Fluid Inclusion Constraints on Ore-Forming Mechanism of Lujing Uranium Deposit in Jiangxi-Hunan Border Region
-
摘要:
位于南岭成矿带南西部的鹿井矿床是华南热液型铀矿的典型代表. 为查明其成矿流体来源、性质与演化以及成矿机制,开展了不同成矿阶段石英、萤石及方解石中流体包裹体的显微测温和不同阶段石英的氢-氧同位素分析. 矿床地质特征表明成矿过程可划分为(Ⅰ)粗晶石英+黄铁矿±绿泥石±绢云母、(Ⅱ)沥青铀矿+硫化物+绿泥石+绢云母+暗灰色微晶石英、(Ⅲ)紫黑色萤石+肉红色方解石+灰色微晶石英+赤铁矿+铀石±黄铁矿和(Ⅳ)梳状石英+浅色萤石+白色方解石四个阶段;其中阶段Ⅱ和Ⅲ代表成矿主阶段. 成矿早阶段和主阶段捕获水溶液包裹体和少量含CO2包裹体,而晚阶段仅见水溶液包裹体. 早、主、晚阶段包裹体的均一温度依次为186~317、169~236、149~189℃,盐度依次为9.9~12.9、6.3~9.9、4.5~7.0 wt% NaCleqv. 成矿流体自早阶段至晚阶段逐渐由中低温、中低盐度的NaCl-H2O-CO2体系演化为低温、低盐度的NaCl-H2O体系,期间由压力降低引发的流体沸腾作用是重要的成矿机制. H-O同位素数据表明,初始成矿流体来自岩浆水与大气降水的混合,成矿过程伴随着大气降水的持续加入.
Abstract:The Lujing uranium deposit located in the southwestern part of the Nanling metallogenic belt is a representative granite-related hydrothermal uranium deposit in South China. In this paperit presents new detailed fluid inclusion and H-O isotope data to constrain the source, nature, and evolution of the ore-forming fluids and reveal the ore-forming mechanism. Four stages of mineralization have been identified in the Lujing deposit: (Ⅰ) macrocrystalline quartz+pyrite+chlorite+sericite, (Ⅱ) pitchblende+sulfide+chlorite+sericite+microcrystalline quartz, (Ⅲ) purple-black fluorite+reddish calcite+microcrystalline quartz+hematite+coffinite+pyrite, and (Ⅳ) comb quartz+light-green fluorite+white calcite. The stages Ⅱ and Ⅲ represent the main uranium mineralization. The early and main stages of mineralization contain aqueous inclusions and a small amount of CO2-bearing inclusions, whereas the late stage of mineralization contains only aqueous inclusions. The fluid inclusions in early-stage quartz have homogenization temperature of 186-317 ℃ and salinities of 9.9-12.9 wt% NaCleqv. The fluid inclusions in the quartz, fluorite, and calcite forming the main stage have homogenization temperatures of 169-236 ℃ and salinities of 6.3-9.9 wt% NaCleqv. The fluid inclusions in late-stage quartz, fluorite, and calcite have homogenization temperatures of 149-189 ℃ and salinities of 4.5-7.0 wt% NaCleqv. The ore-forming fluid system evolved from a CO2-H2O-NaCl system in the early stage to a NaCl-H2O system in the late stage. Fluid boiling was the dominant mechanism for uranium precipitation. The H-O isotope results indicate that the initial ore-forming fluid is the mixture of magmatic water and meteoric water, and the meteoric water was continuously added to the ore-forming fluids during mineralization.
-
Key words:
- fluid inclusion /
- ore-forming fluid /
- uranium deposit /
- Lujing /
- Zhuguangshan /
- mineral deposit
-
图 1 研究区大地构造位置示意图(据张敏等,2006修改)
Fig. 1. Tectonic position of the study area (modified from Zhang et al., 2006)
图 3 鹿井铀矿床地质简图(a)与剖面示意图(b)(据邵飞等,2013修改)
Fig. 3. Geological sketch map of the Lujing uranium deposit (a) and schematic geologic section of Lujing uranium deposit (b) (modified from Shao et al., 2013)
图 8 鹿井矿床成矿流体的δ18$ {\mathrm{O}}_{{\mathrm{H}}_{2}\mathrm{O}}\mathrm{-}\mathtt{δ}{\mathrm{D}}_{{\mathrm{H}}_{2}\mathrm{O}} $图解(据Taylor,1997)
Fig. 8. δ18$ {\mathrm{O}}_{{\mathrm{H}}_{2}\mathrm{O}}\mathrm{-}\mathtt{δ}{\mathrm{D}}_{{\mathrm{H}}_{2}\mathrm{O}} $ plot of ore-forming fluids from the Lujing deposit (from Taylor, 1997)
表 1 鹿井矿床流体包裹体显微测温数据
Table 1. Microthermometric data for fluid inclusions of the Lujing deposit
成矿阶段 测试矿物 类型 数量(个) 大小(μm) Tm, ice(℃) Th, TOT(℃) 盐度(wt% NaCleqv) 密度(g/cm3) 早阶段 石英 W 37 3~10 -9.0 ~ -6.5 186~317 9.9~12.9 0.86~0.97 主阶段 紫黑色萤石、肉红色方解石 W 60 5~10 -6.5 ~ -3.9 169~236 6.3~9.9 0.86~0.95 晚阶段 浅色萤石、白色方解石 W 29 3~12 -4.4 ~ -2.7 149~189 4.5~7.0 0.90~0.95 注:Tm, ice为冰点温度,Th, TOT为完全均一温度. 表 2 鹿井矿床各成矿阶段石英的H-O同位素组成
Table 2. Hydrogen and oxygen isotopic compositions of fluid inclusions in quartz samples from the Lujing deposit
序号 样号 成矿阶段 δD (‰) δ18Oquartz (‰) T (℃) δ18$ {\mathrm{O}}_{{\mathrm{H}}_{2}\mathrm{O}} $ (‰) 1 LK5-1 早阶段 -68.8 13.6 233 3.8 2 1002 -56.3 12.9 3.1 3 LK5-2 主阶段 -63.5 12.7 198 0.9 4 LK-11 -60.6 12.7 0.9 5 XD-3 晚阶段 -65.7 8.7 174 -4.8 6 LJ-7 -59.1 8.5 -5.0 7 LK-16 -60.9 6.3 -7.2 注:测试样品均为石英;T代表各成矿阶段包裹体的平均均一温度. -
[1] Anderson, M. R., Rankin, A. H., Spiro, B., 1992. Fluid Mixing in the Generation of Mesothermal Gold Mineralisation in the Transvaal Sequence, Transvaal, South Africa. European Journal of Mineralogy, 4(5): 933-948. https://doi.org/10.1127/ejm/4/5/0933 [2] Bodnar, R. J., 1983. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids. Economic Geology, 78(3): 535-542. https://doi.org/10.2113/gsecongeo.78.3.535 [3] Chai, P., Sun, J. G., Xing, S. W., et al., 2016. Ore Geology, Fluid Inclusion and 40Ar/39Ar Geochronology Constraints on the Genesis of the Yingchengzi Gold Deposit, Southern Heilongjiang Province, NE China. Ore Geology Reviews, 72: 1022-1036. https://doi.org/10.1016/j.oregeorev.2015.09.026 [4] Chai, P., Hou, Z. Q., Zhang, H. R., et al., 2019a. Geology, Fluid Inclusion, and H-O-S-Pb Isotope Constraints on the Mineralization of the Xiejiagou Gold Deposit in the Jiaodong Peninsula. Geofluids, 1-23. https://doi.org/10.1155/2019/3726465 [5] Chai, P., Zhang, H. R., Dong, L. L., et al., 2019b. Geology and Ore-Forming Fluids of the Dayingezhuang Gold Deposit, Jiaodong Peninsula, Eastern China: Implications for Mineral Exploration. Journal of Geochemical Exploration, 204: 224-239. https://doi.org/10.1016/j.gexplo.2019.06.001 [6] Chai, P., Zhang, H. R., Hou, Z. Q., et al., 2020. Ore Geology, Fluid Inclusion, and Stable Isotope Constraints on the Origin of the Damoqujia Gold Deposit, Jiaodong Peninsula, China. Canadian Journal of Earth Sciences, 57(12): 1428-1446. https://doi.org/10.1139/cjes-2018-0247 [7] Chen, X.D., Liu, X., Deng, G.Q., et al., 2002. Mesozoic- Cenozoic Continental Strike-Slip Fault System and Its Roles on Uranium Mineralization in Hunan and Guangxi, China. Geotectonica et Metallogenia, 26(4): 345-353 (in Chinese with English abstract). [8] Clayton, R. N., O'Neil, J. R., Mayeda, T. K., 1972. Oxygen Isotope Exchange between Quartz and Water. Journal of Geophysical Research, 77(17): 3057-3067. https://doi.org/10.1029/jb077i017p03057 [9] Deng, P., Ren, J. S., Ling, H. F., et al., 2012. SHRIMP Zircon U-Pb Ages and Tectonic Implications for Indosinian Granitoids of Southern Zhuguangshan Granitic Composite, South China. Chinese Science Bulletin, 57(13): 1542-1552. https://doi.org/10.1007/s11434-011-4951-8 [10] Han, J., Wang, Y.B., Wang, D.H., et al., 2011. Age and Genesis of the Granite in the Huangfengling Uranium Deposit, Jiangxi Province: Evidence from Zircon U-Pb Dating and Hf Isotopes. Geology and Exploration, 47(2): 284-293 (in Chinese with English abstract). [11] Hu, R.Z., Bi, X.W., Peng, J.T., et al., 2007. Some Problems Concerning Relationship between Mesozoic-Cenozoic Lithospheric Extension and Uranium Metallogenesis in South China. Mineral Deposits, 26(2): 139-152 (in Chinese with English abstract). [12] Hu, R.Z., Bi, X.W., Su, W.C., et al., 2004. The Relationship between Uranium Metallogenesis and Crustal Extension during the Cretaceous-Tertiary in South China. Earth Science Frontiers, 11(1): 153-160 (in Chinese with English abstract). [13] Hu, R. Z., Bi, X. W., Zhou, M. F., et al., 2008. Uranium Metallogenesis in South China and Its Relationship to Crustal Extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583-598. https://doi.org/10.2113/gsecongeo.103.3.583 [14] Jiang, H.A., Zou, M.L., Ouyang, P.N., et al., 2020. 40Ar-39Ar Age of the Late Stage Veins in Central Zhuguangshan Pluton of South China and Its Relationship with Uranium Metallogenesis. Geological Bulletin of China, 39(5): 728-734 (in Chinese with English abstract). [15] Li, J.W., Li, Z.J., Fu, Z.R., et al., 2000. Heat Sources and Hydrothermal Uranium Mineralization in the Suichuan-Reshui Strike-Slip Fault Zone. Geological Science and Technology Information, 19(3): 39-43 (in Chinese with English abstract). [16] Li, L., Sun, J. G., Men, L. J., et al., 2016. Origin and Evolution of the Ore-Forming Fluids of the Erdaogou and Xiaobeigou Gold Deposits, Jiapigou Gold Province, NE China. Journal of Asian Earth Sciences, 129: 170-190. https://doi.org/10.1016/j.jseaes.2016.08.009 [17] Li, X.F., Li, J.W., Fu, Z.R., 1999. Uranium Mineralization Related to Strike-Slip Faults, Lujing Orefield, Border Region between Eastern Hunan and Western Jiangxi. Earth Science, 24(5): 476-479 (in Chinese with English abstract). [18] Li, X. H., 2000. Cretaceous Magmatism and Lithospheric Extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293-305. https://doi.org/10.1016/s1367-9120(99)00060-7 [19] Li, X.H., Hu, R.Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. Geochimica, 26(2): 14-31 (in Chinese with English abstract). [20] Li, Z.J., Fu, Z.R., Li, J.W., 1998. Dynamic System Analysis of Metallogenesis of NNE-Trending Strike-Slip Fault-Fluid-Uranium Mineralization in Hunan-Jiangxi Border Region. Geoscience, 12(4): 522-531 (in Chinese with English abstract). [21] Ling, H.F., 2011. Origin of Hydrothermal Fluids of Granite-Type Uranium Deposits: Constraints from Redox Conditions. Geological Review, 57(2): 193-206 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201102005.htm [22] Liu, H.B., Jin, G.S., Li, J.J., et al., 2013. Determination of Stable Isotope Composition in Uranium Geological Samples. World Nuclear Geoscience, 30(3): 174-179 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-GWYD201303011.htm [23] Lu, H.Z., 2008. Role of CO2 Fluid in the Formation of Gold Deposits: Fluid Inclusion Evidences. Geochimica, 37(4): 321-328 (in Chinese with English abstract). [24] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid Inclusions. Science Press, Beijing (in Chinese). [25] Luo, J. C., Hu, R. Z., Fayek, M., et al., 2015a. In-Situ SIMS Uraninite U-Pb Dating and Genesis of the Xianshi Granite-Hosted Uranium Deposit, South China. Ore Geology Reviews, 65: 968-978. https://doi.org/10.1016/j.oregeorev.2014.06.016 [26] Luo, J. C., Hu, R. Z., Shi, S. H., 2015b. Timing of Uranium Mineralization and Geological Implications of Shazijiang Granite-Hosted Uranium Deposit in Guangxi, South China: New Constraint from Chemical U-Pb Age. Journal of Earth Science, 26(6): 911-919. https://doi.org/10.1007/s12583-015-0542-y [27] Luo, Y., Wang, M.T., Li, J.H., et al., 2002. Geological Characteristics and Metallogenetic Model of Zhuguang Uranium Ore Concentrated Area. China Nuclear Science and Technology Report, (1): 220-235 (in Chinese with English abstract). [28] Ma, W., Liu, Y.C., Yang, Z.S., et al., 2019. Characteristics of Ore-Forming Fluids of Lietinggang-Leqingla Pb-Zn-Fe-Cu-Mo Polymetallic Deposit in Tibetan: Evidence from Fluid Inclusions and Stable Isotope Compositions. Earth Science, 44(6): 1957-1973 (in Chinese with English abstract). [29] Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004. Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China. Earth Science Frontiers, 11(1): 45-55 (in Chinese with English abstract). https://www.researchgate.net/publication/307904169_Mesozoic_large_scale_mineralization_and_multiple_lithospheric_extension_in_South_China [30] Min, M. Z., Luo, X. Z., Du, G. S., et al., 1999. Mineralogical and Geochemical Constraints on the Genesis of the Granite-Hosted Huangao Uranium Deposit, SE China. Ore Geology Reviews, 14(2): 105-127. https://doi.org/10.1016/s0169-1368(98)00020-1 [31] Ohmoto, H., 1986. Stable Isotope Geochemistry of Ore Deposits. Reviews in Mineralogy and Geochemistry, 16(6): 491-559. [32] Roedder, E., 1984. Fluid Inclusions. In: Ribbe, P.H., ed., Reviews in Mineralogy. Mineralogical Society of American, Michigan. [33] Shao, F., Xu, J.J., Mao, Y.F., et al., 2013. Study on Mineral Discharge Mechanism of Granite Type Uranium Deposits in South China Uranium Metallogenic Province. Uranium Geology, 29(3): 146-151, 171 (in Chinese with English abstract). [34] Shao, F., Zhu, Y.G., Guo, H.S., et al., 2010. Analysis on Geological Characteristics of Uranium Metallization and Prospecting Potential in Lujing Orefield. Uranium Geology, 26(5): 295-300 (in Chinese with English abstract). [35] Sheppard, S.M.F., 1986. Characterization and Isotopic Variations in Natural Waters. Reviews in Mineralogy and Geochemistry, 16(3): 165-183. [36] Taylor, H.P., 1997. Oxygen and Hydrogen Isotope Relationships in Hydrothermal Mineral Deposits. In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley, New York. [37] Wang, M.T., Luo, Y., Sun, Z.F., et al., 1999. Discussion on Genesis of Uranium Deposits in Zhuguang Uranium Metallogenic Region. Uranium Geology, 15(5): 279-285 (in Chinese with English abstract). [38] Wang, Z. G., Wang, K. Y., Wan, D., et al., 2017. Genesis of the Tianbaoshan Pb-Zn-Cu-Mo Polymetallic Deposit in Eastern Jilin, NE China: Constraints from Fluid Inclusions and C-H-O-S-Pb Isotope Systematics. Ore Geology Reviews, 80: 1111-1134. https://doi.org/10.1016/j.oregeorev.2016.08.026 [39] Wang, Z. L., Yang, L. Q., Guo, L. N., et al., 2015. Fluid Immiscibility and Gold Deposition in the Xincheng Deposit, Jiaodong Peninsula, China: A Fluid Inclusion Study. Ore Geology Reviews, 65: 701-717. https://doi.org/10.1016/j.oregeorev.2014.06.006 [40] Xavier, R. P., Foster, R. P., 1999. Fluid Evolution and Chemical Controls in the Fazenda Maria Preta (FMP) Gold Deposit, Rio Itapicuru Greenstone Belt, Bahia, Brazil. Chemical Geology, 154(1-4): 133-154. https://doi.org/10.1016/s0009-2541(98)00128-4 [41] Xie, G. Q., Hu, R. Z., Mao, J. W., et al., 2006. K-Ar Dating, Geochemical, and Sr-Nd-Pb Isotopic Systematics of Late Mesozoic Mafic Dikes, Southern Jiangxi Province, Southeast China: Petrogenesis and Tectonic Implications. International Geology Review, 48(11): 1023-1051. https://doi.org/10.2747/0020-6814.48.11.1023 [42] Yang, S.H., 2008. Uranium Metallogenic Features and Prospecting Potentialities in the Areas around Shabazi Uranium Deposit in Nanling Metallogenic Belt. World Nuclear Geoscience, 25(4): 195-202 (in Chinese with English abstract). [43] Zhang, M., Chen, P.R., Chen, W.F., 2006. Uranium Metallogenic Characteristics and Discussion on Metallogenic Setting of Uranium Plutons in Northern Guangdong Province. Geology of Chemical Minerals, 28(1): 9-14 (in Chinese with English abstract). [44] Zhang, W.L., He, X.M., Lü, C., et al., 2011. Analysis on the Metallogenic Feature and Ore-Controlling Factors in Lujing Uranium Orefield. Uranium Geology, 27(2): 81-87 (in Chinese with English abstract). [45] Zhang, W.L., Lü, C., Wei, J.W., 2010. Analysis on the Metallogenic Feature and Genesis of Lujing Uranium Ore-Field. Mineral Deposits, 29(S1): 162-164 (in Chinese). [46] Zhang, X. T., Pan, J. Y., Xia, F., et al., 2018. Genesis and Metallogenic Process of the Lujing Uranium Deposit, Southwest Jiangxi Province, China: Constraints of Micropetrography and S-C-O Isotopes. Resource Geology, 68(3): 303-325. https://doi.org/10.1111/rge.12171 [47] Zhang, X. T., Sun, J. G., Han, J. L., et al., 2021. Genesis and Ore-Forming Process of the Benqu Mesothermal Gold Deposit in the Jiapigou Ore Cluster, NE China: Constraints from Geology, Geochronology, Fluid Inclusions, and Whole-Rock and Isotope Geochemistry. Ore Geology Reviews, 130: 103956. https://doi.org/10.1016/j.oregeorev.2020.103956 [48] Zhang, Z.H., Li, S.C., Jian, X.P., 1999. Analysis on Space Emplacement Condition of Lujing Uranium Ore Field. Uranium Geology, 15(6): 338-343 (in Chinese with English abstract). [49] Zhao, J. H., Hu, R. Z., Liu, S., 2004. Geochemistry, Petrogenesis, and Tectonic Significance of Mesozoic Mafic Dikes, Fujian Province, Southeastern China. International Geology Review, 46(6): 542-557. https://doi.org/10.2747/0020-6814.46.6.542 [50] Zhong, F.J., Pan, J.Y., Wu, J.H., et al., 2019. Petrogenesis and Its Relationship with Uranium Mineralization of Gabbro-Diorite in Changjiang Uranium Ore-Field, Northern Guangdong Province, China. Earth Science, 44(9): 3042-3059 (in Chinese with English abstract). [51] Zhu, B., 2010. The Study of Mantle Liquid and Uranium Metallogenesis-Take Uranium Ore Field of South Zhuguang Mountain as an Example (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [52] Zhu, B.Q., Chang, X.Y., Hu, Y.G., et al., 2001.56 Ma: An Important Transition Age for Extension of the Cathayisan Lithosphere and Open of the South China Sea. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 251-252 (in Chinese with English abstract). [53] 陈小东, 刘翔, 邓国泉, 等, 2002. 湘桂地区中新生代走滑断裂系统对铀成矿的控制作用. 大地构造与成矿学, 26(4): 345-353. doi: 10.3969/j.issn.1001-1552.2002.04.002 [54] 韩娟, 王彦斌, 王登红, 等, 2011. 江西黄蜂岭铀矿床花岗岩时代、成因: 锆石U-Pb年龄和Hf同位素证据. 地质与勘探, 47(2): 284-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201102021.htm [55] 胡瑞忠, 毕献武, 彭建堂, 等, 2007. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题. 矿床地质, 26(2): 139-152. doi: 10.3969/j.issn.0258-7106.2007.02.001 [56] 胡瑞忠, 毕献武, 苏文超, 等, 2004. 华南白垩-第三纪地壳拉张与铀成矿的关系. 地学前缘, 11(1): 153-160. doi: 10.3321/j.issn:1005-2321.2004.01.012 [57] 蒋红安, 邹明亮, 欧阳平宁, 等, 2020. 华南诸广山岩体中段岩脉40Ar-39Ar年龄及与铀成矿关系. 地质通报, 39(5): 728-734. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202005014.htm [58] 李建威, 李紫金, 傅昭仁, 等, 2000. 遂川-热水走滑断裂带热异常与热液铀成矿作用. 地质科技情报, 19(3): 39-43. doi: 10.3969/j.issn.1000-7849.2000.03.008 [59] 李先福, 李建威, 傅昭仁, 1999. 湘赣边鹿井矿田与走滑断层有关的铀矿化作用. 地球科学, 24(5): 476-479. doi: 10.3321/j.issn:1000-2383.1999.05.008 [60] 李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004 [61] 李紫金, 傅昭仁, 李建威, 1998. 湘赣边区NNE向走滑断裂-流体-铀成矿动力学分析. 现代地质, 12(4): 522-531. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ804.010.htm [62] 凌洪飞, 2011. 论花岗岩型铀矿床热液来源: 来自氧逸度条件的制约. 地质论评, 57(2): 193-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201102005.htm [63] 刘汉彬, 金贵善, 李军杰, 等, 2013. 铀矿地质样品的稳定同位素组成测试方法. 世界核地质科学, 30(3): 174-179. doi: 10.3969/j.issn.1672-0636.2013.03.009 [64] 卢焕章, 2008. CO2流体与金矿化: 流体包裹体的证据. 地球化学, 37(4): 321-328. doi: 10.3321/j.issn:0379-1726.2008.04.006 [65] 卢焕章, 范宏瑞, 倪培, 等, 2004. 流体包裹体. 北京: 科学出版社. [66] 罗毅, 王明太, 李建红, 等, 2002. 诸广铀矿集区成矿地质特征及成矿模式. 中国核科技报告, (1): 220-235. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBG200200039.htm [67] 马旺, 刘英超, 杨竹森, 等, 2019. 西藏列廷冈-勒青拉铅锌铁铜钼矿床成矿流体特征: 来自流体包裹体及碳氢氧同位素的证据. 地球科学, 44(6): 1957-1973. doi: 10.3799/dqkx.2019.041 [68] 毛景文, 谢桂青, 李晓峰, 等, 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55. doi: 10.3321/j.issn:1005-2321.2004.01.003 [69] 邵飞, 许健俊, 毛玉峰, 等, 2013. 华南铀成矿省花岗岩型铀矿矿质卸载机制研究. 铀矿地质, 29(3): 146-151, 171. doi: 10.3969/j.issn.1000-0658.2013.03.004 [70] 邵飞, 朱永刚, 郭湖生, 等, 2010. 鹿井矿田铀成矿地质特征及找矿潜力分析. 铀矿地质, 26(5): 295-300. doi: 10.3969/j.issn.1000-0658.2010.05.007 [71] 王明太, 罗毅, 孙志富, 等, 1999. 诸广铀成矿区矿床成因探讨. 铀矿地质, 15(5): 279-285. doi: 10.3969/j.issn.1000-0658.1999.05.004 [72] 杨尚海, 2008. 南岭成矿带沙坝子矿床外围铀成矿特征与找矿前景. 世界核地质科学, 25(4): 195-202. doi: 10.3969/j.issn.1672-0636.2008.04.002 [73] 张敏, 陈培荣, 陈卫锋, 2006. 粤北地区产铀岩体的铀矿化特征及其成矿机制探讨. 化工矿产地质, 28(1): 9-14. doi: 10.3969/j.issn.1006-5296.2006.01.002 [74] 张万良, 何晓梅, 吕川, 等, 2011. 鹿井铀矿田成矿地质特征及控矿因素. 铀矿地质, 27(2): 81-87. doi: 10.3969/j.issn.1000-0658.2011.02.004 [75] 张万良, 吕川, 韦金文, 2010. 鹿井铀矿田成矿地质特征及成因. 矿床地质, 29(S1): 162-164. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1086.htm [76] 张振华, 李顺初, 翦勋平, 1999. 鹿井铀矿田空间定位条件分析. 铀矿地质, 15(6): 338-343. doi: 10.3969/j.issn.1000-0658.1999.06.003 [77] 钟福军, 潘家永, 巫建华, 等, 2019. 粤北长江铀矿田辉长闪长岩的岩石成因及其与铀成矿的关系. 地球科学, 44(9): 3042-3059. doi: 10.3799/dqkx.2017.592 [78] 朱捌, 2010. 地幔流体与铀成矿作用研究: 以诸广山南部铀矿田为例(博士学位论文). 成都: 成都理工大学. [79] 朱炳泉, 常向阳, 胡跃国, 等, 2001. 56 Ma: 华南岩石圈伸展和南海张开的重要转折时间. 矿物岩石地球化学通报, 20(4): 251-252. doi: 10.3969/j.issn.1007-2802.2001.04.013