Information, 34(6): 1-7 (in Chinese with English abstract). [7] Du, Y.S., Zhou, Q., Zhang, L.C., et al. 2020. Major Geological Events and Large-Scale Sedimentary Mineralization (Generation of the Preface). Journal of Palaeogeography (Chinese Edition), 22(5): 807-811 (in Chinese with English abstract). [8] Fang, H., Tang, D. J., Shi, X. Y., et al. 2020. Manganese-Rich Deposits in the Mesoproterozoic Gaoyuzhuang Formation (ca. 1.58 Ga), North China Platform: Genesis and Paleoenvironmental Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 559: 109966. https://doi.org/10.1016/j.palaeo.2020.109966 [9] Guo, H., Du, Y.S., Huang, J.H., et al. 2010. Habitat Types and Palaeoenvironments of the Mesoproterozoic Gaoyuzhuang Formation in Pingquan, Hebei Province. Journal of Palaeogeography, 12(3): 269-280 (in Chinese with English abstract). [10] Jin, S., Guo, H., Yu, W.C., et al. 2020. Evolution of Yanliao Aulacogen in the Paleo-Mesoproterozoic and Its Control on Manganese Deposit. Journal of Palaeogeography (Chinese Edition), 22(5): 841-854 (in Chinese with English abstract). [11] Kusky, T., Li, J. H., Santosh, M. . 2007. The Paleoproterozoic North Hebei Orogen: North China Craton's Collisional Suture with the Columbia Supercontinent. Gondwana Research, 12(1-2): 4-28. https://doi.org/10.1016/j.gr.2006.11.012 [12] Li, H.K., Zhu, S.X., Xiang, Z.Q., et al. 2010. Zircon U-Pb Dating on Tuff Bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further Constraints on the New Subdivision of the Mesoproterozoic Stratigraphy in the Northern North China Craton. Acta Petrologica Sinica, 26(7): 2131-2140 (in Chinese with English abstract). [13] Liu, Z.C., Zhou, Q., Yan, J.X., et al. 2019. Structure of Zunyi Rift Basin in Guizhou Province during the Permian and Its Controlling on Manganese Deposits. Journal of Palaeogeography (Chinese Edition), 21(3): 517-526 (in Chinese with English abstract). [14] Meng, Q. R., Wei, H. H., Qu, Y. Q., et al. 2011. Stratigraphic and Sedimentary Records of the Rift to Drift Evolution of the Northern North China Craton at the Paleo- to Mesoproterozoic Transition. Gondwana Research, 20(1): 205-218. https://doi.org/10.1016/j.gr.2010.12.010 [15] Ning, W. B., Wang, J. P., Xiao, D., et al. 2019. Electron Probe Microanalysis of Monazite and Its Applications to U-Th-Pb Dating of Geological Samples. Journal of Earth Science, 30(5): 952-963. https://doi.org/10.1007/s12583-019-1020-8 [16] Pan, J.G., Qu, Y.Q., Ma, R., et al. 2013. Sedimentary and Tectonic Evolution of the Meso-Neoproterozoic Strata in the Northern Margin of the North China Block. Geological Journal of China Universities, 19(1): 109-122 (in Chinese with English abstract). [17] Poulton, S. W., Canfield, D. E. . 2011. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History. Elements, 7(2): 107-112. https://doi.org/10.2113/gselements.7.2.107 [18] Qiao, X.F., Wang, Y.B. . 2014. Discussions on the Lower Boundary Age of the Mesoproterozoic and Basin Tectonic Evolution of the Mesoproterozoic in North China Craton. Acta Geologica Sinica, 88(9): 1623-1637 (in Chinese with English abstract). [19] Richter, F. M., Rowley, D. B., DePaolo, D. J. . 1992. Sr Isotope Evolution of Seawater: The Role of Tectonics. Earth and Planetary Science Letters, 109(1-2): 11-23. https://doi.org/10.1016/0012-821x(92)90070-c [20] Rogers, J. J. W., Santosh, M. . 2009. Tectonics and Surface Effects of the Supercontinent Columbia. Gondwana Research, 15(3-4): 373-380. https://doi.org/10.1016/j.gr.2008.06.008 [21] Roy, S. . 2006. Sedimentary Manganese Metallogenesis in Response to the Evolution of the Earth System. Earth-Science Reviews, 77(4): 273-305. https://doi.org/10.1016/j.earscirev.2006.03.004 [22] Shang, M. H., Tang, D. J., Shi, X. Y., et al. 2019. A Pulse of Oxygen Increase in the Early Mesoproterozoic Ocean at ca. 1.57-1.56 Ga. Earth and Planetary Science Letters, 527: 115797. https://doi.org/10.1016/j.epsl.2019.115797 [23] Tian, H., Zhang, J., Li, H.K., et al. 2015. Zircon LA-MC-ICPMS U-Pb Dating of Tuff from Mesoproterozoic Gaoyuzhuang Formation in Jixian County of North China and Its Geological Significance. Acta Geoscientica Sinica, 36(5): 647-658 (in Chinese with English abstract). [24] Tribovillard, N., Algeo, T. J., Lyons, T., et al. 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012 [25] Vereshchagin, O. S., Perova, E. N., Brusnitsyn, A. I., et al. 2019. Ferro-Manganese Nodules from the Kara Sea: Mineralogy, Geochemistry and Genesis. Ore Geology Reviews, 106: 192-204. https://doi.org/10.1016/j.oregeorev.2019.01.023 [26] Wan, Y.S., Xie, H.Q., Dong, C.Y., et al. 2020. Timing of Tectonothermal Events in Archean Basement of the North China Craton. Earth Science, 45(9): 3119-3160 (in Chinese with English abstract). [27] Wang, J. P., Li, X. W., Ning, W. B., et al. 2019a. Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin, 131(11-12): 1943-1964. https://doi.org/10.1130/b35138.1 [28] Wang, P., Algeo, T. J., Zhou, Q., et al. 2019b. Large Accumulations of 34S-Enriched Pyrite in a Low-Sulfate Marine Basin: The Sturtian Nanhua Basin, South China. Precambrian Research, 335: 105504. https://doi.org/10.1016/j.precamres.2019.105504 [29] Wang, K.M., Luo, S.S. . 2010. Geochemical Characteristics of Manganese-Bearing Sequences of Gaoyuzhuang Formation in the North Hebei Depression. Mineral Resources and Geology, 24(2): 187-192 (in Chinese with English abstract). [30] Wignall P.B., Twitchett R.J. . 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, 272(5265): 1155-1158. https://doi.org/10.1126/science.272.5265.1155 [31] Xu, L.G. . 2020. Sedimentary Manganese Formation and Its Link with Paleo-Oceanic Environment. Mineral Deposits, 39(6): 959-973 (in Chinese with English abstract). [32] Yu, W. C., Algeo, T. J., Du, Y. S., et al. 2016a. Genesis of Cryogenian Datangpo Manganese Deposit: Hydrothermal Influence and Episodic Post-Glacial Ventilation of Nanhua Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 321-337. https://doi.org/10.1016/j.palaeo.2016.05.023 [33] Yu, C. X., Virtasalo, J. J., Österholm, P., et al. 2016b. Manganese Accumulation and Solid-Phase Speciation in a 3.5 m Thick Mud Sequence from the Estuary of an Acidic and Mn-Rich Creek, Northern Baltic Sea. Chemical Geology, 437: 56-66. https://doi.org/10.1016/j.chemgeo.2016.05.016 [34] Yu, W.C., Du, Y.S., Zhou, Q., et al. 2016. Provenance of Nanhuan Datangpo Formation Manganese Mn Deposit in Songtao Area, East Guizhou Province: Evidence from Sr Isotope. Earth Science, 41(7): 1110-1120 (in Chinese with English abstract). [35] Yu, W.C., Du, Y.S., Zhou, Q., et al. 2020. Coupling between Metallogenesis of the Cryogenian Datangpo-Type Manganese Deposit in South China and Major Geological Events. Journal of Palaeogeography (Chinese Edition), 22(5): 855-871 (in Chinese with English abstract). [36] Zhang, F.F., Yan, B., Guo, Y.L., et al. 2013. Precipitation Form of Manganese Ore Deposits in Gucheng, Hubei Province, and Its Paleoenvironment Implication. Acta Geologica Sinica, 87(2): 245-258 (in Chinese with English abstract). [37] Zhang, K., Zhu, X. K., Wood, R. A., et al. 2018. Oxygenation of the Mesoproterozoic Ocean and the Evolution of Complex Eukaryotes. Nature Geoscience, 11(5): 345-350. https://doi.org/10.1038/s41561-018-0111-y [38] Zhang, X.L., Wu, C.L., Zhou, Q., et al. 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644 (in Chinese with English abstract). [39] Zheng, Y., Anderson, R. F., van Geen, A., et al. 2000. Authigenic Molybdenum Formation in Marine Sediments: A Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64(24): 4165-4178. https://doi.org/10.1016/s0016-7037(00)00495-6 [40] Zhu, S.X., Zhu, M.Y., Knoll, A. H., et al. 2016. Decimetre-Scale Multicellular Eukaryotes from the 1.56-Billion-Year-Old Gaoyuzhuang Formation in North China. Nature Communications, 7: 11500. https://doi.org/10.1038/ncomms11500 [41] Zhu, X.K., Peng, Q.Y., Zhang, R.B., et al. 2013. Geological and Geochemical Characteristics of the Daotuo Super-Large Manganese Ore Deposit at Songtao County in Guizhou Province. Acta Geologica Sinica, 87(9): 1335-1348 (in Chinese with English abstract). [42] 董志国, 张连昌, 王长乐, 等. 2020. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题. 矿床地质, 39(2): 237-255. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002003.htm [43] 杜远生, 周琦, 余文超, 等. 2015. Rodinia超大陆裂解、Sturtian冰期事件和扬子地块东南缘大规模锰成矿作用. 地质科技情报, 34(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506001.htm [44] 杜远生, 周琦, 张连昌, 等. 2020. 重大地质事件与大规模沉积成矿作用(代序言). 古地理学报, 22(5): 807-811. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202005001.htm [45] 郭华, 杜远生, 黄俊华, 等. 2010. 河北平泉中元古界高于庄组生境型及古环境. 古地理学报, 12(3): 269-280. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201003005.htm [46] 靳松, 郭华, 余文超, 等. 2020. 燕辽坳拉槽古‒中元古代裂谷盆地演化及其对锰矿沉积的控制作用. 古地理学报, 22(5): 841-854. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202005004.htm [47] 李怀坤, 朱士兴, 相振群, 等. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007016.htm [48] 刘志臣, 周琦, 颜佳新, 等. 2019. 二叠纪贵州遵义次级裂谷盆地结构及其对锰矿的控制作用. 古地理学报, 21(3): 517-526. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201903012.htm [49] 潘建国, 曲永强, 马瑞, 等. 2013. 华北地块北缘中新元古界沉积构造演化. 高校地质学报, 19(1): 109-122. doi: 10.3969/j.issn.1006-7493.2013.01.015 [50] 乔秀夫, 王彦斌. 2014. 华北克拉通中元古界底界年龄与盆地性质讨论. 地质学报, 88(9): 1623-1637. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201409001.htm [51] 田辉, 张健, 李怀坤, 等. 2015. 蓟县中元古代高于庄组凝灰岩锆石LA-MC-ICPMS U-Pb定年及其地质意义. 地球学报, 36(5): 647-658. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201505014.htm [52] 万渝生, 颉颃强, 董春艳, 等. 2020. 华北克拉通太古宙构造热事件时代及演化. 地球科学, 45(9): 3119-3160. doi: 10.3799/dqkx.2020.121 [53] 汪凯明, 罗顺社. 2010. 冀北坳陷高于庄组含锰岩层地球化学特征. 矿产与地质, 24(2): 187-192. doi: 10.3969/j.issn.1001-5663.2010.02.016 [54] 徐林刚. 2020. 沉积型锰矿床的形成及其与古海洋环境的协同演化. 矿床地质, 39(6): 959-973. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202006001.htm [55] 余文超, 杜远生, 周琦, 等. 2016. 黔东松桃南华系大塘坡组锰矿层物源: 来自Sr同位素的证据. 地球科学, 41(7): 1110-1120. doi: 10.3799/dqkx.2016.092 [56] 余文超, 杜远生, 周琦, 等. 2020. 华南成冰纪"大塘坡式"锰矿沉积成矿作用与重大地质事件的耦合关系. 古地理学报, 22(5): 855-871. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202005005.htm [57] 张飞飞, 闫斌, 郭跃玲, 等. 2013. 湖北古城锰矿的沉淀形式及其古环境意义. 地质学报, 87(2): 245-258. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302011.htm [58] 张夏林, 吴冲龙, 周琦, 等. 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384 [59] 朱祥坤, 彭乾云, 张仁彪, 等. 2013. 贵州省松桃县道坨超大型锰矿床地质地球化学特征. 地质学报, 87(9): 1335-1348. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309011.htm