Study on Protection Scheme of Shield Tunnel Passing through Railway Bridge Pile at a Short Distance
-
摘要: 郑州地铁某盾构区间超近距离侧穿铁路桥梁桩基,受地面空间及隧道与桥桩间净距限制,无法采用隔离桩等常规保护措施.结合工程实际情况提出“盾构通过范围内土体注浆加固”、“桥梁承台加固”以及“注浆+承台加固”三种措施,利用数值模拟手段,对盾构侧穿施工期间,不同保护方案下桥桩的变形规律进行了分析研究.研究结果表明,采用“盾构通过范围内土体注浆加固+承台加固”措施,可使桥面最大沉降值减少约45%,且可减少桥面横桥向不均匀沉降及桥桩水平位移,在很大程度上减少盾构隧道施工对铁路桥梁的不利影响.Abstract: A shield tunnel of Zhengzhou Metro passes through the existing pile foundations of railway bridge at ultra close distance.Due to the limitation of ground space and clear distance between tunnel and bridge pile, conventional protection measures such as isolation pile cannot be adopted.In this paper, three protection measures are put forward, which are "soil grouting reinforcement within the scope of shield passing", "bridge cap reinforcement" and "grouting + bridge cap reinforcement". By means of numerical simulation, the deformation law of bridge piles under different protection measures was analyzed.The results show that the maximum settlement of the bridge deck can be reduced by about 45% by adopting the measures of "grouting + bridge cap reinforcement", besides, the uneven settlement of bridge deck in transverse direction and horizontal displacement of bridge pile can be significantly reduced.
-
Key words:
- grouting reinforcement /
- subway /
- numerical calculation /
- railway bridge pile /
- engineering geology
-
表 1 土层计算参数
Table 1. Calculation parameters of soil
地层岩性 容重(kN/m3) 压缩模量(MPa) 泊松比 摩擦角(°) 粘聚力(kPa) 1-1杂填土 18 3 0.3 5 5 2-33黏质粉土 17.6 9 0.32 22 13.5 3-31黏质粉土 18.8 14.5 0.33 24 14 3-41粉砂 20 16.5 0.4 28 3 3-32黏质粉土 19.4 14.5 0.35 24.5 15 3-22粉质黏土 19.3 9.9 0.25 17 28 3-51细砂 20 22 0.4 32 - 3-23粉质黏土 19.1 10.6 0.28 17.5 29 3-21粉质黏土 19.1 6.2 0.25 16 26 3-24粉质黏土 19.1 11 0.30 18 33 注浆加固体 21 11 0.28 26 58 表 2 材料计算参数
Table 2. Calculation parameters of structure materials
地层岩性 容重(kN/m3) 弹性模量(MPa) 泊松比 摩擦角(°) 粘聚力(kPa) 盾构管片 25 35 500 0.2 - - 桥梁桩基 25 34 500 0.2 - - 承台与桥墩 25 32 000 0.2 - - 铁轨 72 206 000 0.3 -
[1] Deng, D.Y., Hou, J.L., Li, P., et al., 2019. Comparative Analysis of Influence of Shield Tunnel Crossing Bridge Pile Reinforcement Schemes. Shanxi Achitecture, 45(6): 155-157(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JZSX201906082.htm [2] Fu, W.S., Xia, B., Luo, D.M., 2009. Comparison Research on the Effect of Shield Tunnel Traversing Adjacently under the Existing Pile Foundations. Chinese Journal of Underground Space and Engineering, 5(1): 133-138 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dxkj200901026.aspx [3] Guo, Y.B., Zhang, L.M., Zheng, G., et al., 2014. Influence of Shield Tunneling on Working Performance of Large Interchange's Super-Long Piles. Rock and Soil Mechanics, 35(10): 2941-2948, 2957(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201410027.htm [4] Li, S., Yang, X.P., Liu, T.J., 2012. Analysis of Influence of Shield Tunneling in Guangzhou Metro on Pile Foundation of Adjacent Viaduct. Railway Engineering, 52(7): 74-78(in Chinese with English abstract). [5] Qiao, S.J., Li, H.A., Xia, B.R., et al., 2020. Analysis and Control Measures of Settlement and Deformation of Underpass Bridge Piles in Double-Track Tunnel. Highway, 65(1): 281-286(in Chinese with English abstract). [6] Shen, J.W., Liu, L., 2015. Numerical Analysis and Field Monitoring for Studying Effects of Shield Tunnelling on nearby Piles. Rock and Soil Mechanics, 36(Suppl. 2): 709-714(in Chinese with English abstract). http://www.researchgate.net/publication/286268354_Numerical_analysis_and_field_monitoring_for_studying_effects_of_shield_tunnelling_on_nearby_piles [7] Wang, X.R., Jiang, H.J., Zhu, K., et al., 2019. Research on Ground Settlement Laws of Urban Subway Tunnel Construction Process Based on Earth Pressure Shield. Earth Science, 44(12): 4293-4298(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912039.htm [8] Zhang, H.B., Yin, Z.Z., Zhu, J.G., 2005.3D Finite Element Simulation on Deformation of Soil Mass during Shield Tunneling. Chinese Journal of Rock Mechanics and Engineering, 24(5): 755-760(in Chinese with English abstract). http://www.oalib.com/paper/1485149 [9] Zhang, H.Y., He, P., Yan, G.X., et al., 2016. Effects of Existing Pile Foundation on Parameters of Shield Tunneling. Chinese Journal of Geotechnical Engineering, 38(9): 1615-1624(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC201609009.htm [10] 邓敦毅, 侯建林, 李鹏, 等, 2019. 盾构隧道穿越桥桩加固方案影响性对比分析. 山西建筑, 45(6): 155-157 doi: 10.3969/j.issn.1009-6825.2019.06.082 [11] 付文生, 夏斌, 罗冬梅, 2009. 盾构隧道超近距离穿越对桩基影响的对比研究. 地下空间与工程学报, 5(1): 133-138 https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200901025.htm [12] 郭一斌, 张立明, 郑刚, 等, 2014. 盾构施工对大型立交桥超长桩工作性状的影响. 岩土力学, 35(10): 2941-2948, 2957. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201410027.htm [13] 李松, 杨小平, 刘庭金, 2012. 广州地铁盾构下穿对近接高架桥桩基的影响分析. 铁道建筑, 52(7): 74-78. doi: 10.3969/j.issn.1003-1995.2012.07-22 [14] 乔世杰, 李宏安, 夏柏如, 等, 2020. 双线隧道下穿桥桩沉降变形分析及控制措施. 公路, 65(1): 281-286. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202001053.htm [15] 沈建文, 刘力, 2015. 盾构隧道施工对临近桥桩影响数值及现场监测研究. 岩土力学, 36(增刊2): 709-714. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2105.htm [16] 王晓睿, 姜洪建, 朱坤, 等, 2019. 基于土压盾构的城市地铁隧道构筑过程地表沉降规律. 地球科学, 44(12): 4293-4298. doi: 10.3799/dqkx.2019.269 [17] 张海波, 殷宗泽, 朱俊高, 2005. 地铁隧道盾构法施工过程中地层变位的三维有限元模拟. 岩石力学与工程学报, 24(5): 755-760. doi: 10.3321/j.issn:1000-6915.2005.05.004 [18] 张海彦, 何平, 闫国新, 等, 2016. 既有桩基对盾构施工参数的影响研究. 岩土工程学报, 38(9): 1615-1624. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609009.htm