Characteristics and Mechanisms of Shallow Igneous Intrusions and Their Implications on Hydrocarbon Geology in the Baiyun Sag
-
摘要: 珠江口盆地白云凹陷内发育大量早中新世(约15.5 Ma)浅成岩浆侵入体(侵入深度 < 3 km).目前对其形态特征、相互关系以及岩浆侵入诱发的强制褶皱等尚缺乏系统研究.通过利用高精度三维地震资料,细致刻画了侵入体的形态、岩浆运移通道以及岩床复合体内各岩床的空间关系,定量分析了强制褶皱与侵入体的几何关系.白云凹陷内岩浆侵入体形态多样,主要包括碟状、板状、舌状、透镜状等.岩床复合体内各岩床的形态和空间相对位置可以判断岩浆来源和流动方向.岩浆侵入体主要通过临近岩床侧向供给或下部岩墙垂向供给这两种方式侵入至目前所在层位.侵入体形态主要受控于岩浆的粘度、围岩内聚力以及侵位深度3个方面.塑性变形使褶皱幅度通常小于侵入体的厚度,强制褶皱可以形成圈闭,圈闭的规模主要由下伏侵入体的范围和厚度决定.侵入体上方由差异压实产生的断层为油气运输提供了有利通道.Abstract: A large number of Early Miocene (ca. 15.5Ma) shallow igneous intrusions(intrusion depths < 3 000 m) have been identified in the Baiyun Sag of Pearl River Mouth Basin. Their morphological characteristics, relationships and forced folds above them have not been systematically studied. This paper detailedly describes the shapes, vertical migration pathways and spatial relationships (sill complexes) of igneous intrusions, using high-resolution 3D seismic data. Moreover, the geomorphological relationship between the forced folds and the intrusions are quantitatively analyzed. The igneous intrusions are characterized by saucer, strata-concordant, tongue orlentoid shapes. The source and flow direction of magma could be indicated from the geomorphological characteristics and spatial relationship of sills. Magma emplacement is transported from adjacent sills(lateral supply) or from dykes(vertical supply).The geomorphological characteristics of igneous intrusion are mainly controlled by the viscosity of magma, the cohesion of host rock and the emplacement depth of magma. Moreover, some igneous intrusions could trigger sediment deformations of overlying strata and form forced folds. The amplitudes of forced folds are usually less than the thickness of the igneous intrusion, because of the plastic deformation. These folds could serve as hydrocarbon traps whose sizes are mainly influenced by the scale and thickness of underlying igneous intrusion. Furthermore, normal faults that are located within the folded strata and generated by differential compaction provide pathways for vertical hydrocarbon migration.
-
Key words:
- Igneous intrusion /
- Igneous feeding relationship /
- Sill /
- Forced fold /
- Baiyun Sag /
- petroleum geology
-
图 1 研究区地质概况
a. 珠江口盆地地质概况及研究区位置(修改自Sun et al., 2020);b. 地震剖面及侵入体位置:背景为T40界面地形,倾向为NW-SE方向;白色部分超出资料范围;灰色部分为侵入体,黑色虚线为侵入体被遮挡部分;红色实线为地震剖面位置;X-X'指示剖面方向
Fig. 1. Geological setting of the study area
图 7 侵入体厚度(T)与褶皱幅度(R)之间的关系
灰色虚线分别为斜率为1和0.33的边界线;部分数据引自Hansen and Cartwright(2006b);Jackson et al.(2013);Magee et al.(2013b);Montanari et al.(2017);Geng et al.(2020)
Fig. 7. Relationship between thickness (T) of igneous intrusion and amplitude (R) of forced fold
表 1 研究区内浅成岩浆侵入体形态特征
Table 1. Morphological characteristics of shallow igneous intrusions in the study area
-
[1] Deng, P., Mei, L.F., Liu, J., et al., 2018. Episodic Normal Faulting and Magmatism during the Syn-Spreading Stage of the Baiyun sag in Pearl River Mouth Basin: Response to the Multi-Phase Seafloor Spreading of the South China Sea. Marine Geophysical Research, 40(1): 33-50. https://doi.org/10.1007/s11001-018-9352-9 [2] Ding, W.W., Li, J.B., 2016. Propagated Rifting in the Southwest Sub-Basin, South China Sea: Insights from Analogue Modelling. Journal of Geodynamics, 100: 71-86. https://doi.org/10.1016/j.jog.2016.02.004 [3] Fan, C.Y., Xia, S.H., Zhao, F., et al., 2017. New Insights into the Magmatism in the Northern Margin of the South China Sea: Spatial Features and Volume of Intraplate Seamounts. Geochemistry, Geophysics, Geosystems, 18(6): 2216-2239. https://doi.org/10.1002/2016GC006792. [4] Gao, J.W., Wu, S.G., McIntosh, K., et al., 2015. The Continent-Ocean Transition at the Mid-Northern Margin of the South China Sea. Tectonophysics, 654: 1-19. https://doi.org/10.1016/j.tecto.2015.03.003 [5] Geng, M.H., Song, H.B., Guan, Y.X., et al., 2020. Sill-Related Seafloor Domes in the Zhongjiannan Basin, Western South China Sea. Marine and Petroleum Geology, 122: 104669. https://doi.org/10.1016/j.marpetgeo. 2020.104669 doi: 10.1016/j.marpetgeo.2020.104669 [6] Guo, R., Zhang, G.C., Zhang, J.W., et al., 2013. Fingered Intrusion of Shallow Saucer-Shaped Igneous Sills: Insights from the Jiaojiang Sag, East China Sea. Acta Geologica Sinica-English Edition, 87(5): 1306-1318. doi: 10.1111/1755-6724.12130 [7] Hansen, D.M., Cartwright, J., 2006a. Saucer-Shaped Sill with Lobate Morphology Revealed by 3D Seismic Data: Implications for Resolving a Shallow-Level Sill Emplacement Mechanism. Journal of the Geological Society, 163(3): 509-523. https://doi.org/10.1144/0016-764905-073 [8] Hansen, D.M., Cartwright, J., 2006b. The Three-Dimensional Geometry and Growth of Forced Folds above Saucer-Shaped Igneous Sills. Journal of Structural Geology, 28(8): 1520-1535. https://doi.org/10.1144/0016-764905-074 doi: 10.1016/j.jsg.2006.04.004 [9] Haug, Ø. T., Galland, O., Souloumiac, P., et al., 2018. Shear Versus Tensile Failure Mechanisms Induced by Sill Intrusions: Implications for Emplacement of Conical and Saucer-Shaped Intrusions. Journal of Geophysical Research: Solid Earth, 123(5): 3430-3449. https://doi.org/10.1002/2017JB015196. [10] Jackson, C.A.L., Schofield, N., Golenkov, B., 2013. Geometry and Controls on the Development of Igneous Sill-related Forced Folds: A 2-D Seismic Reflection Case Study from Offshore Southern Australia. Geological Society of America Bulletin, 125: 1874-1890. https://doi.org/10.1130/B30833.1 [11] Liang, W., Li, X.P., 2020. Lithological Exploration and Potential in Mixed Siliciclastic-Carbonate Depositional Area of Eastern Pearl River Mouth Basin. Earth Science, 45(10): 3870-3884(in Chinese with English abstract). [12] Li, C.F., Xu, X., Lin, J., Sun, Z., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014GC005567. [13] Li, P.L., 1993. Cenozoic Tectonic Movement in the Pearl River Mouth Basin. China Offshore Oil and Gas, 7(6): 11-17 (in Chinese with English abstract). [14] Lüdmann, T., Wong, H., 1999. Neotectonic Regime at the Passive Continental Margin of the Northern South China Sea. Tectonophysics, 311: 113-138. doi: 10.1016/S0040-1951(99)00155-9 [15] Magee, C., Jackson, C.A.L., Schofield, N., 2013a. The Influence of Normal Fault Geometry on Igneous Sill Emplacement and Morphology. Geology, 41(4): 407-410. https://doi.org/10.1130/G33824.1 [16] Magee, C., Briggs, F., Jackson, C. A. L., 2013b. Lithological Controls on Igneous Intrusion-Induced Ground Deformation. Journal of the Geological Society, 170(6): 853-856. https://doi.org/10.1144/jgs2013-029 [17] Magee, C., Muirhead, J.D., Karvelas, A., et al., 2016. Lateral Magma Flow in Mafic Sill Complexes. Geosphere, 12(3): 809-841. https://doi.org/10.1130/GES01256.1 [18] Magee, C., Jackson, C.A.L., 2020. Seismic Reflection Data Reveal the 3D Structure of the Newly Discovered Exmouth Dyke Swarm, Offshore NW Australia. Solid Earth, 11(2): 579-606. https://doi.org/10.5194/se-11-579-2020 [19] Malthe-Sørenssen, A., Planke, S., Svensen, H., et al., 2004. Formation of Saucer-Shaped Sills. Physical Geology of High-Level Magmatic Systems, 234: 215-227. [20] Montanari, D., Bonini, M., Corti, G., et al., 2017. Forced Folding above Shallow Magma Intrusions: Insights on Supercritical Fluid Flow from Analogue Modelling. Journal of Volcanology and Geothermal Research, 345: 67-80. https://doi.org/10.1016/j.jvolgeores.2017.07.022. [21] Pang, X., Chen, C.M., Zhu, M., et al., 2006. A Discussion about Hydrocarbon Accumulation Conditions in Baiyun Deep Water Area, the Northern Continental Slope, South China Sea. China Offshore Oil and Gas, 18(3): 145-149 (in Chinese with English abstract). [22] Pang, X., Chen, C.M., Peng, D.J., et al., 2008. Basic Geology of Baiyun Deep-Water Area in the Northern South China Sea. China Offshore Oil and Gas, 20(4): 215-222 (in Chinese with English abstract). [23] Planke, S., Rasmussen, T., Rey, S.S., et al., 2005. Seismic Characteristics and Distribution of Volcanic Intrusions and Hydrothermal Vent Complexes in the Vøring and Møre Basins. Geological Society, London, Petroleum Geology Conference Series, 6(1): 833-844. doi: 10.1144/0060833 [24] Reeves, J., Magee, C., Jackson, C.L., 2018. Unravelling Intrusion-Induced Forced Fold Kinematics and Ground Deformation Using 3D Seismic Reflection Data. Volcanica, 1(1): 1-17. https://doi.org/10.30909/vol.01.01.0117. [25] Schofield, N., Stevenson, C., Reston, T., 2010. Magma Fingers and Host Rock Fluidization in the Emplacement of Sills. Geology, 38(1): 63-66. https://doi.org/10.1130/G30142.1 [26] Shao, L., Lei, Y.C., Pang, X., et al., 2005. Tectonic Evolution and Its Controlling for Sedimentary Environment in Pearl River Mouth Basin. Journal of Tongji University (Natural Science), 33(9): 1177-1181 (in Chinese with English abstract). [27] Shi, X.F., Yan, Q.S., 2011. Geochemistry of Cenozoic Magmatism in the South China Sea and Its Tectonic Implications. Marine Geology and Quaternary Geology, 31(2): 59-71 (in Chinese with English abstract). doi: 10.3724/SP.J.1140.2011.02059 [28] Smallwood, J.R., Maresh, J., 2002. The Properties, Morphology and Distribution of Igneous Sills: Modelling, Borehole Data and 3D Seismic from the Faroe-Shetland Area. Geological Society, London, Special Publications, 197(1): 271-306. doi: 10.1144/GSL.SP.2002.197.01.11 [29] Sun, Q.L., Wu, S.G., Cartwright, J., et al., 2014. Neogene Igneous Intrusions in the Northern South China Sea: Evidence from High-Resolution Three Dimensional Seismic Data. Marine and Petroleum Geology, 54: 83-95. https://doi.org/10.1016/j.marpetgeo.2014.02.014 [30] Sun, Q.L., Jackson, C.A.L., Magee, C., et al., 2020. Deeply Buried Ancient Volcanoes Control Hydrocarbon Migration in the South China Sea. Basin Research, 32(1): 146-162. https://doi.org/10.1111/bre.12372 [31] Sun, Z., Pang, X., Zhong, Z.H., et al., 2005. Dynamics of Tertiary Tectonic Evolution of the Baiyun Sag in the Pearl River Mouth Basin. Earth Science Frontiers, 12(4): 489-498(in Chinese with English abstract). [32] Svensen, H., Planke, S., Malthe-Sørenssen, A., et al., 2004. Release of Methane from a Volcanic Basin as a Mechanism for Initial Eocene Global Warming. Nature, 429(6991): 542-545. https://doi.org/10.1038/nature02566 [33] Thomson, K., 2007. Determining Magma Flow in Sills, Dykes and Laccoliths and Their Implications for Sill Emplacement Mechanisms. Bulletin of Volcanology, 70(2): 183-201. https://doi.org/10.1007/s00445-007-0131-8 [34] Wang, J.H., Peng, G.R., Liu, B.J., et al., 2019. Flattening Diagenesis of Clastic Rocks and Quantitative Characterization of Sedimentary Control on Reservoir Properties: a Case Study of Baiyun Sag in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 115-123 (in Chinese with English abstract). [35] Yan, P., Zhou, D., Liu, Z.S., 2001. A Crustal Structure Profile across the Northern Continental Margin of the South China Sea. Tectonophysics, 338: 1-21. doi: 10.1016/S0040-1951(01)00062-2 [36] Yan, P., Deng, H., Liu, H.L., et al., 2006. The Temporal and Spatial Distribution of Volcanism in the South China Sea Region. Journal of Asian Earth Sciences, 27(5): 647-659. https://doi.org/10.1016/j.jseaes.2005.06.005 [37] Yang, Z.B., 2011. Engineering Geology Features and Drilling Strategy in Heba Structure, Northeast Sichuan (Dissertation). Chengdu University of Technology, Sichuan(in Chinese with English abstract). [38] Yao, B.C., 1996. Tectonic Evolution of the South China Sea in Cenozoic. Marine Geology and Quaternary Geology, 16(2): 1-13 (in Chinese with English abstract). [39] Zhang, Q., 2014. Cenozoic Magmatism in the Northern Continental Margin of the South China Sea and Its Implication for the Tectonic Evolution of the Rifted Margin(Dissertation). The University of Chinese Academic of Sciences, Beijing (in Chinese with English abstract). [40] Zhang, Y.Z., Qi, J.F., Wu, J.F., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 42(2): 603-625 (in Chinese with English abstract). [41] Zhao, F., Alves, T.M., Wu, S.G., et al., 2016. Prolonged Post-Rift Magmatism on Highly Extended Crust of Divergent Continental Margins (Baiyun Sag, South China Sea). Earth and Planetary Science Letters, 445: 79-91. doi: 10.1016/j.epsl.2016.04.001 [42] Zhao, F., 2016. Post-Rift Magmatism and Submarine Landslides on the Northern South China Sea Continental Margin(Dissertation). The University of Chinese Academic of Sciences, Beijing (in Chinese with English abstract). [43] Zhao, S.J., Wu, S.G., Shi, H.S., et al., 2012. Structures and Dynamic Mechanism Related to the Dongsha Movement at the Northern Margin of South China Sea. Progress in Geophys, 27(3): 1008-1019(in Chinese with English abstract). [44] Zhong, Z.H., Shi, H.S., Zhu, M., et al., 2014. A Discussion on the Tectonic-Stratigraphic Framework and Its Origin Mechanism in the Pearl River Mouth Basin. China Offshore Oil And Gas, 26(5): 20-29(in Chinese with English abstract). [45] Zhu, H.T., Liu, Y.M., Wang, Y.L., 2014. Volcanic Eruption Phases and 3-D Characterization of Volcanic Rocks in BZ34-9 Block of Huanghekou Sag, Bohai Bay Basin. Earth Science, 39(9): 1309-1316(in Chinese with English abstract). [46] 梁卫, 李小平, 2020. 珠江口盆地东部碎屑岩-碳酸盐混合沉积区岩性油气藏形成地质条件与潜力. 地球科学, 45(10): 3870-3884. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202010027.htm [47] 李平鲁, 1993. 珠江口盆地新生代构造运动. 中国海上油气, 7(6): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199306003.htm [48] 庞雄, 陈长民, 彭大钧, 等, 2008. 南海北部白云深水区之基础地质. 中国海上油气, 20(4): 215-222. doi: 10.3969/j.issn.1673-1506.2008.04.001 [49] 庞雄, 陈长民, 朱明, 等, 2006. 南海北部陆坡白云深水区油气成藏条件探讨. 中国海上油气, 18(3): 145-149. doi: 10.3969/j.issn.1673-1506.2006.03.001 [50] 邵磊, 雷永昌, 庞雄, 等, 2005. 珠江口盆地构造演化及对沉积环境的控制作用. 同济大学学报(自然科学版), 33(9): 1177-1181. doi: 10.3321/j.issn:0253-374X.2005.09.007 [51] 石学法, 鄢全树, 2011. 南海新生代岩浆活动的地球化学特征及其构造意义. 海洋地质与第四纪地质, 31(2): 59-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201102011.htm [52] 孙珍, 庞雄, 钟志洪, 等, 2005. 珠江口盆地白云凹陷新生代构造演化动力学. 地学前缘, 12(4): 489-498. doi: 10.3321/j.issn:1005-2321.2005.04.018 [53] 王家豪, 彭光荣, 柳保军, 等, 2019. 碎屑岩成岩拉平处理及沉积作用控制储层物性的定量表征——以珠江口盆地白云凹陷为例. 石油学报, 40(S1): 115-123. doi: 10.7623/syxb2019S1010 [54] 杨志彬, 2011. 川东北地区河坝构造工程地质特征及钻井对策研究(博士学位论文). 四川: 成都理工大学, 47. [55] 姚伯初, 1996. 南海海盆新生代的构造演化史. 海洋地质与第四纪地质, 16(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ602.000.htm [56] 张峤, 2014. 南海北部陆缘新生代岩浆活动及构造意义(博士学位论文). 北京: 中国科学院大学, 96. [57] 张远泽, 漆家福, 吴景富, 2019. 南海北部新生代盆地断裂系统及构造动力学影响因素. 地球科学, 44(2): 603-625. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902023.htm [58] 赵芳, 2016. 南海北部陆缘裂后期岩浆活动及海底滑坡事件研究(博士学位论文). 北京: 中国科学院大学, 44. [59] 赵淑娟, 吴时国, 施和生, 等, 2012. 南海北部东沙运动的构造特征及动力学机制探讨. 地球物理学进展, 27(3): 1008-1019. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201203023.htm [60] 钟志洪, 施和生, 朱明, 等, 2014. 珠江口盆地构造-地层格架及成因机制探讨. 中国海上油气, 26(5): 20-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201405004.htm [61] 朱红涛, 刘依梦, 王永利, 等, 2014. 渤海湾盆地黄河口凹陷BZ34-9区带火山岩三维刻画及火山喷发期次. 地球科学, 39(9): 1309-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201409006.htm