• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    盾构超近距离侧穿铁路桥桩保护方案探讨

    任磊 朱颖 崔天麟

    任磊, 朱颖, 崔天麟, 2021. 盾构超近距离侧穿铁路桥桩保护方案探讨. 地球科学, 46(6): 2278-2286. doi: 10.3799/dqkx.2021.041
    引用本文: 任磊, 朱颖, 崔天麟, 2021. 盾构超近距离侧穿铁路桥桩保护方案探讨. 地球科学, 46(6): 2278-2286. doi: 10.3799/dqkx.2021.041
    Ren Lei, Zhu Ying, Cui Tianlin, 2021. Study on Protection Scheme of Shield Tunnel Passing through Railway Bridge Pile at a Short Distance. Earth Science, 46(6): 2278-2286. doi: 10.3799/dqkx.2021.041
    Citation: Ren Lei, Zhu Ying, Cui Tianlin, 2021. Study on Protection Scheme of Shield Tunnel Passing through Railway Bridge Pile at a Short Distance. Earth Science, 46(6): 2278-2286. doi: 10.3799/dqkx.2021.041

    盾构超近距离侧穿铁路桥桩保护方案探讨

    doi: 10.3799/dqkx.2021.041
    基金项目: 

    河南省交通运输厅项目 2020J5

    详细信息
      作者简介:

      任磊(1980-), 男, 高级工程师, 从事轨道交通建造及运营技术研究.ORCID: 0000-0003-3538-5580.E-mail: 616144259@qq.com

    • 中图分类号: P642

    Study on Protection Scheme of Shield Tunnel Passing through Railway Bridge Pile at a Short Distance

    • 摘要: 郑州地铁某盾构区间超近距离侧穿铁路桥梁桩基,受地面空间及隧道与桥桩间净距限制,无法采用隔离桩等常规保护措施.结合工程实际情况提出“盾构通过范围内土体注浆加固”、“桥梁承台加固”以及“注浆+承台加固”三种措施,利用数值模拟手段,对盾构侧穿施工期间,不同保护方案下桥桩的变形规律进行了分析研究.研究结果表明,采用“盾构通过范围内土体注浆加固+承台加固”措施,可使桥面最大沉降值减少约45%,且可减少桥面横桥向不均匀沉降及桥桩水平位移,在很大程度上减少盾构隧道施工对铁路桥梁的不利影响.

       

    • 图  1  陇海铁路现状

      Fig.  1.  Longhai railway status

      图  2  区间隧道与陇海铁路位置关系平面图(a)和剖面图(b)

      Fig.  2.  Plan (a) and section (b) of the positional relationship between the section tunnel and the Longhai railway

      图  3  袖阀管注浆加固平面图(a)和剖面图(b)

      Fig.  3.  Plan (a) and section (b) of grouting reinforcement for sleeve valve pipe

      图  4  承台南侧施做连梁平面示意

      Fig.  4.  Schematic diagram of the connecting beam construction on the south side of the cap

      图  5  承台南侧施做连梁剖面示意图

      Fig.  5.  Diagram of connecting beam section on the south side of the cap

      图  6  注浆加固+承台南侧施做连梁示意

      Fig.  6.  Schematic diagram of grouting reinforcement + connecting beam on the south side of the cap

      图  7  计算模型示意

      Fig.  7.  Schematic diagram of calculation model

      图  8  计算模型图

      Fig.  8.  Calculation model diagram

      图  9  桥面沉降位移曲线(a)和地面沉降位移曲线(b)

      Fig.  9.  Bridge deck settlement displacement curve (a) and ground settlement displacement curve (b)

      图  10  桥面横桥向沉降位移曲线(a)及沉降位移云图(b)

      Fig.  10.  Transverse bridge settlement displacement curve (a) and settlement displacement cloud map (b) of bridge deck

      图  11  桩体水平位移曲线(a)和水平位移云图(b)

      Fig.  11.  Horizontal displacement curve of pile (a) and horizontal displacement cloud map (b)

      表  1  土层计算参数

      Table  1.   Calculation parameters of soil

      地层岩性 容重(kN/m3) 压缩模量(MPa) 泊松比 摩擦角(°) 粘聚力(kPa)
      1-1杂填土 18 3 0.3 5 5
      2-33黏质粉土 17.6 9 0.32 22 13.5
      3-31黏质粉土 18.8 14.5 0.33 24 14
      3-41粉砂 20 16.5 0.4 28 3
      3-32黏质粉土 19.4 14.5 0.35 24.5 15
      3-22粉质黏土 19.3 9.9 0.25 17 28
      3-51细砂 20 22 0.4 32 -
      3-23粉质黏土 19.1 10.6 0.28 17.5 29
      3-21粉质黏土 19.1 6.2 0.25 16 26
      3-24粉质黏土 19.1 11 0.30 18 33
      注浆加固体 21 11 0.28 26 58
      下载: 导出CSV

      表  2  材料计算参数

      Table  2.   Calculation parameters of structure materials

      地层岩性 容重(kN/m3) 弹性模量(MPa) 泊松比 摩擦角(°) 粘聚力(kPa)
      盾构管片 25 35 500 0.2 - -
      桥梁桩基 25 34 500 0.2 - -
      承台与桥墩 25 32 000 0.2 - -
      铁轨 72 206 000 0.3
      下载: 导出CSV
    • [1] Deng, D.Y., Hou, J.L., Li, P., et al., 2019. Comparative Analysis of Influence of Shield Tunnel Crossing Bridge Pile Reinforcement Schemes. Shanxi Achitecture, 45(6): 155-157(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JZSX201906082.htm
      [2] Fu, W.S., Xia, B., Luo, D.M., 2009. Comparison Research on the Effect of Shield Tunnel Traversing Adjacently under the Existing Pile Foundations. Chinese Journal of Underground Space and Engineering, 5(1): 133-138 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dxkj200901026.aspx
      [3] Guo, Y.B., Zhang, L.M., Zheng, G., et al., 2014. Influence of Shield Tunneling on Working Performance of Large Interchange's Super-Long Piles. Rock and Soil Mechanics, 35(10): 2941-2948, 2957(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201410027.htm
      [4] Li, S., Yang, X.P., Liu, T.J., 2012. Analysis of Influence of Shield Tunneling in Guangzhou Metro on Pile Foundation of Adjacent Viaduct. Railway Engineering, 52(7): 74-78(in Chinese with English abstract).
      [5] Qiao, S.J., Li, H.A., Xia, B.R., et al., 2020. Analysis and Control Measures of Settlement and Deformation of Underpass Bridge Piles in Double-Track Tunnel. Highway, 65(1): 281-286(in Chinese with English abstract).
      [6] Shen, J.W., Liu, L., 2015. Numerical Analysis and Field Monitoring for Studying Effects of Shield Tunnelling on nearby Piles. Rock and Soil Mechanics, 36(Suppl. 2): 709-714(in Chinese with English abstract). http://www.researchgate.net/publication/286268354_Numerical_analysis_and_field_monitoring_for_studying_effects_of_shield_tunnelling_on_nearby_piles
      [7] Wang, X.R., Jiang, H.J., Zhu, K., et al., 2019. Research on Ground Settlement Laws of Urban Subway Tunnel Construction Process Based on Earth Pressure Shield. Earth Science, 44(12): 4293-4298(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912039.htm
      [8] Zhang, H.B., Yin, Z.Z., Zhu, J.G., 2005.3D Finite Element Simulation on Deformation of Soil Mass during Shield Tunneling. Chinese Journal of Rock Mechanics and Engineering, 24(5): 755-760(in Chinese with English abstract). http://www.oalib.com/paper/1485149
      [9] Zhang, H.Y., He, P., Yan, G.X., et al., 2016. Effects of Existing Pile Foundation on Parameters of Shield Tunneling. Chinese Journal of Geotechnical Engineering, 38(9): 1615-1624(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC201609009.htm
      [10] 邓敦毅, 侯建林, 李鹏, 等, 2019. 盾构隧道穿越桥桩加固方案影响性对比分析. 山西建筑, 45(6): 155-157 doi: 10.3969/j.issn.1009-6825.2019.06.082
      [11] 付文生, 夏斌, 罗冬梅, 2009. 盾构隧道超近距离穿越对桩基影响的对比研究. 地下空间与工程学报, 5(1): 133-138 https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200901025.htm
      [12] 郭一斌, 张立明, 郑刚, 等, 2014. 盾构施工对大型立交桥超长桩工作性状的影响. 岩土力学, 35(10): 2941-2948, 2957. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201410027.htm
      [13] 李松, 杨小平, 刘庭金, 2012. 广州地铁盾构下穿对近接高架桥桩基的影响分析. 铁道建筑, 52(7): 74-78. doi: 10.3969/j.issn.1003-1995.2012.07-22
      [14] 乔世杰, 李宏安, 夏柏如, 等, 2020. 双线隧道下穿桥桩沉降变形分析及控制措施. 公路, 65(1): 281-286. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202001053.htm
      [15] 沈建文, 刘力, 2015. 盾构隧道施工对临近桥桩影响数值及现场监测研究. 岩土力学, 36(增刊2): 709-714. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2105.htm
      [16] 王晓睿, 姜洪建, 朱坤, 等, 2019. 基于土压盾构的城市地铁隧道构筑过程地表沉降规律. 地球科学, 44(12): 4293-4298. doi: 10.3799/dqkx.2019.269
      [17] 张海波, 殷宗泽, 朱俊高, 2005. 地铁隧道盾构法施工过程中地层变位的三维有限元模拟. 岩石力学与工程学报, 24(5): 755-760. doi: 10.3321/j.issn:1000-6915.2005.05.004
      [18] 张海彦, 何平, 闫国新, 等, 2016. 既有桩基对盾构施工参数的影响研究. 岩土工程学报, 38(9): 1615-1624. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609009.htm
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  638
    • HTML全文浏览量:  238
    • PDF下载量:  25
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-01-02
    • 刊出日期:  2021-06-15

    目录

      /

      返回文章
      返回