Geochronology and Geochemistry of Two Types of Basic Rocks in Horqin Right Middle Banner, Inner Mongolia and Their Tectonic Significances
-
摘要:
兴蒙造山带东段晚古生代构造演化存在争议,基性岩浆作用是构造演化过程中的良好地质记录. 对贺根山缝合带东段内蒙古科右中旗构造混杂岩带内的杜尔基基性岩和甲哈达基性岩进行了系统的地质特征、岩相学、年代学和地球化学研究. 杜尔基基性岩岩性为枕状玄武岩和辉绿岩,辉绿岩锆石LA-ICP-MS U-Pb年龄为348.3±2.6 Ma,为低钾拉斑玄武系列,相对富集LILE,亏损Nb、Ta等高场强元素. 甲哈达基性岩岩性主要为玄武岩,锆石U-Pb年龄为317.6±3.0 Ma,为钙碱性系列,同样具有HFSE亏损和LILE富集的特点,与杜尔基基性岩相比更加富集LILE和LREE. 结合贺根山缝合带早石炭世蛇绿岩及洋内俯冲作用的研究成果,认为从杜尔基基性岩到甲哈达基性岩的演化,可能指示了古亚洲洋东段早-晚石炭世洋内俯冲的渐进过程,洋内弧从不成熟向逐渐成熟演化.
Abstract:The Late Paleozoic tectonic evolution in the eastern Xing-Meng orogenic belt is controversial, and the basic magmatism is a good geological record in the process of tectonic evolution. In this paper, the geological features, petrography, geochronology and geochemistry of the two newly identified basic rocks (Duerji basic rocks and Jiahada basic rocks) in the Horqin Right Middle Banner area of Inner Mongolia, eastern Hegenshan suture zone, are systematically studied. Both types of mafic rocks are structurally located in the tectonic melange zone. The Duerji mafic rocks are pillow basalt and diabase, and LA-ICP-MS U-Pb of zircon from diabase is 348.3±2.6 Ma. They are tholeiites and their geochemistry is characterized by low Ti and high Mg. LILE is relatively enriched and HFSE is relatively depleted. The mafic rocks in Jiahada are basalts, and the zircon U-Pb age is 317.6±3.0 Ma. The geochemistry is calc-alkaline series, and they are characterized by HFSE depletion and LILE enrichment compared with the Duerji mafic rocks. They are more abundant in LILE and LREE. Based on the research results of Early Carboniferous ophiolites and intracontinental subduction in Hegenshan suture zone, the evolution from Duerji mafic rocks to Jiahada mafic rocks may indicate the progressive process of Early-Late Carboniferous intra-oceanic subduction in the eastern part of the Paleo-Asian Ocean, characterized by the evolution of intra-oceanic arc from immature to mature.
-
Key words:
- basic rock /
- intra-oceanic arc /
- Early-Late Carboniferous /
- Xing-Meng orogenic belt /
- geochronology /
- geochemistry
-
图 1 研究区大地构造位置和地质简图
a. 据Xiao et al. (2009)修改;b. 据肖文交等(2019)修改. 1.上二叠统;2.下二叠统;3.上侏罗统;4.下白垩统;5.第四系;6.早白垩世花岗岩;7.晚侏罗世花岗岩;8.晚三叠世花岗岩;9.甲哈达基性岩;10.杜尔基基性岩;11.断层界线/角度不整合界线;12.样品采集位置
Fig. 1. Geological map showing the tectonic units and geological sketch map of the study area
图 6 科右中旗两类基性岩和全球典型玄武岩的稀土元素球粒陨石标准化配分模式和微量元素原始地幔标准化蛛网图
据Sun and McDonough(1989)和Schmidt and Jagoutz(2017)
Fig. 6. Chondrite-normalized REE distribution patterns and primitive mantle-normalized trace element spidergrams of two types of basic rocks in Horqin Right Middle Banner and global typical basalts
图 7 科右中旗两类基性岩构造环境判别图解
图a据Wood(1980);图b据Pearce(2008,2014). IAT.岛弧拉斑系列;CAB.岛弧钙碱性系列;N-MORB.正常洋中脊玄武岩;E-MORB.富集洋中脊玄武岩;WPT.板内玄武岩;OIB.洋岛玄武岩;WPAB.板内碱性玄武岩
Fig. 7. Tectonic discrimination diagrams of two types of basic rocks in Horqin Right Middle Banner
图 8 科右中旗洋内弧岩石组合剖面、西乌旗迪彦庙前弧玄武岩剖面和伊豆‒小笠原‒马里亚纳(IBM)前弧岩石地层剖面对比
a. 据Ishizuka et al. (2014);b. 据李英杰等(2018)
Fig. 8. The comparison between the FAB in the Diyanmiao ophiolite, Izu-Bonin-Mariana forearc rock stratigraphic section and intra⁃oceanic arc sequence in Horqin Right Middle Banner
-
[1] Cheng, Y., Xiao, Q.H., Li, T.D., et al., 2019. Magmatism and Tectonic Background of Early Permian Intra-Oceanic Arc in Diyanmiao Subduction Accretion Complex Belt in Eastern Margin of Central Asian Orogenic Belt. Earth Science, 44(10): 3454-3468 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910018.htm [2] Feng, Z. Q., Jia, J., Liu, Y. J., et al., 2015. Geochronology and Geochemistry of the Carboniferous Magmatism in the Northern Great Xing'an Range, NE China: Constraints on the Timing of Amalgamation of Xing'an and Songnen Blocks. Journal of Asian Earth Sciences, 113: 411-426. https://doi.org/10.1016/j.jseaes.2014.12.017 [3] Fu, J.Y., Wang, Y., Zhong, H., et al., 2017. Geochemistry and Source Characteristics of Ultramafic Rocks in Tuquan Mangniuhai, Inner Mongolia. Journal of Jilin University (Earth Science Edition), 47(4): 1172-1186 (in Chinese with English abstract). http://www.researchgate.net/publication/319458080_Geochemistry_and_source_characteristics_of_ultramafic_rocks_in_tuquan_mangniuhai_inner_mongolia [4] Herzberg, C., O'hara, M. J., 2002. Plume-Associated Ultramafic Magmas of Phanerozoic Age. Journal of Petrology, 43(10): 1857-1883. https://doi.org/10.1093/petrology/43.10.1857 [5] Huang, B., Fu, D., Li, S.C., et al., 2016. The Age and Tectonic Implications of the Hegenshan Ophiolite in Inner Mongolia. Acta Petrologica Sinica, 32(1): 158-176 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201601021.htm [6] Huang, S. C., Zheng, Y. F., 2017. Mantle Geochemistry: Insights from Ocean Island Basalts. Scientia Sinica Terrae, 47(10): 1125-1152 (in Chinese). doi: 10.1360/N072017-0094 [7] Ishizuka, O., Tani, K., Reagan, M. K., 2014. Izu-Bonin-Mariana Forearc Crust as a Modern Ophiolite Analogue. Elements, 10(2): 115-120. https://doi.org/10.2113/gselements.10.2.115 [8] Jian, P., KrÖner, A., Windley, B. F., et al., 2012. Carboniferous and Cretaceous Mafic-Ultramafic Massifs in Inner Mongolia (China): A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral "Hegenshan Ophiolite". Lithos, 142-143: 48-66. https://doi.org/10.1016/j.lithos.2012.03.007 [9] Jin, S., 2020. Study of Material Composition and Tectonic Properties of the Duerji Tectonic Melange, Inner Mongolia. Acta Geologica Sinica, 94(8): 2227-2242 (in Chinese with English abstract). [10] Kang, J.L., Xiao, Z.B., Wang, H.C., et al., 2016. Late Paleozoic Subduction of the Paleo-Asian Ocean: Geochronological and Geochemical Evidence from the Meta-Basic Volcanics of Xilinhot, Inner Mongolia. Acta Geologica Sinica, 90(2): 383-397 (in Chinese with English abstract). [11] Kamei, A., Owada, M., Nagao, T., et al., 2004. High-Mg Diorites Derived from Sanukitic HMA Magmas, Kyushu Island, Southwest Japan Arc: Evidence from Clinopyroxene and Whole Rock Compositions. Lithos, 75(3-4): 359-371. https://doi.org/10.1016/j.lithos.2004.03.006 [12] Li, J.Y., Gao, L.M., Sun, G.H., et al., 2007. Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates. Acta Petrologica Sinica, 23(3): 565-582 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200703006.htm [13] Li, Y. J., Wang, G. H., Santosh, M., et al., 2018. Supra-Subduction Zone Ophiolites from Inner Mongolia, North China: Implications for the Tectonic History of the Southeastern Central Asian Orogenic Belt. Gondwana Research, 59: 126-143. https://doi.org/10.1016/j.gr.2018.02.018 [14] Li, Y. J., Wang, G. H., Santosh, M., et al., 2020. Subduction Initiation of the SE Paleo-Asian Ocean: Evidence from a Well Preserved Intra-Oceanic Forearc Ophiolite Fragment in Central Inner Mongolia, North China. Earth and Planetary Science Letters, 535: 116087. https://doi.org/10.1016/j.epsl.2020.116087 [15] Li, Y.J., Wang, J.F., Wang, G.H., et al., 2018. Discovery and Significance of the Dahate Fore-Arc Basalts from the Diyanmiao Ophiolite in Inner Mongolia. Acta Petrologica Sinica, 34(2): 469-482 (in Chinese with English abstract). [16] Liu, J. F., Li, J. Y., Chi, X. G., et al., 2013. A Late- Carboniferous to Early Early-Permian Subduction- Accretion Complex in Daqing Pasture, Southeastern Inner Mongolia: Evidence of Northward Subduction beneath the Siberian Paleoplate Southern Margin. Lithos, 177: 285-296. https://doi.org/10.1016/j.lithos.2013.07.008 [17] Liu, J.X., Zhang, T., Xu, L.Q., 2006. Discovery and Significance of the Late-Paleozoic Ultrabasic-Basic Rocks in Haolaoluchang Area, Inner Mongolia. Geological Survey and Research, 29(1): 21-29 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-QHWJ200601003.htm [18] Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013 [19] Pan, G.T., Xiao, Q.H., Zhang, K.X., et al., 2019. Recognition of the Oceanic Subduction-Accretion Zones from the Orogenic Belt in Continents and Its Important Scientific Significance. Earth Science, 44(5): 1544-1561 (in Chinese with English abstract). [20] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [21] Pearce, J.A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2): 101-108. https://doi. org/10.2113/gselements.10.2.101 doi: 10.2113/gselements.10.2.101 [22] Reagan, M. K., Ishizuka, O., Stern, R. J., et al., 2010. Fore-Arc Basalts and Subduction Initiation in the Izu-Bonin-Mariana System. Geochemistry, Geophysics, Geosystems, 11(3): Q03X12. https://doi.org/10.1029/2009gc002871 [23] Reagan, M. K., McClelland, W. C., Girard, G., et al., 2013. The Geology of the Southern Mariana Fore-Arc Crust: Implications for the Scale of Eocene Volcanism in the Western Pacific. Earth and Planetary Science Letters, 380: 41-51. https://doi.org/10.1016/j.epsl.2013.08.013 [24] Schmidt, M. W., Jagoutz, O., 2017. The Global Systematics of Primitive Arc Melts. Geochemistry, Geophysics, Geosystems, 18(8): 2817-2854. https://doi.org/10.1002/2016gc006699 [25] Shao, J.A., Tian, W., Tang, K.D., et al., 2015. Petrogenesis and Tectonic Settings of the Late Carboniferous High Mg Basalts of Inner Mongolia. Earth Science Frontiers, 22(5): 171-181 (in Chinese with English abstract). [26] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [27] Sun, F.T., Liu, C., Qiu, D.M., et al., 2018. Petrogenesis and Geodynamic Significance of Intermediate-Basic Intrusive Rocks in Xiaokuile River, Eastern Slope of the Great Xing'an Range: Evidences of Zircon U-Pb Geochronology, Elements and Hf Isotope Geochemistry. Journal of Jilin University (Earth Science Edition), 48(1): 145-164 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201801011.htm [28] Wang, J.F., Li, Y.J., Li, H.Y., et al., 2020. Late Carboniferous Intraoceanic Subduction of the Paleo-Asian Ocean: New Evidences from the Zagayin High-Mg Andesite in the Meilaotewula SSZ Ophiolite. Geological Review, 66(2): 289-306 (in Chinese with English abstract). [29] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022 [30] Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. https://doi.org/10.1016/0012-821x(80)90116-8 [31] Wu, F. Y., Zhao, G. C., Sun, D. Y., et al., 2007. The Hulan Group: Its Role in the Evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 30(3-4): 542-556. https://doi.org/10.1016/j.jseaes.2007.01.003 [32] Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589 [33] Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2007. The Discrimination between Continental Basalt and Island Arc Basalt Based on Geochemical Method. Acta Petrologica et Mineralogica, 26(1): 77-89 (in Chinese with English abstract). [34] Xiao, Q.H., Li, T.D., Pan, G.T., et al., 2016. Petrologic Ideas for Identification of Ocean-Continent Transition: Recognition of Intra-Oceanic Arc and Initial Subduction. Geology in China, 43(3): 721-737 (in Chinese with English abstract). [35] Xiao, W.J., Song, D.F., Windley, B.F., et al., 2019. Research Progresses of the Accretionary Processes and Metallogenesis of the Central Asian Orogenic Belt. Scientia Sinica Terrae, 49(10): 1512-1545 (in Chinese). doi: 10.1360/SSTe-2019-0133 [36] Xiao, W. J., Windley, B. F., Huang, B. C., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217. https://doi.org/10.1007/s00531-008-0407-z [37] Xu, B., Wang, Z.W., Zhang, L.Y., et al., 2018. The Xing-Meng Intracontinent Orogenic Belt. Acta Petrologica Sinica, 34(10): 2819-2844 (in Chinese with English abstract). http://www.researchgate.net/publication/330638061_The_Xing-Meng_Intracontinent_Orogenic_Belt [38] Xu, Y. G., Wang, Q., Tang, G. J., et al., 2020. The Origin of Arc Basalts: New Advances and Remaining Questions. Scientia Sinica Terrae, 50(12): 1818-1844 (in Chinese). doi: 10.1360/SSTe-2020-0032 [39] Yang, B., Zhang, B., Zhang, Q.K., et al., 2018. Characteristics and Geological Significance of Early Carboniferous High-Mg Andesites in Ma'anshan Area, East Inner Mongolia. Geological Bulletin of China, 37(9): 1760-1770 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201809023.htm [40] Zhang, Q., 2014. Classifications of Mafic-Ultramafic Rocks and Their Tectonic Significance. Chinese Journal of Geology (Scientia Geologica Sinica), 49(3): 982-1017 (in Chinese with English abstract). [41] Zhang, Z. C., Li, K., Li, J. F., et al., 2015. Geochronology and Geochemistry of the Eastern Erenhot Ophiolitic Complex: Implications for the Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt. Journal of Asian Earth Sciences, 97: 279-293. https://doi.org/10.1016/j.jseaes.2014.06.008 [42] Zhao, Z., Chi, X.G., Liu, J.F., et al., 2010. Late Paleozoic Arc-Related Magmatism in Yakeshi Region, Inner Mongolia: Chronological and Geochemical Evidence. Acta Petrologica Sinica, 26(11): 3245-3258 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=1003851227 [43] 程杨, 肖庆辉, 李廷栋, 等, 2019. 中亚造山带东缘迪彦庙俯冲增生杂岩带早二叠世洋内弧岩浆作用及构造背景. 地球科学, 44(10): 3454-3468. doi: 10.3799/dqkx.2019.085 [44] 付俊彧, 汪岩, 钟辉, 等, 2017. 内蒙古突泉县牤牛海地区超镁铁质岩地球化学及源区特征. 吉林大学学报(地球科学版), 47(4): 1172-1186. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201704017.htm [45] 黄波, 付冬, 李树才, 等, 2016. 内蒙古贺根山蛇绿岩形成时代及构造启示. 岩石学报, 32(1): 158-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201601021.htm [46] 黄士春, 郑永飞, 2017. 地幔地球化学: 洋岛玄武岩制约. 中国科学: 地球科学, 47(10): 1125-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201710001.htm [47] 金松, 2020. 内蒙古杜尔基构造混杂岩物质组成及构造属性研究. 地质学报, 94(8): 2227-2242. doi: 10.3969/j.issn.0001-5717.2020.08.005 [48] 康健丽, 肖志斌, 王惠初, 等, 2016. 内蒙古锡林浩特早石炭世构造环境: 来自变质基性火山岩的年代学和地球化学证据. 地质学报, 90(2): 383-397. doi: 10.3969/j.issn.0001-5717.2016.02.014 [49] 李锦轶, 高立明, 孙桂华, 等, 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束. 岩石学报, 23(3): 565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm [50] 李英杰, 王金芳, 王根厚, 等, 2018. 内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意义. 岩石学报, 34(2): 469-482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201802019.htm [51] 刘建雄, 张彤, 许立权, 2006. 内蒙古好老鹿场地区晚古生代超基性-基性岩的发现及意义. 地质调查与研究, 29(1): 21-29. doi: 10.3969/j.issn.1672-4135.2006.01.003 [52] 潘桂棠, 肖庆辉, 张克信, 等, 2019. 大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义. 地球科学, 44(5): 1544-1561. doi: 10.3799/dqkx.2019.063 [53] 邵济安, 田伟, 唐克东, 等, 2015. 内蒙古晚石炭世高镁玄武岩的成因和构造背景. 地学前缘, 22(5): 171-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505017.htm [54] 孙凡婷, 刘晨, 邱殿明, 等, 2018. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义: 锆石U-Pb年代学、元素和Hf同位素地球化学证据. 吉林大学学报(地球科学版), 48(1): 145-164. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201801011.htm [55] 王金芳, 李英杰, 李红阳, 等, 2020. 古亚洲洋晚石炭世俯冲作用: 梅劳特乌拉蛇绿岩中扎嘎音高镁安山岩证据. 地质论评, 66(2): 289-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002004.htm [56] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [57] 夏林圻, 夏祖春, 徐学义, 等, 2007. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩. 岩石矿物学杂志, 26(1): 77-89. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200701010.htm [58] 肖庆辉, 李廷栋, 潘桂棠, 等, 2016. 识别洋陆转换的岩石学思路: 洋内弧与初始俯冲的识别. 中国地质, 43(3): 721-737. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201603003.htm [59] 肖文交, 宋东方, Windley, B.F., 等, 2019. 中亚增生造山过程与成矿作用研究进展. 中国科学: 地球科学, 49(10): 1512-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910003.htm [60] 徐备, 王志伟, 张立杨, 等, 2018. 兴蒙陆内造山带. 岩石学报, 34(10): 2819-2844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810002.htm [61] 徐义刚, 王强, 唐功建, 等, 2020. 弧玄武岩的成因: 进展与问题. 中国科学: 地球科学, 50(12): 1818-1844. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012009.htm [62] 杨宾, 张彬, 张庆奎, 等, 2018. 内蒙古东部马鞍山地区早石炭世高镁安山岩特征及地质意义. 地质通报, 37(9): 1760-1770. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201809023.htm [63] 张旗, 2014. 镁铁‒超镁铁岩的分类及其构造意义. 地质科学, 49(3): 982-1017. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201403023.htm [64] 赵芝, 迟效国, 刘建峰, 等, 2010. 内蒙古牙克石地区晚古生代弧岩浆岩: 年代学及地球化学证据. 岩石学报, 26(11): 3245-3258. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011007.htm