Microstructure and Trace Elements of Pyrite from Sanshandao Gold Deposit in Jiaodong District: Implications for Mechanism of Gold Enrichment
-
摘要:
三山岛金矿床是位于胶东金矿集区西北部的超大型破碎带蚀变岩型金矿床. 该矿床细致的矿相学及元素地球化学研究尚有不足,限制了对其金富集机制及过程的理解. 基于野外地质调查和室内矿相学研究将该矿床划分为4个成矿阶段:石英-绢云母-黄铁矿阶段(Ⅰ)、石英-金-黄铁矿阶段(Ⅱ)、石英-金-多金属硫化物阶段(Ⅲ)和碳酸盐-石英阶段(Ⅳ). 黄铁矿是该矿床主要载金矿物,其中第Ⅰ阶段黄铁矿(Py1)呈自形且基本无变形,As、Au含量较低;第Ⅱ阶段黄铁矿(Py2)可分为未变形或弱变形的Py2a和强烈变形的Py2b两种类型,Au和As在Py2a中含量高,而在Py2b中含量降低;第Ⅲ阶段黄铁矿(Py3)分为与石英共生的细粒黄铁矿Py3a和与多金属硫化物共生的Py3b两个亚世代,均变形较弱,Au、As含量中等. 黄铁矿原位微量元素分析指示Co、Ni和Ag以固溶体形式进入黄铁矿晶格,而Pb、Zn、Cu主要以硫化物包裹体形式存在. 黄铁矿裂隙和粒间发育大量以银金矿为主的可见金,是该矿床中金的主要赋存状态. 不可见金主要为黄铁矿中晶格金,且其与As关系密切:As-替代黄铁矿内的S-使得黄铁矿晶格发生畸变,并促使Au+进入到黄铁矿晶格中. 第Ⅱ阶段成矿流体减压沸腾导致金沉淀并以包体金、晶隙金的形式与Py2a共生. 受成矿期构造活动影响,第Ⅱ阶段Py2b发生的位错蠕变、晶格旋转等应变行为可促进晶内形成一种“快速通路”,通过晶内扩散或流体介导将黄铁矿内不可见金活化,并在黄铁矿颗粒的微裂缝或晶隙中再富集为可见金.
Abstract:The Sanshandao gold deposit, located in the northwest of Jiaodong district, is a super-large altered-rock type gold deposit. The lack of detailed studies of mineralogy and element geochemistry in this deposit limits the understanding of Au enrichment mechanism and process. Based on field work and mineralogical observation in the deposit, the Au mineralization is divided into four stages: the quartz-sericite-pyrite stage (Ⅰ), quartz-gold-pyrite stage (Ⅱ), quartz-gold-polymetallic sulfide stage (Ⅲ) and carbonate-quartz stage (Ⅳ). The main gold-bearing mineral is pyrite. Py1 in stage Ⅰ is characterized by euhedral grains with no deformation and low contents of As and Au. In stage Ⅱ, the Py2 can be divided into two sub-generations: coarse Py2a with no deformation and Py2b with massive plastic and brittle deformation. The contents of Au and As are high in Py2a and low in Py2b.In stage Ⅲ, the Py3 includes fine-grained euhedral Py3a coexisting with quartz and Py3b coexisting with polymetallic sulfide, both with weak deformation and medium Au and As contents. In-situ trace element analysis of pyrite indicates Co, Ni and Ag entering pyrite lattice by forming solid solution, whereas Pb, Zn and Cu mainly presenting as sulfide inclusions. The main occurrence state of gold is visible Au that occurs in the cracks and intergranular space of pyrite as electrum. The invisible Au in pyrite is lattice gold, and its enrichment is closely related to As. To be specific, As- replacing S- entered into pyrite, resulting in lattice distortion of pyrite, which prompted the Au+ into the pyrite lattice. The decompression boiling of ore-forming fluids in stage Ⅱ resulted in Au precipitation and intergrowth with Py2a as visible inclusions and intergranular gold. The plastic deformation of Py2b in stage Ⅱ induced by syn-activation of ore-controlling fault, such as dislocation creep, lattice rotation, promoted the formation of intracrystalline "fast pathways", and further remobilized invisible Au through intragrain diffusion or fluid-mediated liberation. The remobilized Au re-concentrated as visible gold in microfractures and boundaries of pyrite grains, which contributes to the formation of high-grade gold ores in Sanshandao.
-
Key words:
- pyrite /
- trace element /
- Sanshandao gold deposit /
- EBSD /
- mineral deposit
-
图 1 华北克拉通(a)和胶东金矿区(b)地质简图(据Li et al., 2018修改)
Fig. 1. Simplified geological maps of the North China Craton (a) and Jiaodong gold province (b) (modified from Li et al., 2018)
图 2 三山岛矿床地质特征
a.三山岛断裂地质特征(据邓军等,2010);b.三山岛金矿床地质简图(据Hu et al. 2013修改)
Fig. 2. The geologic map of Sanshandao gold deposit
图 4 三山岛金矿床矿石矿相学特征
a. Ⅰ阶段石英(Qz)+绢云母(Ser)+黄铁矿(Py1)组合,少量热液金红石(Rt);b. Ⅱ阶段未变形的粗粒黄铁矿(Py2a)和晶隙金(Au);c. Ⅱ阶段黄铁矿(Py2a、Py2b)及包体金和裂隙金(Au);d. Ⅱ阶段黄铁矿(Py2b)呈碎裂结构,充填了黄铜矿(Ccp)、闪锌矿(Sp)等硫化物和银金矿(El);e、f. Ⅲ阶段石英‒多金属硫化物脉内黄铁矿(Py3a、Py3b)与闪锌矿(Sp)和石英(Qz)共生,共同切割Ⅱ阶段石英‒黄铁矿脉
Fig. 4. The mineralography characteristics of the ores in the Sanshandao gold deposit
图 7 各世代黄铁矿EBSD测试结果
a. Py1反射光照片;b. Py1的AE图,暗蓝色区域被标定为一个颗粒;c. Py1的TC图,整个晶体不显晶体取向差异;d. 边部弱变形的Py2a反射光照片;e. Py2a晶体AE图,绿色部分为一个颗粒;f. Py2a晶体TC图,取向差边部(4°~6°)较大,颗粒周围2°~10°部分作为Py2b;g. Py2b反射光照片;h. Py2b的AE图,主体为一个颗粒,少数欧拉角变化较大;i. Py2b的TC+BC图,取向差连续变化(0°~12°),箭头给出了图k的剖面线;j. 图i中颗粒的极图,箭头给出了旋转方向,a0和b0为旋转轴;k. 图i中线段的取向差剖面;l. Py3b反射光照片;m. Py3b的TC图,显示 < 2°的晶内取向差异
Fig. 7. The EBSD results for pyrite in different generations
表 1 三山岛金矿黄铁矿LA⁃ICP⁃MS微量元素分析结果
Table 1. The LA-ICP-MS data of pyrite from the Sanshandao gold deposit
黄铁矿世代 样品号 Au As Ag Co Ni Cu Zn Pb Sb Te Bi 0.015[1] 0.412[1] 0.048[1] 0.012[1] 0.136[1] 0.414[1] 1.045[1] 0.061[1] 0.024[1] 0.233[1] 0.010[1] Py1 SSD‒2‒1 001 0.12 98.43 4.01 0.17 73.58 1 007.98 354.42 290.90 0.35 2.54 15.71 SSD‒2‒1 002 0.13 54.76 13.60 0.17 120.98 4.71 ‒ 105.83 1.67 4.92 9.65 SSD‒2‒1 003 0.06 14.66 8.60 0.06 8.02 1 341.78 35.20 10.59 0.37 0.62 3.80 SSD‒2‒1 004 nd 107.14 nd 0.16 13.13 0.85 ‒ 0.13 nd 0.86 0.02 SSD‒2‒1 006 0.04 198.16 8.17 ‒ 0.47 329.50 18.29 568.60 0.37 1.13 13.76 Py2a SSD‒5‒4 001 0.34 3 451.28 17.01 nd 1.39 257.37 5.93 26.49 3.23 0.24 0.58 SSD‒5‒4 003 0.39 594.35 38.05 0.60 2.12 259.54 966.86 493.20 53.69 1.33 21.20 SSD‒5‒4 006 0.52 2 539.66 8.37 0.03 0.34 20.05 2.09 85.54 8.97 0.46 1.64 SSD‒5‒4 010 0.81 2 203.63 54.69 0.65 2.86 101.81 77.96 1 138.10 86.25 1.35 20.24 SSD‒5‒4 011 0.34 3 049.76 6.46 0.04 0.85 9.92 2.39 54.40 5.75 0.40 0.71 SSD‒5‒4 014 0.61 3 799.72 ‒ nd 0.56 ‒ ‒ nd ‒ ‒ nd SSD‒8‒1 004 0.65 1 772.29 89.37 0.02 2.43 95.52 22.39 28 257.00 25.65 ‒ 202.20 SSD‒9‒1 002 0.58 1 264.51 36.50 0.05 0.54 73.82 3.58 7 424.10 45.10 nd 35.89 SSD‒9‒1 005 0.35 1 447.80 32.02 0.27 2.01 94.57 ‒ 681.60 45.69 ‒ 10.59 Py2b SSD‒5‒4 002 0.13 198.08 6.59 1.71 2.48 14.26 3.37 29.58 5.39 0.62 1.30 SSD‒5‒4 004 0.14 1 577.08 18.00 0.11 2.62 16.38 5500.46 7616.00 9.29 0.35 12.26 SSD‒5‒4 005 0.34 740.94 8.63 0.03 0.99 60.74 6.10 162.30 8.44 0.47 1.70 SSD‒5‒4 012 0.05 1 067.39 1.02 0.02 0.96 2.21 ‒ 6.90 0.94 ‒ 0.15 SSD‒5‒4 015 0.13 1 646.47 22.57 ‒ 0.19 19.90 ‒ 32.31 5.23 nd 0.49 SSD‒8‒1 001 0.12 2 264.75 1.33 0.66 36.60 3.13 ‒ 14.06 2.17 ‒ 0.62 SSD‒8‒1 002 0.18 1 081.45 21.29 1.20 32.24 2 539.03 8.55 3 768.50 7.26 ‒ 24.45 SSD‒8‒1 003 0.09 996.71 1.77 44.35 280.75 3.12 ‒ 51.36 3.00 ‒ 4.35 SSD‒9‒1 001 0.19 583.87 12.11 0.01 ‒ 436.15 51.49 1 766.11 3.75 nd 8.21 SSD‒9‒1 003 0.51 1 177.90 10.45 nd nd 1 039.79 18.84 1 451.70 6.83 ‒ 14.31 SSD‒9‒1 004 0.12 1 995.83 4.11 0.08 0.43 9.05 ‒ 35.85 9.08 ‒ 0.90 SSD‒9‒1 006 0.21 1 899.42 6.23 0.02 0.15 19.92 ‒ 117.53 11.42 nd 2.06 Py3 SSD‒5‒4 007 0.17 412.84 9.43 ‒ 0.70 326.07 7.94 908.21 3.10 ‒ 4.66 SSD‒5‒4 008 0.20 2 478.58 3.34 ‒ ‒ 5.93 ‒ 17.95 2.15 ‒ 0.42 SSD‒5‒4 009 0.40 2 765.01 84.74 ‒ 1.41 25.78 ‒ 57 992.00 13.54 0.37 123.68 SSD‒5‒4 016 0.19 213.13 5.14 ‒ 1.51 8.34 ‒ 17.54 2.81 ‒ 0.96 SSD‒5‒4 017 0.18 2 261.84 3.44 ‒ 0.14 4.76 ‒ 13.78 1.75 ‒ 0.32 SSD‒5‒4 018 0.38 2 729.76 83.88 ‒ 1.11 25.38 ‒ 57 010.65 14.19 0.35 122.77 注:nd表示未测出,“‒”表示可检出但低于检出限,元素含量单位为10‒6.数据[1]表示元素检出限. -
[1] Barrie C. D., Boyle A. P., Prior D. J. . 2007. An Analysis of the Microstructures Developed in Experimentally Deformed Polycrystalline Pyrite and Minor Sulphide Phases Using Electron Backscatter Diffraction. Journal of Structural Geology, 29(9): 1494-1511. https://doi.org/10.1016/j.jsg.2007.05.005 [2] Barrie C. D., Boyle A. P., Salter M. . 2009. How Low can You Go?-Extending Downwards the Limits of Plastic Deformation in Pyrite. Mineralogical Magazine, 73(6): 895-913. https://doi.org/10.1180/minmag.2009.073.6.895 [3] Belousov I., Large R. R., Meffre S., et al. 2016. Pyrite Compositions from VHMS and Orogenic Au Deposits in the Yilgarn Craton, Western Australia: Implications for Gold and Copper Exploration. Ore Geology Reviews, 79: 474-499. https://doi.org/10.1016/j.oregeorev.2016.04.020 [4] Bi S.J., Li Z.K., Tang K.F., et al. 2016. LA-ICP-MS In Situ Trace Element Analysis of Pyrite from Dongtongyu Gold Deposit and Its Metallogenic Significance, Xiaoqinling Gold District. Earth Science, 41(7): 1121-1140 (in Chinese with English abstract). [5] Boyle A. P., Prior D. J., Banham M. H., et al. 1998. Plastic Deformation of Metamorphic Pyrite: New Evidence from Electron-Backscatter Diffraction and Forescatter Orientation-Contrast Imaging. Mineralium Deposita, 34(1): 71-81. https://doi.org/10.1007/s001260050186 [6] Bralia A., Sabatini G., Troja F. . 1979. A Revaluation of the Co/Ni Ratio in Pyrite as Geochemical Tool in Ore Genesis Problems. Mineralium Deposita, 14(3): 353-374. https://doi.org/10.1007/bf00206365 [7] Chen Y.J., Pirajno F., Lai Y., et al. 2004. Metallogenic Time and Tectonic Setting of the Jiaodong Gold Province, Eastern China. Acta Petrologica Sinica, 20(4): 907-922 (in Chinese with English abstract). [8] Chen Y. J., Pirajno F., Qi J. P. . 2005. Origin of Gold Metallogeny and Sources of Ore-Forming Fluids, Jiaodong Province, Eastern China. International Geology Review, 47(5): 530-549. https://doi.org/10.2747/0020-6814.47.5.530 [9] Cook N. J., Ciobanu C. L., Mao J. W. . 2009. Textural Control on Gold Distribution in As-Free Pyrite from the Dongping, Huangtuliang and Hougou Gold Deposits, North China Craton (Hebei Province, China). Chemical Geology, 264(1-4): 101-121. https://doi.org/10.1016/j.chemgeo.2009.02.020 [10] Deditius A. P., Reich M., Kesler S. E., et al. 2014. The Coupled Geochemistry of Au and As in Pyrite from Hydrothermal Ore Deposits. Geochimica et Cosmochimica Acta, 140: 644-670. https://doi.org/10.1016/j.gca.2014.05.045 [11] Deditius A. P., Utsunomiya S., Reich M., et al. 2011. Trace Metal Nanoparticles in Pyrite. Ore Geology Reviews, 42(1): 32-46. https://doi.org/10.1016/j.oregeorev.2011.03.003 [12] Deng J., Chen Y.M., Liu Q., et al. 2010. The Gold Metallogenic System and Mineral Resources Exploration of Sanshandao Fault Zone, Shandong Province. Geological Publishing House, Beijing (in Chinese). [13] Deng J., Yang L. Q., Groves D. I., et al. 2020. An Integrated Mineral System Model for the Gold Deposits of the Giant Jiaodong Province, Eastern China. Earth- Science Reviews, 208: 103274. https://doi.org/10.1016/j.earscirev.2020.103274 [14] Deng J., Yang L. Q., Li R. H., et al. 2019. Regional Structural Control on the Distribution of World-Class Gold Deposits: An Overview from the Giant Jiaodong Gold Province, China. Geological Journal, 54(1): 378-391. https://doi.org/10.1002/gj.3186 [15] Ding Z.J., Sun F.Y., Liu F.L., et al. 2015. Mesozoic Geodynamic Evolution and Metallogenic Series of Major Metal Deposits in Jiaodong Peninsula, China. Acta Petrologica Sinica, 31(10): 3045-3080 (in Chinese with English abstract). [16] Fan H.R., Li X.H., Zuo Y.B., et al. 2018. In-Situ LA-(MC)-ICPMS and (Nano) SIMS Trace Elements and Sulfur Isotope Analyses on Sulfides and Application to Confine Metallogenic Process of Ore Deposit. Acta Petrologica Sinica, 34(12): 3479-3496 (in Chinese with English abstract). [17] Fan H. R., Zhai M. G., Xie Y. H., et al. 2003. Ore-Forming Fluids Associated with Granite-Hosted Gold Mineralization at the Sanshandao Deposit, Jiaodong Gold Province, China. Mineralium Deposita, 38(6): 739-750. https://doi.org/10.1007/s00126-003-0368-x [18] Fougerouse D., Micklethwaite S., Tomkins A. G., et al. 2016. Gold Remobilisation and Formation of High Grade Ore Shoots Driven by Dissolution-Reprecipitation Replacement and Ni Substitution into Auriferous Arsenopyrite. Geochimica et Cosmochimica Acta, 178: 143-159. https://doi.org/10.1016/j.gca.2016.01.040 [19] Gao J. F., Zhou M. F., Lightfoot P. C., et al. 2013. Sulfide Saturation and Magma Emplacement in the Formation of the Permian Huangshandong Ni-Cu Sulfide Deposit, Xinjiang, Northwestern China. Economic Geology, 108(8): 1833-1848. https://doi.org/10.2113/econgeo.108.8.1833 doi: 10.1016/j.gca.2016.01.040 [20] Groves D. I., Santosh M. . 2016. The Giant Jiaodong Gold Province: The Key to a Unified Model for Orogenic Gold Deposits? Geoscience Frontiers, 7(3): 409-417. https://doi.org/10.1016/j.gsf.2015.08.002 [21] Gudmundsson A. . 2001. Fluid Overpressure and Flow in Fault Zones: Field Measurements and Models. Tectonophysics, 336(1-4): 183-197. https://doi.org/10.1016/s0040-1951(01)00101-9 [22] Gui F. . 2014. Mineralization Enrichment Regularity and the Genesis Discussed of Sanshaodao Gold Deposit, Shandong Province Laizhou (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [23] Guo C.Y. . 2009. Tectonic Setting, Magmatic Sequence and Fluid of Gold Metallogenic System of the Sanshandao-Cangshang Fault in Jiaodong, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [24] Hu F. F., Fan H. R., Jiang X. H., et al. 2013. Fluid Inclusions at Different Depths in the Sanshandao Gold Deposit, Jiaodong Peninsula, China. Geofluids, 13(4): 528-541. https://doi.org/10.1111/gfl.12065 [25] Li R. H., Wang X. Q., Yang L. Q., et al. 2020. The Characteristic of Microstructural Deformation of Gold Bearing Pyrite in Jiaodong: The Links between Nanoscale Gold Enrichment and Crystal Distortion. Ore Geology Reviews, 122: 103495. https://doi.org/10.1016/j.oregeorev.2020.103495 [26] Li R.H., Yang L.Q., Yun M.H., et al. 2019. Genetic Relationship between Micro-Deformation and Gold Enrichment of Gold-Bearing Pyrite in Jiaodong: Constraint from EBSD Fabrics and Geochemistry. Mineral Deposits, 38(2): 303-318 (in Chinese with English abstract). [27] Li S. R., Santosh M. . 2017. Geodynamics of Heterogeneous Gold Mineralization in the North China Craton and Its Relationship to Lithospheric Destruction. Gondwana Research, 50: 267-292. https://doi.org/10.1016/j.gr.2017.05.007 [28] Li X. H., Fan H. R., Yang K. F., et al. 2018. Pyrite Textures and Compositions from the Zhuangzi Au Deposit, Southeastern North China Craton: Implication for Ore-Forming Processes. Contributions to Mineralogy and Petrology, 173(9): 1-20. https://doi.org/10.1007/s00410-018-1501-2 [29] Li Z.K., Li J.W., Chen L., et al. 2010. Occurrence of Silver in the Shagou Ag-Pb-Zn Deposit, Luoning County, Henan Province: Implications for Mechanism of Silver Enrichment. Earth Science, 35(4): 621-636 (in Chinese with English abstract). [30] Li Z. K., Li J. W., Cooke D. R., et al. 2016. Textures, Trace Elements, and Pb Isotopes of Sulfides from the Haopinggou Vein Deposit, Southern North China Craton: Implications for Discrete Au and Ag-Pb-Zn Mineralization. Contributions to Mineralogy and Petrology, 171(12): 1-26. https://doi.org/10.1007/s00410-016-1309-x [31] Lin Z.W., Zhao X.F., Xiong L., et al. 2019. In-Situ Trace Element Analysis Characteristics of Pyrite in Sanshandao Gold Deposit in Jiaodong Peninsula: Implications for Ore Genesis. Advances in Earth Science, 34(4): 399-413 (in Chinese with English abstract). [32] Liu L.L. . 2017. Characteristic of Ore-Controlling Structure and Distribution of Mineralization Intensity in the Sanshandao Gold Deposit, Jiaodong Peninsula, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [33] Liu Y. S., Hu Z. C., Gao S., et al. 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [34] Liu Y. Z., Yang L. Q., Wang S. R., et al. 2019. Origin and Evolution of Ore-Forming Fluid and Gold-Deposition Processes at the Sanshandao Gold Deposit, Jiaodong Peninsula, Eastern China. Minerals, 189(9): 1-25. https://doi.org/10.3390/min9030189 [35] Luo D. . 2014. Evolution of Ore-Forming Fluids of Sanshandao Gold Deposit, Jiaodong Peninsula, Eastern China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [36] Qiu Y. M., Groves D. I., McNaughton N. J., et al. 2002. Nature, Age, and Tectonic Setting of Granitoid-Hosted, Orogenic Gold Deposits of the Jiaodong Peninsula, Eastern North China Craton, China. Mineralium Deposita, 37(3-4): 283-305. https://doi.org/10.1007/s00126-001-0238-3 [37] Reddy S. M., Hough R. M. . 2013. Microstructural Evolution and Trace Element Mobility in Witwatersrand Pyrite. Contributions to Mineralogy and Petrology, 166(5): 1269-1284. https://doi.org/10.1007/s00410-013-0925-y [38] Reich M., Kesler S. E., Utsunomiya S., et al. 2005. Solubility of Gold in Arsenian Pyrite. Geochimica et Cosmochimica Acta, 69(11): 2781-2796. https://doi.org/10.1016/j.gca.2005.01.011 [39] Seward T. M. . 1973. Thio Complexes of Gold and the Transport of Gold in Hydrothermal Ore Solutions. Geochimica et Cosmochimica Acta, 37(3): 379-399. https://doi.org/10.1016/0016-7037(73)90207-x [40] Song M.C., Cui S.X., Yi P.H., et al. 2010. Jiaoxibei Gold Ore-Concentrated Zone Deep Large-Superlarge Gold Deposits Prospection and Metallogenic Model. Geological Publishing House, Beijing (in Chinese). [41] Song M.C., Lin S.Y., Yang L.Q., et al. 2020. Metallogenic Model of Jiaodong Peninsula Gold Deposits. Mineral Deposits, 39(2): 215-236 (in Chinese with English abstract). [42] Song M.C., Song Y.X., Ding Z.J., et al. 2018. Jiaodong Gold Deposits: Essential Characteristics and Major Controversy. Gold Science and Technology, 26(4): 406-422 (in Chinese with English abstract). [43] Song M.C., Zhang J.J., Zhang P.J., et al. 2015. Discovery and Tectonic-Magmatic Background of Superlarge Gold Deposit in Offshore of Northern Sanshandao, Shandong Peninsula, China. Acta Geologica Sinica, 89(2): 365-383 (in Chinese with English abstract). [44] Tang H. Y., Zheng J. P., Yu C. M., et al. 2014. Multistage Crust-Mantle Interactions during the Destruction of the North China Craton: Age and Composition of the Early Cretaceous Intrusions in the Jiaodong Peninsula. Lithos, 190-191: 52-70. https://doi.org/10.1016/j.lithos.2013.12.002 [45] Wang Q.F., Deng J., Zhao H.S., et al. 2019. Review on Orogenic Gold Deposits. Earth Science, 44(6): 2155-2186 (in Chinese with English abstract). [46] Wang X., Wang Z. C., Cheng H., et al. 2020. Early Cretaceous Lamprophyre Dyke Swarms in Jiaodong Peninsula, Eastern North China Craton, and Implications for Mantle Metasomatism Related to Subduction. Lithos, 368-369: 105593. https://doi.org/10.1016/j.lithos.2020.105593 [47] Wu M. L., Zhao G. C., Sun M., et al. 2014. Zircon U-Pb Geochronology and Hf Isotopes of Major Lithologies from the Jiaodong Terrane: Implications for the Crustal Evolution of the Eastern Block of the North China Craton. Lithos, 190-191: 71-84. https://doi.org/10.1016/j.lithos.2013.12.004 [48] Wu X. D., Zhu G., Yin H., et al. 2020. Origin of Low-Angle Ductile/Brittle Detachments: Examples from the Cretaceous Linglong Metamorphic Core Complex in Eastern China. Tectonics, 39(9): e2020TC006132. https://doi.org/10.1029/2020tc006132 [49] Wu Y. F., Li J. W., Evans K., et al. 2018. Ore- Forming Processes of the Daqiao Epizonal Orogenic Gold Deposit, West Qinling Orogen, China: Constraints from Textures, Trace Elements, and Sulfur Isotopes of Pyrite and Marcasite, and Raman Spectroscopy of Carbonaceous Material. Economic Geology, 113(5): 1093-1132. https://doi.org/10.5382/econgeo.2018.4583 [50] Xu W. G., Fan H. R., Yang K. F., et al. 2016. Exhaustive Gold Mineralizing Processes of the Sanshandao Gold Deposit, Jiaodong Peninsula, Eastern China: Displayed by Hydrothermal Alteration Modeling. Journal of Asian Earth Sciences, 129: 152-169. https://doi.org/10.1016/j.jseaes.2016.08.008 [51] Yang K.F., Zhu J.T., Cheng S.H., et al. 2017. Structural Controls of the Sanshandao Gold Deposit in the Northwestern Jiaodong District, China. Geotectonica et Metallogenia, 41(2): 272-282 (in Chinese with English abstract). [52] Yang L.Q., Deng J., Wang Z.L., et al. 2014. Mesozoic Gold Metallogenic System of the Jiaodong Gold Province, Eastern China. Acta Petrologica Sinica, 30(9): 2447-2467 (in Chinese with English abstract). [53] Yang L. Q., Dilek Y., Wang Z. L., et al. 2018. Late Jurassic, High Ba-Sr Linglong Granites in the Jiaodong Peninsula, East China: Lower Crustal Melting Products in the Eastern North China Craton. Geological Magazine, 155(5): 1040-1062. https://doi.org/10.1017/s0016756816001230 [54] Yang M. Z., Li J. W., Zhao X. F., et al. 2019. Electron Back-Scattered Diffraction and LA-ICP-MS Analysis of Pyrite from the Dahu Lodegold Deposit, Southern North China Craton: Insights into Geochemistry and Distribution of Trace Element Connection to Microstructure of Pyrite. Ore Geology Reviews, 115: 103164. https://doi.org/10.1016/j.oregeorev.2019.103164 [55] Yang Q. Y., Santosh M., Shen J. F., et al. 2014. Juvenile vs. Recycled Crust in NE China: Zircon U-Pb Geochronology, Hf Isotope and an Integrated Model for Mesozoic Gold Mineralization in the Jiaodong Peninsula. Gondwana Research, 25(4): 1445-1468. https://doi.org/10.1016/j.gr.2013.06.003 [56] Zhang L., Li G.W., Zheng X.L., et al. 2016. 40Ar/39Ar and Fission-Track Dating Constraints on the Tectonothermal History of the World-Class Sanshandao Gold Deposit, Jiaodong Peninsula, Eastern China. Acta Petrologica Sinica, 32(8): 2465-2476 (in Chinese with English abstract). [57] Zhao H. X., Frimmel H. E., Jiang S. Y., et al. 2011. LA-ICP-MS Trace Element Analysis of Pyrite from the Xiaoqinling Gold District, China: Implications for Ore Genesis. Ore Geology Reviews, 43(1): 142-153. https://doi.org/10.1016/j.oregeorev.2011.07.006 [58] Zhao R., Wang Q. F., Liu X. F., et al. 2016. Architecture of the Sulu Crustal Suture between the North China Craton and Yangtze Craton: Constraints from Mesozoic Granitoids. Lithos, 266-267: 348-361. https://doi.org/10.1016/j.lithos.2016.10.018 [59] Zhu R.X., Fan H.R., Li J.W., et al. 2015. Decratonic Gold Deposits. Scientia Sinica Terrae, 45(8): 1153-1168 (in Chinese). doi: 10.1360/zd2015-45-8-1153 [60] Zhu Z.X., Zhao X.F., Lin Z.W., et al. 2020. In Situ Trace Elements and Sulfur Isotope Analysis of Pyrite from Jinchiling Gold Deposit in the Jiaodong Region: Implications for Ore Genesis. Earth Science, 45(3): 945-959 (in Chinese with English abstract). [61] 毕诗健, 李占轲, 唐克非, 等. 2016. 小秦岭东桐峪金矿床黄铁矿LA-ICP-MS微量元素特征及其成矿意义. 地球科学, 41(7): 1121-1140. doi: 10.3799/dqkx.2016.093 [62] 陈衍景, Pirajno F., 赖勇, 等. 2004. 胶东矿集区大规模成矿时间和构造环境. 岩石学报, 20(4): 907-922. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200404013.htm [63] 邓军, 陈玉民, 刘钦, 等. 2010. 胶东三山岛断裂带金成矿系统与资源勘查. 北京: 地质出版社. [64] 丁正江, 孙丰月, 刘福来, 等. 2015. 胶东中生代动力学演化及主要金属矿床成矿系列. 岩石学报, 31(10): 3045-3080. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201510011.htm [65] 范宏瑞, 李兴辉, 左亚彬, 等. 2018. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程. 岩石学报, 34(12): 3479-3496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm [66] 桂飞. 2014. 山东莱州三山岛金矿床矿化富集规律及矿床成因探讨(硕士学位论文). 长春: 吉林大学. [67] 郭春影. 2009. 胶东三山岛‒仓上金矿带构造‒岩浆‒流体金成矿系统(博士学位论文). 北京: 中国地质大学. [68] 李瑞红, 杨立强, 恽孟河, 等. 2019. 胶东黄铁矿显微构造变形与金富集关系: 黄铁矿EBSD组构和地球化学约束. 矿床地质, 38(2): 303-318. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201902006.htm [69] 李占轲, 李建威, 陈蕾, 等. 2010. 河南洛宁沙沟Ag-Pb-Zn矿床银的赋存状态及成矿机理. 地球科学, 35(4): 621-636. doi: 10.3799/dqkx.2010.077 [70] 林祖苇, 赵新福, 熊乐, 等. 2019. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示. 地球科学进展, 34(4): 399-413. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201904009.htm [71] 刘龙龙. 2017. 胶东三山岛金矿控矿构造特征和矿化强度分布(硕士学位论文). 北京: 中国地质大学. [72] 罗栋. 2014. 胶东三山岛金矿床成矿流体演化(硕士学位论文). 北京: 中国地质大学. [73] 宋明春, 崔书学, 伊丕厚, 等. 2010. 胶西北金矿集中区深部大型‒超大型金矿找矿与成矿模式. 北京: 地质出版社. [74] 宋明春, 林少一, 杨立强, 等. 2020. 胶东金矿成矿模式. 矿床地质, 39(2): 215-236. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002002.htm [75] 宋明春, 宋英昕, 丁正江, 等. 2018. 胶东金矿床: 基本特征和主要争议. 黄金科学技术, 26(4): 406-422. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201804006.htm [76] 宋明春, 张军进, 张丕建, 等. 2015. 胶东三山岛北部海域超大型金矿床的发现及其构造‒岩浆背景. 地质学报, 89(2): 365-383. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502012.htm [77] 王庆飞, 邓军, 赵鹤森, 等. 2019. 造山型金矿研究进展: 兼论中国造山型金成矿作用. 地球科学, 44(6): 2155-2186. doi: 10.3799/dqkx.2019.105 [78] 杨奎锋, 朱继托, 程胜红, 等. 2017. 胶东三山岛金矿构造控矿规律研究. 大地构造与成矿学, 41(2): 272-282. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201702004.htm [79] 杨立强, 邓军, 王中亮, 等. 2014. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447-2467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409001.htm [80] 张良, 李广伟, 郑小礼, 等. 2016. 胶东三山岛金矿床构造‒热历史: 40Ar/39Ar和裂变径迹年代学制约. 岩石学报, 32(8): 2465-2476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201608016.htm [81] 朱日祥, 范宏瑞, 李建威, 等. 2015. 克拉通破坏型金矿. 中国科学: 地球科学, 45(8): 1153-1168. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508006.htm [82] 朱照先, 赵新福, 林祖苇, 等. 2020. 胶东金翅岭金矿床黄铁矿原位微量元素和硫同位素特征及对矿床成因的指示. 地球科学, 45(3): 945-959. doi: 10.3799/dqkx.2019.057