Zircon U-Pb Geochronology of Late Triassic Granites from Sibolga Area in Western Sumatra and Its Tethyan Tectonic Implications
-
摘要: 苏门答腊岛位于东特提斯构造域,沿该岛分布了大量不同时代和成因的花岗岩,但这些花岗岩的形成时代和延伸以及对比均未能得到很好的界定,也限制了对东南亚主要岩浆岩带延伸及其构造背景的理解.对西苏门答腊实武牙地区新识别出的花岗岩体开展了精细的LA-ICP-MS锆石U-Pb年代学研究.结果显示,3个花岗岩样品的锆石均为典型的岩浆成因,其岩浆年龄分别为215.1±2.4 Ma(MSWD=0.14)、206.1±5 Ma(MSWD=0.22)、214.3±5 Ma(MSWD=0.11),锆石年代学研究表明西苏门答腊存在晚三叠世的岩浆作用.对比东南亚花岗岩省内同期侵入岩认为,西苏门答腊实武牙地区的晚三叠世花岗岩可与东南亚西部花岗岩省进行对比和联系,该套晚三叠世花岗岩可能形成于中特提斯洋初始俯冲的弧后裂谷环境.Abstract: The Sumatra Island, located in the Tethyan tectonic domain, preserves abundant granitoids with various ages and petrogenesis. The paucity of precise geochronological data for these granitoids has hampered our understanding on the extension and tectonic setting of magmatic belts in Southeast Asia. Precise zircon U-Pb geochronological data for granites from the Sibolga area in western Sumatra are presented in this study. Our results suggest that zircon grains from these samples are of igneous origin. LA-ICP-MS zircon U-Pb dating yields crystallization ages of 215.1±2.4 Ma (MSWD=0.14), 206.1±5 Ma (MSWD=0.22) and 214.3±5 Ma (MSWD=0.11) for granites respectively, indicating the Late Triassic magmatism in western Sumatra. Comparing with those of contemporary igneous rocks in Southeast Asia, it proposes that the Late Triassic granites in the Sibolga area are consistent with the West Province granite. Therefore, these granites might be formed in a back-arc rift setting in response to the initial subduction of the Mesotethyan Ocean during the Late Triassic.
-
Key words:
- western Sumatra /
- Late Triassic /
- granite /
- zircon U-Pb age /
- geochronology /
- eastern Tethys
-
图 1 苏门答腊区域构造图(a)和采样区地质简图(b)
据Searle et al.(2012)、Lin et al.(2013)、Gardiner et al.(2016)和Zhang et al.(2020)修改. 前人数据据Li et al.(2020)和Zhang et al.(2020);本文数据(1)为19SM-17花岗岩,(2)为19SM-25花岗岩,(3)为19SM-30花岗岩
Fig. 1. Regional tectonic map of Sumatra (a) and simplified geological map of sampling area (b)
图 5 西苏门答腊和东南亚花岗岩省的晚三叠世岩浆岩年龄对比
苏门答腊岛的数据来自Cobbing(2005)、张海坤等(2017)、Li et al.(2020)和Zhang et al.(2020);东南亚花岗岩省数据来自Barley et al.(2003)、Searle et al.(2012)、Wai-Pan Ng et al.(2015)、Gardiner et al.(2016)和Qian et al.(2017)
Fig. 5. Late Triassic igneous age comparison between West Sumatra and Southeast Asia granite provinces
表 1 西苏门答腊实武牙地区晚三叠世花岗岩的锆石LA-ICP-MS U-Pb测试分析数据
Table 1. LA-ICP-MS zircon U-Pb analytical results for Late Triassic granites from the Sibolga area
样品号 元素含量(10-6) Th/U 同位素比值 年龄(Ma) 谐和度(%) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 19SM-17-1-01 501 1 081 0.46 0.051 26 0.001 86 0.240 82 0.009 25 0.034 10 0.000 87 252 81 219 8 216 5 99 19SM-17-1-02 410 733 0.56 0.052 10 0.001 63 0.240 53 0.008 18 0.033 51 0.000 84 290 70 219 7 213 5 97 19SM-17-1-03 523 717 0.73 0.052 11 0.001 61 0.240 87 0.008 12 0.033 55 0.000 84 290 69 219 7 213 5 97 19SM-17-1-04 110 247 0.45 0.050 95 0.002 00 0.239 29 0.009 85 0.034 09 0.000 88 239 88 218 8 216 5 99 19SM-17-1-05 138 303 0.45 0.052 19 0.001 88 0.241 87 0.009 23 0.033 63 0.000 86 294 80 220 8 213 5 97 19SM-17-1-06 367 711 0.52 0.051 42 0.002 37 0.242 75 0.011 54 0.034 27 0.000 90 260 103 221 9 217 6 98 19SM-17-1-07 367 959 0.38 0.051 39 0.001 46 0.241 46 0.007 63 0.034 10 0.000 85 259 64 220 6 216 5 98 19SM-17-1-08 168 342 0.49 0.051 37 0.001 81 0.240 49 0.009 02 0.033 98 0.000 86 258 79 219 7 215 5 98 19SM-17-1-09 194 121 1.61 0.060 02 0.001 99 0.740 43 0.026 41 0.089 54 0.002 28 604 70 563 15 553 13 98 19SM-17-1-10 311 488 0.64 0.080 45 0.002 06 2.266 15 0.066 10 0.204 45 0.005 09 1 208 50 1 202 21 1 199 27 100 19SM-17-1-11 113 283 0.40 0.052 74 0.002 03 0.244 38 0.009 88 0.033 63 0.000 87 318 85 222 8 213 5 96 19SM-17-1-12 548 1 115 0.49 0.051 26 0.001 51 0.239 74 0.007 77 0.033 94 0.000 85 253 66 218 6 215 5 99 19SM-17-1-13 199 511 0.39 0.052 44 0.001 87 0.242 96 0.009 20 0.033 63 0.000 86 305 79 221 8 213 5 97 19SM-17-1-14 353 793 0.45 0.052 69 0.001 70 0.243 47 0.008 51 0.033 54 0.000 85 315 72 221 7 213 5 96 19SM-17-1-15 99 168 0.59 0.048 87 0.002 65 0.233 73 0.012 90 0.034 71 0.000 94 142 123 213 11 220 6 103 19SM-17-1-17 502 638 0.79 0.051 39 0.001 65 0.240 58 0.008 37 0.033 98 0.000 86 258 72 219 7 215 5 98 19SM-17-1-18 1 233 3 074 0.40 0.051 70 0.001 56 0.241 30 0.008 00 0.033 88 0.000 86 272 68 220 7 215 5 98 19SM-17-1-19 605 1 546 0.39 0.052 01 0.001 63 0.242 26 0.008 28 0.033 80 0.000 86 286 70 220 7 214 5 97 19SM-17-1-20 284 567 0.50 0.049 95 0.001 72 0.237 91 0.008 76 0.034 57 0.000 89 193 78 217 7 219 6 101 19SM-17-1-21 312 664 0.47 0.049 55 0.001 75 0.233 33 0.008 81 0.034 18 0.000 88 174 81 213 7 217 5 102 19SM-17-1-22 304 703 0.43 0.050 88 0.001 78 0.238 36 0.008 92 0.034 00 0.000 88 235 79 217 7 216 5 99 19SM-17-1-23 173 250 0.69 0.078 34 0.003 62 1.982 63 0.094 27 0.183 69 0.005 07 1 155 89 1 110 32 1 087 28 98 19SM-17-1-24 483 931 0.52 0.051 54 0.001 86 0.238 89 0.009 19 0.033 64 0.000 87 265 81 218 8 213 5 98 19SM-17-1-25 95 163 0.58 0.080 10 0.003 01 2.148 97 0.085 51 0.194 72 0.005 14 1 200 72 1 165 28 1 147 28 98 19SM-25-1-01 125 179 0.70 0.052 67 0.003 05 0.235 88 0.013 70 0.032 51 0.000 85 315 126 215 11 206 5 96 19SM-25-1-02 90 198 0.45 0.053 54 0.003 16 0.238 21 0.014 07 0.032 30 0.000 85 352 128 217 12 205 5 94 19SM-25-1-03 124 189 0.66 0.052 01 0.003 83 0.236 81 0.017 33 0.033 05 0.000 93 286 160 216 14 210 6 97 19SM-25-1-04 103 126 0.82 0.056 09 0.003 49 0.239 01 0.014 83 0.030 93 0.000 83 456 133 218 12 196 5 90 19SM-25-1-05 111 226 0.49 0.051 50 0.001 92 0.235 12 0.009 05 0.033 14 0.000 80 263 83 214 7 210 5 98 19SM-25-1-06 395 731 0.54 0.051 60 0.001 65 0.233 30 0.007 88 0.032 82 0.000 78 268 72 213 6 208 5 98 19SM-25-1-07 157 336 0.47 0.054 46 0.002 08 0.238 94 0.009 40 0.031 85 0.000 77 390 83 218 8 202 5 93 19SM-25-1-09 102 427 0.24 0.056 19 0.003 06 0.241 81 0.013 20 0.031 23 0.000 81 459 117 220 11 198 5 90 19SM-25-1-10 93 192 0.49 0.054 46 0.003 62 0.237 00 0.015 67 0.031 59 0.000 86 390 142 216 13 201 5 93 19SM-25-1-11 136 302 0.45 0.052 38 0.001 83 0.236 09 0.008 62 0.032 71 0.000 79 302 78 215 7 208 5 96 19SM-25-1-12 224 339 0.66 0.054 25 0.002 21 0.238 01 0.009 95 0.031 84 0.000 78 381 89 217 8 202 5 93 19SM-25-1-13 185 273 0.68 0.051 06 0.002 20 0.235 82 0.010 39 0.033 52 0.000 83 243 96 215 9 213 5 99 19SM-25-1-14 70 95 0.74 0.051 09 0.002 59 0.235 58 0.012 07 0.033 47 0.000 85 245 113 215 10 212 5 99 19SM-25-1-15 117 161 0.73 0.051 26 0.003 07 0.234 39 0.014 04 0.033 19 0.000 88 253 132 214 12 211 5 98 19SM-25-1-16 169 389 0.43 0.051 57 0.001 93 0.233 31 0.009 04 0.032 84 0.000 80 266 84 213 7 208 5 98 19SM-25-1-18 127 218 0.58 0.051 69 0.002 17 0.235 14 0.010 08 0.033 01 0.000 82 272 93 214 8 209 5 98 19SM-25-1-19 59 40 1.48 0.076 97 0.004 03 2.013 82 0.106 01 0.189 89 0.005 19 1 120 101 1 120 36 1 121 28 100 19SM-25-1-20 166 362 0.46 0.051 87 0.002 10 0.236 14 0.009 79 0.033 04 0.000 82 280 90 215 8 210 5 97 19SM-30-1-01 541 849 0.64 0.051 51 0.001 38 0.241 35 0.007 70 0.034 00 0.000 92 264 60 220 6 216 6 98 19SM-30-1-02 134 297 0.45 0.050 36 0.001 56 0.237 76 0.008 40 0.034 25 0.000 93 212 70 217 7 217 6 100 19SM-30-1-03 441 908 0.49 0.052 31 0.002 32 0.241 37 0.011 35 0.033 48 0.000 94 299 98 220 9 212 6 97 19SM-30-1-04 363 703 0.52 0.049 95 0.001 65 0.236 51 0.008 76 0.034 36 0.000 93 193 75 216 7 218 6 101 19SM-30-1-05 135 261 0.52 0.051 59 0.002 78 0.297 62 0.016 56 0.041 86 0.001 21 267 119 265 13 264 7 100 19SM-30-1-06 239 543 0.44 0.050 95 0.001 45 0.240 66 0.007 96 0.034 28 0.000 92 238 65 219 7 217 6 99 19SM-30-1-07 145 294 0.49 0.051 03 0.004 10 0.235 34 0.018 94 0.033 47 0.001 06 242 175 215 16 212 7 99 19SM-30-1-08 130 304 0.43 0.050 22 0.001 78 0.239 74 0.009 29 0.034 65 0.000 94 205 80 218 8 220 6 101 19SM-30-1-09 107 236 0.45 0.053 13 0.001 76 0.251 52 0.009 25 0.034 36 0.000 93 334 73 228 8 218 6 96 19SM-30-1-10 1 187 3 200 0.37 0.052 29 0.001 32 0.244 58 0.007 38 0.033 95 0.000 90 298 56 222 6 215 6 97 19SM-30-1-11 457 1 181 0.39 0.051 29 0.001 53 0.241 83 0.008 11 0.034 22 0.000 90 254 67 220 7 217 6 99 19SM-30-1-12 179 792 0.23 0.056 31 0.004 59 0.251 60 0.020 41 0.032 43 0.001 03 464 172 228 17 206 6 90 19SM-30-1-13 386 682 0.57 0.051 86 0.001 56 0.241 86 0.008 15 0.033 85 0.000 89 279 67 220 7 215 6 98 19SM-30-1-14 165 276 0.60 0.048 58 0.002 11 0.229 43 0.010 45 0.034 28 0.000 93 128 99 210 9 217 6 104 19SM-30-1-15 795 1 016 0.78 0.049 23 0.001 53 0.229 86 0.007 91 0.033 90 0.000 89 159 71 210 7 215 6 102 19SM-30-1-16 328 693 0.47 0.051 22 0.001 52 0.237 80 0.007 88 0.033 70 0.000 88 251 67 217 6 214 5 99 19SM-30-1-17 125 266 0.47 0.049 59 0.001 77 0.231 53 0.008 89 0.033 89 0.000 90 176 81 212 7 215 6 102 19SM-30-1-18 1 276 3 755 0.34 0.052 77 0.001 42 0.245 89 0.007 53 0.033 83 0.000 88 319 60 223 6 215 5 96 19SM-30-1-19 232 563 0.41 0.051 55 0.001 81 0.240 34 0.009 06 0.033 84 0.000 89 265 79 219 7 215 6 98 19SM-30-1-20 375 602 0.62 0.052 27 0.001 79 0.239 56 0.008 83 0.033 27 0.000 87 297 76 218 7 211 5 97 19SM-30-1-21 578 1 551 0.37 0.050 80 0.001 49 0.236 17 0.007 60 0.033 75 0.000 87 232 66 215 6 214 5 99 19SM-30-1-22 105 174 0.61 0.050 13 0.001 95 0.233 47 0.009 52 0.033 80 0.000 89 201 88 213 8 214 6 101 19SM-30-1-23 543 1 247 0.44 0.055 46 0.001 84 0.244 45 0.008 68 0.032 00 0.000 83 430 72 222 7 203 5 91 19SM-30-1-24 105 210 0.50 0.048 70 0.002 23 0.232 61 0.010 92 0.034 67 0.000 93 133 104 212 9 220 6 103 表 2 西苏门答腊实武牙地区晚三叠世花岗岩的锆石稀土元素(10-6)含量
Table 2. LA-ICP-MS zircon REE (10-6) analytical result for Late Triassic granites from the Sibolga area
样品号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE δEu 19SM-17-1-01 0.89 8.63 0.33 3.49 6.06 0.40 33.30 12.30 144.0 53.0 226 46.3 432 82.5 1 049 0.03 19SM-17-1-02 1.67 12.20 0.53 3.60 4.10 0.28 21.00 7.64 88.2 33.5 146 29.6 273 52.5 673 0.03 19SM-17-1-03 0.03 20.80 0.14 2.24 3.69 0.94 19.70 6.91 80.4 31.4 145 32.2 323 64.2 730 0.11 19SM-17-1-04 0.01 2.16 0.19 3.43 6.99 0.89 34.90 12.10 139.0 49.6 209 40.5 358 67.1 924 0.06 19SM-17-1-05 0.01 3.95 0.05 1.00 1.71 0.13 11.20 4.15 50.1 18.5 81 17.0 164 32.8 386 0.03 19SM-17-1-06 18.40 57.30 5.97 27.50 9.13 0.35 22.10 7.17 84.4 31.4 137 28.1 266 52.1 746 0.02 19SM-17-1-07 12.80 39.00 4.06 19.90 5.85 0.22 15.40 4.93 57.3 21.9 102 22.6 226 44.1 575 0.02 19SM-17-1-08 0.05 2.54 0.25 4.25 8.79 0.89 43.10 14.60 160.0 55.2 218 40.5 354 65.8 968 0.05 19SM-17-1-11 4.26 13.60 1.24 5.58 2.56 0.13 8.26 2.98 37.6 15.0 68 14.5 136 26.4 336 0.03 19SM-17-1-12 19.40 57.50 5.65 26.70 8.30 0.34 20.70 6.71 75.0 28.4 128 28.0 266 50.0 721 0.03 19SM-17-1-13 5.54 18.60 1.79 8.53 3.63 0.22 12.60 4.68 59.6 23.4 108 22.5 225 40.6 535 0.03 19SM-17-1-14 5.67 22.30 1.71 8.25 3.45 0.19 13.10 4.54 53.5 21.2 98 20.7 196 37.5 486 0.03 19SM-17-1-15 0.02 2.62 0.18 3.03 5.85 0.44 25.40 8.27 92.2 32.6 136 27.3 245 45.2 624 0.04 19SM-17-1-17 0.17 11.50 0.59 9.01 13.40 1.02 46.30 13.20 135.0 46.0 188 36.3 321 58.4 879 0.04 19SM-17-1-18 10.80 38.60 3.51 16.40 7.82 0.32 26.00 9.32 116.0 47.0 224 48.4 462 86.9 1 097 0.02 19SM-17-1-19 0.03 7.37 0.05 0.96 3.04 0.09 17.80 6.92 86.8 35.1 162 34.2 324 59.2 738 0.01 19SM-17-1-20 0.04 4.84 0.13 2.13 4.16 0.45 21.00 7.59 91.7 35.2 157 33.6 315 58.9 732 0.05 19SM-17-1-21 0.01 6.69 0.05 0.98 2.70 0.23 14.90 5.33 63.7 24.9 113 24.1 223 40.9 520 0.04 19SM-17-1-22 0.00 10.70 0.03 0.49 1.66 0.11 10.2 3.77 46.9 19.2 90 19.8 187 34.4 425 0.03 19SM-17-1-24 23.40 65.50 6.73 31.50 7.84 0.29 17.0 5.24 60.6 22.9 104 22.3 213 41.4 621 0.03 19SM-25-1-01 0.13 3.55 0.29 4.33 7.20 1.49 28.6 8.36 91.0 32.5 131 24.8 214 41.3 588 0.10 19SM-25-1-02 0.02 4.44 0.06 1.14 2.28 0.31 11.8 4.17 49.2 18.7 79 15.4 141 28.5 357 0.06 19SM-25-1-03 3.12 10.10 1.13 8.24 8.33 1.45 30.9 9.65 100.0 34.4 142 27.5 245 46.6 669 0.09 19SM-25-1-04 0.81 3.90 0.50 6.15 7.53 2.24 27.5 8.60 86.3 29.6 117 21.9 196 39.4 548 0.16 19SM-25-1-05 0.01 4.48 0.04 0.98 2.61 0.17 12.9 4.69 54.8 20.8 91 18.8 175 34.7 422 0.03 19SM-25-1-06 0.60 9.55 0.27 3.10 5.33 0.30 29.9 10.70 124.0 46.3 194 37.5 337 66.9 865 0.02 19SM-25-1-07 18.80 46.20 5.13 24.80 6.66 0.34 18.3 5.72 63.2 23.3 101 20.8 195 39.6 569 0.03 19SM-25-1-09 0.42 5.21 0.07 0.85 1.80 0.18 9.2 3.24 38.8 14.8 67 14.0 132 26.0 314 0.05 19SM-25-1-10 8.35 20.30 2.10 10.40 4.11 0.46 12.8 4.05 43.9 15.6 68 13.7 131 26.4 360 0.06 19SM-25-1-11 0.05 3.56 0.05 0.91 1.98 0.18 10.9 4.07 49.6 19.1 85 17.3 168 33.7 394 0.04 19SM-25-1-12 4.12 13.10 1.41 10.10 9.10 1.43 36.4 11.40 117.0 40.5 164 31.5 286 56.0 782 0.08 19SM-25-1-13 0.03 4.01 0.38 5.89 8.51 1.27 36.8 11.40 125.0 42.7 173 32.6 293 57.7 791 0.07 19SM-25-1-14 0.56 2.93 0.49 5.85 7.86 2.68 26.8 7.75 81.9 27.4 109 20.5 183 38.3 515 0.18 19SM-25-1-15 1.20 4.89 0.57 5.94 7.63 2.11 28.6 8.44 87.3 30.3 122 23.7 204 39.7 567 0.14 19SM-25-1-16 0.00 5.49 0.04 0.92 2.04 0.16 11.9 4.35 51.2 19.6 85 17.4 161 32.4 391 0.03 19SM-25-1-18 0.04 4.47 0.10 2.15 5.38 0.74 27.0 9.29 101.0 35.5 143 27.5 250 47.3 653 0.06 19SM-25-1-20 0.01 5.05 0.06 1.09 2.37 0.24 13.7 4.67 54.6 20.8 90 18.4 170 32.9 413 0.04 19SM-30-1-01 0.02 12.80 0.14 2.38 5.03 0.18 23.1 7.97 94.1 35.4 148 30.2 279 48.7 687 0.02 19SM-30-1-02 0.00 4.37 0.05 0.84 2.05 0.16 11.4 3.95 47.4 17.4 74 15.9 154 28.4 359 0.03 19SM-30-1-03 0.01 8.27 0.07 1.43 3.35 0.11 17.6 6.41 79.0 29.9 129 26.7 252 43.8 597 0.01 19SM-30-1-04 0.00 8.47 0.06 1.66 3.70 0.15 20.1 7.34 85.9 32.6 140 28.8 271 47.9 648 0.02 19SM-30-1-05 1.05 7.30 0.30 2.31 2.66 0.20 13.7 4.80 57.6 21.9 95 19.9 187 34.3 448 0.03 19SM-30-1-06 0.00 7.95 0.04 0.99 2.62 0.11 13.6 5.03 57.4 21.5 93 20.5 194 34.0 450 0.02 19SM-30-1-07 0.00 3.44 0.04 0.82 2.14 0.24 10.3 3.88 45.5 17.5 77 16.6 163 27.8 368 0.05 19SM-30-1-08 0.00 4.79 0.03 0.56 1.35 0.10 8.0 2.96 35.3 13.7 60 12.8 121 21.8 282 0.03 19SM-30-1-09 0.00 3.54 0.04 0.60 1.53 0.17 8.8 3.19 38.1 14.3 63 13.7 137 23.7 308 0.05 19SM-30-1-10 13.20 48.30 5.44 30.90 13.10 0.39 45.0 16.60 202.0 75.3 314 63.7 579 100.0 1 507 0.02 19SM-30-1-11 10.40 36.70 3.43 17.10 5.53 0.21 15.2 5.12 61.2 23.7 108 24.1 231 40.8 582 0.02 19SM-30-1-12 0.05 3.17 0.03 0.31 0.77 0.03 4.38 2.00 26.9 11.2 53 12.3 124 22.5 260 0.02 19SM-30-1-13 1.67 11.70 0.62 4.93 6.20 0.25 27.2 9.88 107.0 38.3 160 33.6 320 54.2 776 0.02 19SM-30-1-14 0.25 4.03 0.26 4.18 6.12 1.06 25.5 8.66 93.4 32.7 135 28.1 259 42.7 642 0.08 19SM-30-1-15 0.19 10.70 0.68 10.40 17.00 1.55 67.2 21.90 227.0 76.3 308 64.0 583 94.7 1 483 0.05 19SM-30-1-16 28.60 71.40 7.63 34.40 8.65 0.26 22.0 6.39 70.7 25.5 109 23.1 221 37.9 666 0.02 19SM-30-1-17 0.01 5.25 0.11 2.22 3.91 0.60 18.0 6.15 68.4 24.5 101 21.1 198 34.4 484 0.07 19SM-30-1-18 0.32 8.91 0.17 2.07 6.73 0.06 41.5 17.40 218.0 86.3 384 81.1 743 123.0 1 714 0.00 19SM-30-1-19 0.00 6.84 0.05 1.06 2.36 0.11 13.2 5.09 61.8 23.4 101 21.6 209 37.5 483 0.02 19SM-30-1-20 0.11 7.34 0.16 3.00 5.46 0.44 26.2 9.20 100.0 36.2 149 31.4 293 48.9 711 0.04 19SM-30-1-21 16.00 59.30 8.36 45.90 16.90 1.10 35.9 11.70 132.0 49.1 210 43.3 413 66.4 1 109 0.04 19SM-30-1-22 0.02 2.88 0.20 3.39 5.55 0.88 21.8 7.68 85.2 30.4 125 26.7 228 39.3 577 0.08 19SM-30-1-23 4.43 24.20 2.76 16.20 8.10 1.68 17.6 6.37 71.0 26.1 115 25.6 248 46.5 614 0.14 19SM-30-1-24 2.92 11.20 1.89 7.14 4.81 0.66 17.0 5.80 62.8 23.0 99 21.0 194 33.8 485 0.07 -
[1] Barber, A. J., 2000. The Origin of the Woyla Terranes in Sumatra and the Late Mesozoic Evolution of the Sundaland Margin. Journal of Asian Earth Sciences, 18(6): 713-738. https://doi.org/10.1016/s1367-9120(00)00024-9 [2] Barber, A. J., Crow, M. J., 2003. An Evaluation of Plate Tectonic Models for the Development of Sumatra. Gondwana Research, 6(1): 1-28. https://doi.org/10.1016/s1342-937x(05)70642-0 [3] Barber, A. J., Crow, M. J., 2005. Chapter 13 Structure and Structural History. In: Barber, A. J., Crow, M. J., Milsom, J.S., eds., Sumatra: Geology, Resources and Tectonic Evolution. Geological Society, London, Memoirs, 31(1): 175-233. https://doi.org/10.1144/gsl.mem.2005.031.01.13 [4] Barber, A. J., Crow, M. J., 2009. Structure of Sumatra and Its Implications for the Tectonic Assembly of Southeast Asia and the Destruction of Paleotethys. Island Arc, 18(1): 3-20. https://doi.org/10.1111/j.1440-1738.2008.00631.x [5] Barber, A. J., Crow, M. J., de Smet, M. E. M., 2005. Chapter 14 Tectonic Evolution. In: Barber, A. J., Crow, M. J., Milsom, J.S., eds., Sumatra: Geology, Resources and Tectonic Evolution. Geological Society, London, Memoirs, 31(1): 234-259. https://doi.org/10.1144/gsl.mem.2005.031.01.14 [6] Barley, M. E., Pickard, A. L., Zaw, K., et al., 2003. Jurassic to Miocene Magmatism and Metamorphism in the Mogok Metamorphic Belt and the India-Eurasia Collision in Myanmar. Tectonics, 22(3): 1019. https://doi.org/10.1029/2002tc001398 [7] Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7 [8] Burrett, C., Stait, B., 1985. South East Asia as a Part of an Ordovician Gondwanaland-A Palaeobiogeographic Test of a Tectonic Hypothesis. Earth and Planetary Science Letters, 75(2-3): 184-190. https://doi.org/10.1016/0012-821x(85)90100-1 [9] Charusiri, P., Clark, A. H., Farrar, E., et al., 1993. Granite Belts in Thailand: Evidence from the 40Ar/39Ar Geochronological and Geological Syntheses. Journal of Southeast Asian Earth Sciences, 8(1-4): 127-136. https://doi.org/10.1016/0743-9547(93)90014-g [10] Clarke, M. C. G., Beddoe-Stephens, B., 1987. Geochemistry, Mineralogy and Plate Tectonic Setting of a Late Cretaceous Sn-W Granite from Sumatra, Indonesia. Mineralogical Magazine, 51(361): 371-387. https://doi.org/10.1180/minmag.1987.051.361.04 [11] Cobbing, E.J., 2005. Granites. In: Barber, A. J., Crow, M. J., Milsom, J.S., eds., Sumatra: Geology, Resources and Tectonic Evolution. Geological Society, London, Memoirs, 31(1): 54-62. [12] Fontaine, H., Gafoer, S., 1989. The Pre-Tertiary Fossils of Sumatra and Their Environments. CCOP Technical Secretariat, Bangkok. [13] Gardiner, N. J., Hawkesworth, C. J., Robb, L. J., et al., 2017. Contrasting Granite Metallogeny through the Zircon Record: A Case Study from Myanmar. Scientific Reports, 7(1): 748. https://doi.org/10.1038/s41598-017-00832-2 [14] Gardiner, N. J., Searle, M. P., Morley, C. K., et al., 2016. The Closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: New Insights from Zircon U-Pb and Hf Isotope Data. Gondwana Research, 39: 401-422. https://doi.org/10.1016/j.gr.2015.03.001 [15] Gasparon, M., Varne, R., 1995. Sumatran Granitoids and Their Relationship to Southeast Asian Terranes. Tectonophysics, 251(1-4): 277-299. https://doi.org/10.1016/0040-1951(95)00083-6 [16] Griffin, W. L., Powell, W. J., Pearson, N. J., et al., 2008. GLITTER: Data Reduction Software for Laser Ablation ICP-MS in the Earth Sciences. Mineralogical Association of Canada, Short Curse Series, 40: 204-207. http://ci.nii.ac.jp/naid/20001269558 [17] Hall, R., 2012. Late Jurassic-Cenozoic Reconstructions of the Indonesian Region and the Indian Ocean. Tectonophysics, 570-571: 1-41. https://doi.org/10.1016/j.tecto.2012.04.021 [18] Hamilton, W.B., 1989. Convergent-Plate Tectonics Viewed from the Indonesian Region. In: Sengor, A. M. C., ed., Tectonic Evolution of the Tethyan Region. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-009-2253-2_27 [19] Hu, P.Y., Li, C., Wu, Y.W., et al., 2016. A Back-Arc Extensional Environment of the Early Carboniferous Paleo-Tethys Ocean in Tibetan Plateau: Evidences from A-Type Granites. Acta Petrologica Sinica, 32(4): 1219-1231 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201604020.htm [20] Hutchison, C. S., 1977. Granite Emplacement and Tectonic Subdivision of Peninsular Malaysia. Bulletin of the Geological Society of Malaysia, 9: 187-207. https://doi.org/10.7186/bgsm09197714 [21] Hutchison, C. S., Taylor, D., 1978. Metallogenesis in SE Asia. Journal of the Geological Society, 135(4): 407-428. https://doi.org/10.1144/gsjgs.135.4.0407 [22] Jiang, S.Y., Zhao, K.D., Jiang, Y.H., et al., 2008. Characteristics and Genesis of Mesozoic A-Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi-Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200804006.htm [23] Krähenbuhl, R., 1991. Magmatism, Tin Mineralization and Tectonics of the Main Range, Malaysian Peninsula: Consequences for the Plate Tectonic Model of Southeast Asia Based on Rb-Sr, K-Ar and Fission Track Data. Bulletin of the Geological Society of Malaysia, 29: 1-100. https://doi.org/10.7186/bgsm29199101 [24] Li, C.Z., Yang, W.G., Zhu, L.D., et al., 2020. Geochemistry, Petrogenesis and Geological Significance of Early Jurassic Granite in Mozhugongka Area, Tibet. Earth Science, 45(5): 1556-1572 (in Chinese with English abstract). [25] Li, S., Chung, S. L., Lai, Y. M., et al., 2020. Mesozoic Juvenile Crustal Formation in the Easternmost Tethys: Zircon Hf Isotopic Evidence from Sumatran Granitoids, Indonesia. Geology, 48(10): 1002-1005. https://doi.org/10.1130/g47304.1 [26] Liew, T. C., Page, R. W., 1985. U-Pb Zircon Dating of Granitoid Plutons from the West Coast Province of Peninsular Malaysia. Journal of the Geological Society, 142(3): 515-526. https://doi.org/10.1144/gsjgs.142.3.0515 [27] Lin, Y. L., Yeh, M. W., Lee, T. Y., et al., 2013. First Evidence of the Cambrian Basement in Upper Peninsula of Thailand and Its Implication for Crustal and Tectonic Evolution of the Sibumasu Terrane. Gondwana Research, 24(3-4): 1031-1037. https://doi.org/10.1016/j.gr.2013.05.014 [28] Ludwig, K. R., 2003. Isoplot/Ex Version 3.00: A Geochronology Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. [29] McCourt, W. J., Crow, M. J., Cobbing, E. J., et al., 1996. Mesozoic and Cenozoic Plutonic Evolution of SE Asia: Evidence from Sumatra, Indonesia. Geological Society, London, Special Publications, 106(1): 321-335. https://doi.org/10.1144/gsl.sp.1996.106.01.21 [30] McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4 [31] Metcalfe, I., 1988. Origin and Assembly of South-East Asian Continental Terranes. Geological Society, London, Special Publications, 37(1): 101-118. https://doi.org/10.1144/gsl.sp.1988.037.01.08 [32] Metcalfe, I., 2005. Asia: South-East. In: Selley, R.C., Cocks, L.R.M., Plimer, I.R., eds., Encyclopedia of Geology. Elsevier, Amsterdam. https://doi.org/10.1016/b0-12-369396-9/00395-6 [33] Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020 [34] Mitchell, A., Chung, S. L., Oo, T., et al., 2012. Zircon U-Pb Ages in Myanmar: Magmatic-Metamorphic Events and the Closure of a Neo-Tethys Ocean? Journal of Asian Earth Sciences, 56: 1-23. https://doi.org/10.1016/j.jseaes.2012.04.019 [35] Pollard, P. J., Nakapadungrat, S., Taylor, R. G., 1995. The Phuket Supersuite, Southwest Thailand; Fractionated I-Type Granites Associated with Tin-Tantalum Mineralization. Economic Geology, 90(3): 586-602. https://doi.org/10.2113/gsecongeo.90.3.586 [36] Qian, X., Feng, Q. L., Wang, Y. J., et al., 2017. Late Triassic Post-Collisional Granites Related to Paleotethyan Evolution in SE Thailand: Geochronological and Geochemical Constraints. Lithos, 286-287: 440-453. https://doi.org/10.1016/j.lithos.2017.06.026 [37] Qian, X., Wang, Y. J., Zhang, Y. Z., et al., 2020. Late Triassic Post-Collisional Granites Related to Paleotethyan Evolution in Northwestern Lao PDR: Geochronological and Geochemical Evidence. Gondwana Research, 84: 163-176. https://doi.org/10.1016/j.gr.2020.03.002 [38] Schwartz, M. O., Rajah, S. S., Askury, A. K., et al., 1995. The Southeast Asian Tin Belt. Earth-Science Reviews, 38(2-4): 95-293. https://doi.org/10.1016/0012-8252(95)00004-t [39] Searle, M. P., Whitehouse, M. J., Robb, L. J., et al., 2012. Tectonic Evolution of the Sibumasu-Indochina Terrane Collision Zone in Thailand and Malaysia: Constraints from New U-Pb Zircon Chronology of SE Asian Tin Granitoids. Journal of the Geological Society, 169(4): 489-500. https://doi.org/10.1144/0016-76492011-107 [40] Setiawan, I., Takahashi, R., Imai, A., 2017. Petrochemistry of Granitoids in Sibolga and Its Surrounding Areas, North Sumatra, Indonesia. Resource Geology, 67(3): 254-278. https://doi.org/10.1111/rge.12132 [41] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. [42] Wai-Pan Ng, S., Whitehouse, M. J., Roselee, M. H., et al., 2017. Late Triassic Granites from Bangka, Indonesia: A Continuation of the Main Range Granite Province of the South-East Asian Tin Belt. Journal of Asian Earth Sciences, 138: 548-561. https://doi.org/10.1016/j.jseaes.2017.03.002 [43] Wai-Pan Ng, S., Whitehouse, M. J., Searle, M. P., et al., 2015. Petrogenesis of Malaysian Granitoids in the Southeast Asian Tin Belt: Part 2. U-Pb Zircon Geochronology and Tectonic Model. Geological Society of America Bulletin, 127(9-10): 1238-1258. https://doi.org/10.1130/b31214.1 [44] Wajzer, M. R., Barber, A. J., Hidayat, S., et al., 1991. Accretion, Collision and Strike-Slip Faulting: The Woyla Group as a Key to the Tectonic Evolution of North Sumatra. Journal of Southeast Asian Earth Sciences, 6(3-4): 447-461. https://doi.org/10.1016/0743-9547(91)90087-e [45] Wang, Y. J., He, H. Y., Cawood, P. A., et al., 2016. Geochronological, Elemental and Sr-Nd-Hf-O Isotopic Constraints on the Petrogenesis of the Triassic Post-Collisional Granitic Rocks in NW Thailand and Its Paleotethyan Implications. Lithos, 266-267: 264-286. https://doi.org/10.1016/j.lithos.2016.09.012 [46] Wang, Y. J., Qian, X., Cawood, P. A., et al., 2018. Closure of the East Paleotethyan Ocean and Amalgamation of the Eastern Cimmerian and Southeast Asia Continental Fragments. Earth-Science Reviews, 186: 195-230. https://doi.org/10.1016/j.earscirev.2017.09.013 [47] Wang, Y. J., Yang, T. X., Zhang, Y. Z., et al., 2020. Late Paleozoic Back-Arc Basin in the Indochina Block: Constraints from the Mafic Rocks in the Nan and Luang Prabang Tectonic Zones, Southeast Asia. Journal of Asian Earth Sciences, 195: 104333. https://doi.org/10.1016/j.jseaes.2020.104333 [48] Wikarno, U., Suyatna, D. A. D., Sukardi, S., 1988. Granitoids of Sumatra and the Tin Islands. In: Hutchison, C.S., ed., Geology of Tin Deposits in Asia and the Pacific. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72765-8_44 [49] Xu, C., Wang, Y.J., Qian, X., et al., 2020. Geochronological and Geochemical Characteristics of Early Silurian S-Type Granitic Gneiss in Takengon Area of Northern Sumatra and Its Tectonic Implications. Earth Science, 45(6): 2077-2090 (in Chinese with English abstract). [50] Zhang, H.K., Hu, P., Cao, L., et al., 2017. A-Type Granite of Granite Complex in Sarudik Area, Sumatra: Zircon U-Pb Ages and Its Tectonic Implication. China Mining Magazine, 26(11): 171-178 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKA201711030.htm [51] Zhang, H. K., Hu, P., Cao, L., et al., 2020. Geochemical Characteristics and Sr-Nd-Hf Isotope Compositions of Late Triassic Post-Collisional A-Type Granites in Sarudik, SW Sumatra, Indonesia. Island Arc, 29(1): e12357. https://doi.org/10.1111/iar.12357 [52] Zhang, X. R., Chung, S. L., Lai, Y. M., et al., 2018. Detrital Zircons Dismember Sibumasu in East Gondwana. Journal of Geophysical Research: Solid Earth, 123(7): 6098-6110. https://doi.org/10.1029/2018jb015780 [53] Zhang, X. R., Chung, S. L., Lai, Y. M., et al., 2019. A 6 000-km-Long Neo-Tethyan Arc System with Coherent Magmatic Flare-Ups and Lulls in South Asia. Geology, 47(6): 573-576. https://doi.org/10.1130/g46172.1 [54] 胡培远, 李才, 吴彦旺, 等, 2016. 青藏高原古特提斯洋早石炭世弧后拉张: 来自A型花岗岩的证据. 岩石学报, 32(4): 1219-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604020.htm [55] 蒋少涌, 赵葵东, 姜耀辉, 等, 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496-509. doi: 10.3969/j.issn.1006-7493.2008.04.004 [56] 李成志, 杨文光, 朱利东, 等, 2020. 西藏墨竹工卡地区早侏罗世花岗岩地球化学、岩石成因及其地质意义. 地球科学, 45(5): 1556-1572. doi: 10.3799/dqkx.2019.196 [57] 徐畅, 王岳军, 钱鑫, 等, 2020. 苏门答腊岛北部Takengon早志留世S型花岗片麻岩年代学、地球化学特征及构造意义. 地球科学, 45(6): 2077-2090. doi: 10.3799/dqkx.2020.030 [58] 张海坤, 胡鹏, 曹亮, 等, 2017. 印度尼西亚苏门答腊岛Sarudik地区A型花岗岩锆石U-Pb年龄及其构造意义. 中国矿业, 26(11): 171-178. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201711030.htm