Fluid Activity and Pressure Evolution Process of Wufeng-Longmaxi Shales, Southern Sichuan Basin
-
摘要: 流体活动及压力演化对于页岩气的富集或改造具有重要指示意义.以川南五峰组-龙马溪组页岩为研究对象,基于岩心和显微岩相学观察、流体包裹体分析测试、盆地数值模拟等方法,研究流体活动及压力演化过程.结果表明:川南五峰组-龙马溪组页岩脉体充填的矿物主要为方解石及部分石英,脉体矿物中捕获了丰富的有机包裹体,见到发黄色、蓝色荧光的气液两相烃类包裹体、黑色的沥青包裹体和不发荧光的天然气包裹体,结合盐水包裹体的温度和盐度,说明该区经历了两期以上流体充注,包括一期石油和一期天然气充注.晚白垩世-古近纪前,五峰组-龙马溪组压力系数达到最大值,后泸州区块压力系数始终保持在2.0以上,宁西区块超压在古近纪以后释放为常压.结合埋藏史和热成熟史,得到石油和天然气的充注时间分别为晚二叠世-早三叠世和侏罗纪.泸州区块主断层未切穿区域盖层,且晚新生代抬升剥蚀量相对较低,整体保存条件较好;而宁西区块主断层在印支末期-燕山期构造运动中活化并切穿了区域盖层,新生代构造抬升剥蚀对保存条件和压力系统改造明显.Abstract: Fluid activity and pressure evolution are important indicators for shale gas enrichment or destruction. Based on core observation and petrographic method, the mineral filling sequence of Wufeng-Longmaxi shales in Ningxi and Luzhou area, southern Sichuan Basin is determined. On this basis, combined with fluid inclusion tests, the stages and characteristics of fluid activities in the reservoir are analyzed. Finally, Basin Modeling is used to recover the evolution of formation pressure under complex structural background. The results show that fractures are mainly filled with calcite, and quartz is found in some veins. Abundant hydrocarbon bearing inclusions are observed in vein minerals, including yellow or blue fluorescent gas-liquid hydrocarbon inclusions, black bitumen inclusions and natural gas inclusions. At least two phases of fluid filling have been detected in both Ningxi Block and Luzhou Block, including one stage of oil filling in Late Permian to Early Triassic and one stage of natural gas filling in Jurassic. Before Paleogene deposition, the formation pressure coefficient of Wufeng-Longmaxi Formation had reached the maximum value. The main fault in Luzhou Block did not cut through the regional cap rock, and the amount of uplift and erosion in Late Cenozoic was relatively low. Therefore, the overall preservation conditions of Luzhou Block are good, and the current pressure coefficient is above 2.0. However, the main fault in Ningxi Block was activated and cut through the regional cap rock during the late Indosinian-Yanshanian movements, and was obviously reformed by Cenozoic tectonic uplift and denudation, resulting in overpressure release.
-
Key words:
- southern Sichuan Basin /
- Wufeng-Longmaxi Formations /
- shale gas /
- fluid inclusion /
- overpressure /
- basin modeling /
- petroleum geology
-
图 2 五峰组-龙马溪组页岩脉体发育特征
a. 黑色页岩中被方解石充填的高角度构造缝,NX202井,3 889.83 m,龙马溪组,岩心照片;b. 单偏光下无色、阴极发光呈暗橘红色的方解石,NX202井,3 889.83 m,龙马溪组,阴极发光;c. 黑色页岩中被方解石充填的多期构造缝,NX202井,3 932.75 m,龙马溪组,岩心照片;d. 单偏光下无色、阴极发光呈橘红色的方解石,NX202井,3 932.75 m,龙马溪组,岩心照片;e. 黑色页岩中顺层充填的方解石、石英脉体,D201井,3 678.75 m,龙马溪组;f. 单偏光下无色、阴极光下分别呈橘红色的方解石和蓝紫色的石英,D201井,3 678.75 m,龙马溪组;g. 黑色页岩中被方解石、石英充填的剪节理,D201井,3 683.77 m,龙马溪组;h. 单偏光下无色、阴极光下分别呈橘红色的方解石和蓝紫色的石英,D201井,3 683.77 m,龙马溪组
Fig. 2. Development characteristics of veins in Wufeng-Longmaxi shales
图 3 五峰组-龙马溪组页岩流体包裹体显微照片
a. 方解石中带状分布的天然气包裹体和盐水包裹体,NX202井,3 889.83 m,龙马溪组,单偏光;b. 方解石中带状分布的沥青包裹体和盐水包裹体,NX202井,3 889.83 m,龙马溪组,单偏光;c. 方解石中独立分布的气液两相烃类包裹体,NX202井,3 932.75 m,龙马溪组,单偏光;d. 方解石中独立分布发黄色荧光的烃类包裹体,NX202井,3 932.75 m,龙马溪组,荧光;e. 方解石和石英中密集分布的烃类包裹体,D201井,3 678.75 m,龙马溪组,单偏光;f. 方解石和石英中密集分布发黄色荧光的烃类包裹体,D201井,3 678.75 m,龙马溪组,荧光;g. 石英中带状分布的气液两相烃类包裹体和盐水包裹体,D201井,3 683.77 m,龙马溪组,单偏光;h. 石英中发蓝色荧光的烃类包裹体,D201井,3 683.77 m,龙马溪组,荧光
Fig. 3. Micrographs of fluid inclusions in Wufeng-Longmaxi shales
图 6 川南典型页岩气井现今地层压力系数
a.压力系数与测试产量关系图;b.压力系数与埋深关系图(据马新华等,2020)
Fig. 6. Formation pressure coefficient of typical shale gas wells, southern Sichuan Basin
表 1 五峰组-龙马溪组页岩流体包裹体测试数据
Table 1. Test data of fluid inclusions in Wufeng-Longmaxi shales
井号 包裹体期次 共生有机包裹体 大小(μm) 气/液比(%) 均一温度(℃) 盐度(NaCl, %) D201 第一期 油、沥青包裹体 2~3 2~3 98.6~108.4 3.2~11.9 第二期 无 2~17 3~7 121.3~139.6 8.1~13.6 第三期 气包裹体 3~15 5~8 165.3~191.8 6.9~11.9 NX202 第一期 油、沥青包裹体 1~5 3~6 100.6~108.6 9.5~11.3 第二期 油、沥青包裹体 1~15 3~5 120.2~147.6 9.9~19.0 第三期 气包裹体 1~15 3~6 155.3~188.3 6.2~13.1 第四期 无 3~9 6~10 191.5~218.3 16.4~19.4 表 2 BasinMod选择模型、输入参数及拟合结果
Table 2. Selection model, input parameters and fitting results of BasinMod
模型选择 compaction method fluid flow pressure method statoil fluid flow geothermal calculation transient heat flow 输入参数 井号 D201 NX202 地表温度 20.6 ℃ 20.6 ℃ 晚白垩世以来剥蚀厚度 3 000 m 2 800 m 现今热流 58 mW/m2 55 mW/m2 TOC 龙马溪组3.02% 龙马溪组2.95% 拟合效果 D201 井底(3 710 m)温度 井底(3 710 m)压力 实测值 137.0 ℃ 77.4 MPa 拟合值 137.3 ℃ 77.8 MPa -
[1] Bao, H. Y., Zhang, B. Q., Zeng, L. B., et al., 2019. Marine Shale Gas Differential Enrichment Structure Models in South China. Earth Science, 44(3): 993-1000 (in Chinese with English abstract). [2] Berger, G. W., York, D., 1981. Geothermometry from Dating Experiments. Geochimica et Cosmochimica Acta, 45(6): 795-811. https://doi.org//10.1016/0016-7037(81)90109-5 [3] Deng, B., He, Y., Huang, J. Q., et al., 2019. Eastward Growth of the Longmenshan Fold-and-Thrust Belt: Evidence from the Low-Temperature Thermochronometer Model. Acta Geologica Sinica, 93(7): 1588-1600 (in Chinese with English abstract). [4] Deng, B., Liu S. G., Wang, G. Z., et al., 2013. Cenozoic Uplift and Exhumation in Southern Sichuan Basin-Evidence from Low-Temperature Thermochronology. Chinese Journal of Geophysics, 56(6): 1958-1973 (in Chinese with English abstract). http://manu39.magtech.com.cn/Geophy/EN/Y2013/V56/I6/1958 [5] Gao, J., Zhang, J. K., He, S., et al., 2019. Overpressure Generation and Evolution in Lower Paleozoic Gas Shales of the Jiaoshiba Region, China: Implications for Shale Gas Accumulation. Marine and Petroleum Geology, 102(6): 844-859. https://doi.org//10.1016/j.marpetgeo.2019.01.032 [6] Guo, T. L., 2013. Evaluation of Highly Thermally Mature Shale-Gas Reservoirs in Complex Structural Parts of the Sichuan Basin. Journal of Earth Science, 24(6): 863-873. https://doi.org//10.1007/s12583-013-0384-4 [7] Guo, T. L., Zhang, H. R., 2014. Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin. Petroleum Exploration and Development, 41(1): 28-36 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380414600033 [8] Guo, Z. W., Deng, K. L., Han, Y. H., 1996. The Formation and Development of Sichuan Basin. Geological Publishing House, Beijing (in Chinese). [9] Hall, D. L., Sterner, S. M., Bodnar, R. J., 1988. Freezing Point Depression of NaCl-KCl-H2O Solutions. Economic Geology, 83(1): 197-202. https://doi.org//10.2113/gsecongeo.83.1.197 [10] He, X. P., Gao, Y. Q., Tang, X. C., et al., 2017. Analysis of Major Factors Controlling the Accumulation in Normal Pressure Shale Gas in the Southeast of Chongqing. Natural Gas Geoscience, 28(4): 654-664 (in Chinese with English abstract). https://www.researchgate.net/publication/283808736_Major_factors_controlling_the_accumulation_and_high_productivity_in_marine_shale_gas_in_the_lower_paleozoic_of_Sichuan_Basin_and_its_periphery_A_case_study_of_the_Wufeng-Longmaxi_Formation_of_Jiaoshib [11] Hu, D. F., Zhang, H. R., Ni K., et al., 2014. Main Controlling Factors for Gas Preservation Conditions of Marine Shales in Southeastern Margins of the Sichuan Basin. Natural Gas Industry, 34(6): 17-23 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201406003.htm [12] Li, S. J., Yuan, Y. S., Sun, W., et al., 2016. The Formation and Destroyment Mechanism of Shale Gas Overpressure and Its Main Controlling Factors in Silurian of Sichuan Basin. Natural Gas Geoscience, 27(5): 924-931 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201605021.htm [13] Li, W., He, S., Zhang, B. Q., et al., 2018. Characteristics of Paleo-Temperature and Paleo-Pressure of Fluid Inclusions in Shale Composite Veins of Longmaxi Formation at the Western Margin of Jiaoshiba Anticline. Acta Petrolei Sinica, 39(4): 402-415 (in Chinese with English abstract). https://www.researchgate.net/publication/327766622_Characteristics_of_paleo-temperature_and_paleo-pressure_of_fluid_inclusions_in_shale_composite_veins_of_Longmaxi_Formation_at_the_western_margin_of_Jiaoshiba_anticline [14] Li, X. Q., Zhao P., Sun, J., et al., 2013. Study on the Accumulation Conditions of Shale Gas From the Lower Paleozoic in the South Region of Sichuan Basin. Journal of China Coal Society, 38(5): 864-869 (in Chinese with English abstract). https://www.researchgate.net/publication/263181359_Study_on_the_accumulation_conditions_of_shale_gas_from_the_Lower_Paleozoic_in_the_south_region_of_Sichuan_Basin [15] Liu, H. L., Wang, H. Y., Fang, C. H., et al., 2016. The Formation Mechanism of Over-Pressure Reservoir and Target Screening Index of the Marine Shale in the South China. Earth Science Frontiers, 23(2): 48-54 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-TDKX201603005.htm [16] Liu, R. B., 2015. Analyses of Influences on Shale Reservoirs of Wufeng-Longmaxi Formation by Overpressure in the South-Eastern Part of Sichuan Basin. Acta Sedimentologica Sinica, 33(4): 817-827 (in Chinese with English abstract). [17] Liu, S. G., Deng, B., Zhong, Y., et al, 2016. Unique Geological Features of Burial and Superimposition of the Lower Paleozoic Shale Gas across the Sichuan Basin and Its Periphery. Earth Science Frontiers, 23(1): 11-28 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201601004.htm [18] Liu, W. P., Zhou, Z., Wu, J., et al, 2020. Hydrocarbon Generation and Shale Gas Accumulation in the Wufeng-Longmaxi Formations, Changning Shale-Gas Field, Southern Sichuan Basin. Journal of Nanjing University(Natural Science), 56(3): 393-404 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0264817217301769 [19] Liu, W. P., Wu, J., Jiang, H., et al., 2021. Cenozoic Exhumation and Shale-Gas Enrichment of the Wufeng-Longmaxi Formation in the Southern Sichuan Basin, Western China. Marine and Petroleum Geology, 125(1-2): 104865. https://doi.org//10.1016/j.marpetgeo.2020.104865 [20] Liu, Z., Hao, F., Liu, X., et al., 2021. Development Characteristics and Geological Significance of High Density Methane Inclusions in the Long 1st Period in the Ningxi Area, Southern Sichuan Basin. Earth Science, 46(9): 3157-3171(in Chinese with English abstract). [21] Lu, H. Z., Fan, H. R., Ni, P., 2004. Fluid Inclusion. Science Press, Beijing (in Chinese). [22] Ma, X. H., Xie, J., 2018. The Progress and Prospects of Shale Gas Exploration and Exploitation in Southern Sichuan Basin, NW China. Petroleum Exploration and Development, 45(1): 161-169 (in Chinese with English abstract). [23] Ma, X. H., Xie, J., Yong, R., 2020. Geological Characteristics and High Production Control Factors of Shale Gas in Silurian Longmaxi Formation, Southern Sichuan Basin, SW China. Petroleum Exploration and Development, 47(5): 1-15 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380420601057 [24] Ma, Y. S., Cai, X. Y., Zhao, P. R, 2018. China's Shale Gas Exploration and Development: Understanding and Practice. Petroleum Exploration and Development, 45(4): 561-574 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S187638041830065X [25] Ni, K., 2016. Cause of Pressure Difference in Marine Shale Gas Reservoirs, Southern Sichuan Basin. Natural Gas Technology and Economy, 10(3): 28-30 (in Chinese with English abstract). [26] Nie, H. K., Zhang, B. Q., Liu, G. X., et al., 2020. Geological Factors Contributing to High Shale Gas Yield in the Wufeng-Longmaxi Fms of Sichuan Basin: A Case Study of Well JY6-2HF in Fuling Shale Gas Field. Oil & Gas Geology, 41(1): 1-11 (in Chinese with English abstract). [27] Pang, H. Q., Xiong, L., Wei, L. M., et al., 2019. Analysis of the Main Geological Factors for the Enrichment and High Yield of Deep Shale Gas In South Sichuan: A Case Study of Weirong Shale Gas Field. Natural Gas Industry, 39(S1): 78-84 (in Chinese with English abstract). https://www.researchgate.net/publication/328850715_Main_geological_controlling_factors_of_shale_gas_enrichment_and_high_yield_in_Zhaotong_demonstration_area [28] Wang, Q., Wei, X. F., Wei, F. B., et al., 2019. Overpressure in Shale Gas Reservoirs of Wufeng-Longmaxi Formations, Fuling Area, Southeastern Sichuan Basin. Petroleum Geology and Experiment, 41(3): 333-340 (in Chinese with English abstract). [29] Wu, J., Liu, S. G., Wang, G. Z., et al., 2016. Multi-Stage Hydrocarbon Accumulation and Formation Pressure Evolution in Sinian Dengying Formation-Cambrian Longwangmiao Formation, Gaoshiti-Moxi Structure, Sichuan Basin. Journal of Earth Science, 27(5): 835-845. https://doi.org//10.1007/s12583-016-0706-4 [30] Yan, L. Y., Zheng, Y., Wang, C. M., et al., 2019. Application of Fluid Inclusions Methodology in the Shale Gas Study: A Review. Journal of Geomechanics, 25(S1): 103-107 (in Chinese with English abstract). [31] Yang, H. Z., Zhao, S. X., Liu, Y., et al., 2019. Main Controlling Factors of Enrichment and High-Yield of Deep Shale Gas in the Luzhou Block, Southern Sichuan Basin. Natural Gas Industry, 39(11): 55-63 (in Chinese with English abstract). [32] Zhang, Y.Q., Liu, L., 2021. Insights into the Formation Mechanism of Low Water Saturation in Longmaxi Shale in the Jiaoshiba Area, Eastern Sichuan Basin. Journal of Earth Science, 32(4): 863-871. https://doi.org/10.1007/s12583-020-1353-3 [33] 包汉勇, 张柏桥, 曾联波, 等, 2019. 华南地区海相页岩气差异富集构造模式. 地球科学, 44(3): 993-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903026.htm [34] 邓宾, 刘树根, 王国芝, 等, 2013. 四川盆地南部地区新生代隆升剥露研究——低温热年代学证据. 地球物理学报, 56(6): 1958-1973. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306019.htm [35] 邓宾, 何宇, 黄家强, 等, 2019. 龙门山褶皱冲断带扩展生长过程——基于低温热年代学模型证据. 地质学报, 93(7): 1588-1600. doi: 10.3969/j.issn.0001-5717.2019.07.004 [36] 郭彤楼, 张汉荣, 2014. 四川盆地焦石坝页岩气田形成与富集高产模式. 石油勘探与开发, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm [37] 郭正吾, 邓康龄, 韩永辉, 1996. 四川盆地形成与演化. 北京: 地质出版社. [38] 何希鹏, 高玉巧, 唐显春, 等, 2017. 渝东南地区常压页岩气富集主控因素分析. 天然气地球科学, 28(4): 654-664. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201704021.htm [39] 胡东风, 张汉荣, 倪楷, 等, 2014. 四川盆地东南缘海相页岩气保存条件及其主控因素. 天然气工业, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm [40] 李双建, 袁玉松, 孙炜, 等, 2016. 四川盆地志留系页岩气超压形成与破坏机理及主控因素. 天然气地球科学, 27(5): 924-931. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201605021.htm [41] 李文, 何生, 张柏桥, 等, 2018. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征. 石油学报, 39(4): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htm [42] 李贤庆, 赵佩, 孙杰, 等, 2013. 川南地区下古生界页岩气成藏条件研究. 煤炭学报, 38(5): 864-869. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305028.htm [43] 刘洪林, 王红岩, 方朝合, 等, 2016. 中国南方海相页岩气超压机制及选区指标研究. 地学前缘, 23(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602008.htm [44] 刘若冰, 2015. 超压对川东南地区五峰组-龙马溪组页岩储层影响分析. 沉积学报, 33(4): 817-827. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201504022.htm [45] 刘树根, 邓宾, 钟勇, 等, 2016. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用. 地学前缘, 23(1): 11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601004.htm [46] 刘文平, 周政, 吴娟, 等, 2020. 川南盆地长宁页岩气田五峰组-龙马溪组成藏动力学过程及其意义. 南京大学学报(自然科学), 56(3): 393-404. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202003008.htm [47] 柳卓, 郝芳, 刘鑫, 等, 2021. 川南宁西地区龙一段高密度甲烷包裹体发育特征及地质意义. 地球科学, 46(9): 3157-3171. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202109009.htm [48] 卢焕章, 范宏瑞, 倪培, 等, 2004. 流体包裹体. 北京: 科学出版社. [49] 马新华, 谢军, 2018. 川南地区页岩气勘探开发进展及发展前景. 石油勘探与开发, 45(1): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801020.htm [50] 马新华, 谢军, 雍锐, 2020. 四川盆地南部龙马溪组页岩气地质特征及高产控制因素. 石油勘探与开发, 47(5): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005003.htm [51] 马永生, 蔡勋育, 赵培荣, 2018. 中国页岩气勘探开发理论认识与实践. 石油勘探与开发, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm [52] 倪楷, 2016. 川南地区海相页岩气层压力差异原因分析. 天然气技术与经济, 10(3): 28-30. doi: 10.3969/j.issn.2095-1132.2016.03.008 [53] 聂海宽, 张柏桥, 刘光祥, 等, 2020. 四川盆地五峰组-龙马溪组页岩气高产地质原因及启示——以涪陵页岩气田JY6-2HF为例. 石油与天然气地质, 41(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003004.htm [54] 庞河清, 熊亮, 魏力民, 等, 2019. 川南深层页岩气富集高产主要地质因素分析——以威荣页岩气田为例. 天然气工业, 39(S1): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1014.htm [55] 王强, 魏祥峰, 魏富彬, 等, 2019. 川东南涪陵地区五峰组-龙马溪组页岩气藏中的超压作用. 石油实验地质, 41(3): 333-340. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201903006.htm [56] 严礼宇, 郑义, 王成明, 等, 2019. 流体包裹体方法在页岩气研究中的应用. 地质力学学报, 25(S1): 103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX2019S1017.htm [57] 杨洪志, 赵圣贤, 刘勇, 等, 2019. 泸州区块深层页岩气富集高产主控因素. 天然气工业, 39(11): 55-63. doi: 10.3787/j.issn.1000-0976.2019.11.007