Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains
-
摘要: 全球变暖可能导致多年冻土中的有机碳分解,向大气释放甲烷(CH4),但多年冻土的甲烷释放通量与微生物群落结构以及功能基因的丰度相关性还不清楚.于2019年6月~2020年1月,选择青藏高原北部祁连山多年冻土区,利用静态箱-气相色谱法对不同海拔地区进行CH4释放通量测定,并分析土壤理化性质、CH4功能微生物群落、功能微生物的基因丰度.结果发现,整体上,甲烷通量随着海拔的上升而增加,在4 100 m和3 900 m处表现为源,而其他各海拔地区表现为碳汇.土壤含水率、电导率和mcrA基因丰度与CH4通量正相关.研究表明祁连山多年冻土区不同海拔CH4通量受土壤含水率和mcrA基因丰度的影响,而有机碳含量会影响微生物的多样性.Abstract: Global warming may cause the decomposition of organic carbon in permafrost regions and release methane (CH4) into the atmosphere, while the correlation between methane fluxes in permafrost regions and the structure of methane-related microbes and the abundance of functional genes remains unclear. In this study, we selected the permafrost region of the Qilian Mountains in the northern Qinghai-Tibet Plateau, and the field work was conducted from June 2019 to January 2020. The CH4 fluxes were measured at different altitudes using static chamber-gas chromatography. The soil physical and chemical variables and abundances of CH4 function genes were analyzed. The results show that the methane fluxes largely increased with the altitude. It appeared as a source at 4 100 m and 3 900 m, while other altitude areas appear as carbon sinks. The soil moisture content, conductivity and mcrA gene abundance were positively correlated with CH4 fluxes. The results showed that CH4 flux at different altitudes in the permafrost regions of Qilian Mountains were affected by soil moisture content and mcrA gene abundance, while organic carbon content mainly affected microbial diversity.
-
Key words:
- permafrost /
- methane flux /
- functional gene /
- microbes /
- environmental geology
-
表 1 土壤样地概况
Table 1. Environmental conditions for the sampling plots
样地编号 海拔(m) 经纬度 土壤类型 植被类型(主要组成) Q1 4 100 38°78´N
98°74´E高山沼泽土 高山嵩草Kobresiapygmaea、黑褐穗薹草CarexatrofuscaS chkuhrsubsp、火绒草Leontopodium leontopodioides、珠芽蓼Kobresiapygmaea等 Q2 3 900 38°83´N
98°83´E高山沼泽土 高山嵩草Kobresiapygmaea、黑褐穗薹草Carexatrofusca Schkuhrsubsp、西藏嵩草Kobresiatibetica Maxim等 Q3 3 700 38°81´N
99°03´E高山草原土 高山嵩草Kobresiapygmaea、黑褐穗薹草Carexatrofusca Schkuhrsubsp、矮嵩草Kobresia humilis、西藏嵩草Kobresiatibetica等 Q4 3 500 38°68´N
98°28´E高山草原土 矮嵩草Kobresia humilis、黄花棘豆Oxytropisochrocephala等 Q5 3 300 38°47´N
98°54´E高山灌丛草甸土 矮嵩草Kobresia humilis、黄花棘豆Oxytropisochrocephala、野决明Thermopsislupinoides.、紫花针茅Stipa purpurea等 Q6 3 100 38°31´N
98°78´E亚高山灌丛草甸土 矮嵩草Kobresia humilis、紫花针茅Oxytropisochrocephala.、野决明Stipa purpurea.、冰草Agropyroncristatum (L.) Gaertn等 表 2 土壤理化性质和甲烷通量相关性
Table 2. Correlation coefficients amongs oil physical and chemical properties and methane emission rates
含水率 pH 电导率 总碳
TC有机碳
SOC总氮
TN碳氮比
C/N速率
Rate含水率 1 0.044 0.676* 0.120 0.257 0.248 0.247 0.577* pH 1 0.451 0.094 -0.135 -0.363 0.54 -0.187 电导率 1 0.023 -0.202 -0.389 0.051 0.592* TC 1 0.588* 0.322 0.427 -0.036 SOC 1 0.540 0.871** 0.046 TN 1 0.094 -0.172 C/N 1 0.248 速率 1 注:**. 在0.01水平,Pearson相关系数(双尾)显著相关;*. 在0.05水平,Pearson相关系数(双尾)显著相关 表 3 产甲烷菌与甲烷氧化菌α多样性指数和土壤理化性质相关性统计表
Table 3. Correlation coefficients between alpha diversity index of methanogens and methanogenic bacteria and soil physicochemical properties
功能基因 α多样性指数 含水率 pH 电导率 总碳TC 有机碳SOC 总氮TN 碳氮比C/N 产甲烷菌
MethanogensSimpson 0.067 -0.023 0.165 0.827** 0.618** -0.217 -0.515 Chao1 -0.279 0.08 -0.078 0.792** 0.579* -0.234 -0.502 ACE -0.255 0.076 -0.054 0.789** 0.575 -0.239 -0.492 Shannon -0.026 0.159 0.206 0.801** 0.699* -0.324 -0.545 甲烷氧化菌
methanotrophsSimpson 0.004 0.649* 0.284 0.3 0.136 -0.181 0.226 Chao1 -0.305 0.181 -0.175 0.433 0.136 -0.017 0.095 ACE -0.297 0.179 -0.174 0.443 0.143 -0.01 0.098 Shannon -0.093 0.38 0.128 0.397 0.128 -0.14 0.18 表 4 CH4通量以及土壤理化性质与CH4功能基因丰度的相关性分析
Table 4. Correlation coefficients between CH4 emission and soil physical and chemical properties and CH4 functional gene abundance
功能基因 总碳TC 总氮TN 碳氮比C/N 有机碳SOC 含水率 电导率 pH 速率 pmoA 0.084 -0.088 -0.254 -0.184 -0.335 -0.126 0.224 -0.126 mcrA -0.328 -0.189 0.053 -0.120 0.729** 0.675* 0.065 0.612* 注:**. 在0.01水平,Pearson相关系数(双尾)显著相关;*. 在0.05水平,Pearson相关系数(双尾)显著相关 -
[1] Aronson, E. L., Allison, S. D., Helliker, B. R, 2013. Environmental Impacts on the Diversity of Methane-Cycling Microbes and Their Resultant Function. Frontiers in Microbiology, 4: 225. https://doi.org/10.3389/fmicb.2013.00225 [2] Cai, C.Y., He, Z.F., Hu, B. L, 2016. Progresses in the Classification and Mechanism of Methane-Oxidizing Bacteria. Journal of Zhejiang University, 42(3): 273-281(in Chinese with English abstract). https://www.researchgate.net/publication/344746674_Environmental_and_Microbial_Interactions_Shape_Methane-Oxidizing_Bacterial_Communities_in_a_Stratified_Lake [3] Cao, B., 2018. Conditions and Dynamics of Permafrost in the Qilian Mountains over the Upper Reaches of Heihe River Basin(Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract). [4] Chen, J.W., Ge, J.W., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082-1092 (in Chinese with English abstract). [5] Feng, H. L., Guo, J. H., Han, M. H., et al., 2019. A Review of the Mechanisms and Controlling Factors of Methane Dynamics in Forest Ecosystems. Forest Ecology and Management, 455: 117702. https://doi.org/10.1016/j.foreco.2019.117702 [6] Gou, X. H., Zhang, F., Deng, Y., et al., 2012. Patterns and Dynamics of Tree-Line Response to Climate Change in the Eastern Qilian Mountains, Northwestern China. Dendrochronologia, 30(2): 121-126. https://doi.org/10.1016/j.dendro.2011.05.002 [7] Guan, C.F., He, F.J., Han, H.B., et al., 2020. Effects of Environmental and Microbial Factors on Soil Methane of the Different Vegetation Types at Longbaota Natural Reserve. Ecology and Environmental Sciences, 29(5): 987-995 (in Chinese with English abstract). [8] Hu, Q.W., Ouyang, H., Liu, X. D, 2006. Distribution Characteristics of Soil Organic Carbon and Total Nitrogen along the Altitudinal Belt in the Northern Slope of Qilian Mountains. Journal of Mountain Science, 24(6): 654-661(in Chinese with English abstract). [9] Hugelius, G., Strauss, J., Zubrzycki, S., et al., 2014. Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps. Biogeosciences, 11(23): 6573-6593. https://doi.org/10.5194/bg-11-6573-2014 [10] IPCC. 2014. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change. Cambridge University Press, England. [11] Le Mer, J., Roger, P, 2001. Production, Oxidation, Emission and Consumption of Methane by Soils: a Review. European Journal of Soil Biology, 37(1): 25-50. https://doi.org/10.1016/S1164-5563(01)01067-6 [12] Li, D.M., Cheng, Y.H., Liu, M.Q., et al., 2013. Relationship between Methane Emission and the Community Structure and Abundance of Methanogens under Double Rice Cropping System. Journal of Agro-Environment Science, 32(4): 866-873(in Chinese with English abstract). [13] Li, L.L., 2018. The Correlationship Between Permafrost Micro-Environment and Vegetation Succession in Upper Reaches of Heihe(Dissertation). Lanzhou University, Lanzhou(in Chinese with English abstract). [14] Li, S., Song, L., Gao, X., et al., 2017. Microbial Abundances Predict Methane and Nitrous Oxide Fluxes from a Windrow Composting System. Frontiers in Microbiology, 8: 409. https://doi.org/10.3389/fmicb.2017.00409 [15] Li, T. T., Raivonen, M., Alekseychik, P., et al., 2016. Importance of Vegetation Classes in Modeling CH4 Emissions from Boreal and Subarctic Wetlands in Finland. Science of the Total Environment, 572: 1111-1122. https://doi.org/10.1016/j.scitotenv.2016.08.020 [16] Li, Z.P., Wu, X.C., Chen, B.Y., 2007. Changes in Transformation of Soil Organic Carbon and Functional Diversity of Soil Microbial Community Under Different Land Use Patterns. Scientia Agricultura Sinica, 40(8): 1712-1721 (in Chinese with English abstract). [17] Lieberman, R. L., Rosenzweig, A. C, 2004. Biological Methane Oxidation: Regulation, Biochemistry, and Active Site Structure of Particulate Methane Monooxygenase. Critical Reviews in Biochemistry and Molecular Biology, 39(3): 147-164. https://doi.org/10.1080/10409230490475507 [18] Magoc, T., Salzberg, S. L, 2011. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics (Oxford, England), 27(21): 2957-2963. https://doi.org/10.1093/bioinformatics/btr507 [19] Mu, C. C., Abbott, B. W., Zhao, Q., et al., 2017. Permafrost Collapse Shifts Alpine Tundra to a Carbon Source but Reduces N2O and CH4 Release on the Northern Qinghai-Tibetan Plateau. Geophysical Research Letters, 44(17): 8945-8952. https://doi.org/10.1002/2017GL074338 [20] Mu, C. C., Li, L. L., Wu, X. D., et al., 2018. Greenhouse Gas Released from the Deep Permafrost in the Northern Qinghai-Tibetan Plateau. Scientific Reports, 8(1): 1-9. https://doi.org/10.1038/s41598-018-22530-3 [21] Ouyang, M.L., Zeng, D.P., Min, Q.W., et al., 2014. Ecological Stoichiometry Characteristics of Soil Carbon, Nitrogen and Phosphorus in the Tea Garden of Drum Mountain. Journal of Soil and Water Conservation, 28(2): 297-301 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0048969720313814 [22] Qin, L., Lv, G.H., He, X.M., 2013. Effects of Freezing-Thawing on Soil Microbial Quantity and Community Structure around the Ebinur Lake. Journal of Glaciology and Geocryology, 35(6): 1590-1599 (in Chinese with English abstract). [23] Song, C. C., Xu, X. F., Sun, X. X., et al., 2012. Large Methane Emission Upon Spring Thaw from Natural Wetlands in the Northern Permafrost Region. Environmental Research Letters, 7(3): 034009. https://doi.org/10.1088/1748-9326/7/3/034009 [24] Steinberg, L. M., Regan, J. M, 2008. Phylogenetic Comparison of the Methanogenic Communities from an Acidic, Oligotrophic Fen and an Anaerobic Digester Treating Municipal Wastewater Sludge. Applied and Environmental Microbiology, 74(21): 6663-6671. https://doi.org/10.1128/aem.00553-08 doi: 10.1128/AEM.00553-08 [25] Voigt, C., Marushchak, M. E., Mastepanov, M., et al., 2019. Ecosystem Carbon Response of an Arctic Peatland to Simulated Permafrost Thaw. Global Change Biology, 25(5): 1746-1764. https://doi.org/10.1111/gcb.14574 [26] Wang, X.W., Li, X.Z., Lv, J.J., et al., 2010. Effects of Temperature on the Carbon Mineralization of Peat in The Permafrost Wetland in the Da Xing An Mountains. Quaternary Sciences, 30(3): 591-597 (in Chinese with English abstract). [27] Wang, Y.F., Cai, Y, F., Hou, F.J., et al., 2019. Aerobic Methane Oxidation in Typical Grassland Soil. Acta Microbiologica Sinica, 59(6): 1116-1126 (in Chinese with English abstract). [28] Wang, Y.F., Wei, S., P., Cui, H.P., et al., 2016. Methane Metabolic Microbial Community Structure in the Active Layer and the Permafrost Layer of the Qilian Permafrost, China. Chinese Journal of Applied and Environmental Biology, 22(4): 592-598 (in Chinese with English abstract). [29] Watson, R.T., Zinyowera, M.C., Moss, R.H. 1996. Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Intergovernmental Panel on Climate Change. Cambridge University Press, England. [30] Wu, X.D., Wu, T.H., 2020. Permafrost Degradation has Important Effects on Climate and Human Society. Chinese Journal of Nature, 42(5): 425-431 (in Chinese with English abstract). [31] Yang, G. B., Peng, Y. F., Olefeldt, D., et al., 2018. Changes in Methane Flux along a Permafrost Thaw Sequence on the Tibetan Plateau. Environmental Science & Technology, 52(3): 1244-1252. https://doi.org/10.1021/acs.est.7b04979 [32] Yang, Y., Chen, R.S., Ji, X.B., 2007. Variations of Glaciers in the Yeniugou Watershed of Heihe River Basin from 1956 to 2003. Journal of Glaciology and Geocryology, 29(1): 100-106 (in Chinese with English abstract). [33] Yvon-Durocher, G., Allen, A. P., Bastviken, D., et al., 2014. Methane Fluxes Show Consistent Temperature Dependence across Microbial to Ecosystem Scales. Nature, 507(7493): 488-491. https://doi.org/10.1038/nature13164 [34] Zhang, Y. F., Cui, M. M., Duan, J. B., et al., 2018. Abundance, rather than Composition, of Methane-Cycling Microbes Mainly Affects Methane Emissions from Different Vegetation Soils in the Zoige Alpine Wetland. MicrobiologyOpen, 8(4): e00699. https://doi.org/10.1002/mbo3.699 [35] Zhao, C. Y., Nan, Z. R., Cheng, G. D, 2005. Methods for Modelling of Temporal and Spatial Distribution of Air Temperature at Landscape Scale in the Southern Qilian Mountains, China. Ecological Modelling, 189(1/2): 209-220. https://doi.org/10.1016/j.ecolmodel.2005.03.016 [36] Zhao, Q.F., 2006. Genetic Diversity of Plants of Genus Kobresia in the East of Qinghai-Tibet Plaeau(Dissertation). Lanzhou University, Lanzhou(in Chinese with English abstract). [37] Zhao, Y.F., Hong, M.M., Ou, Y.S., et al., 2018. The Stoichiometric Characteristics of Soil C, N, P in Mountain Steppe of Eastern Tibetan Plateau. Ecological Science, 37(5): 25-32 (in Chinese with English abstract). [38] 蔡朝阳, 何崭飞, 胡宝兰, 2016. 甲烷氧化菌分类及代谢途径研究进展. 浙江大学学报(农业与生命科学版), 42(3): 273-281. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNY201603002.htm [39] 曹斌, 2018. 黑河上游祁连山区多年冻土状态与动态研究(博士学位论文). 兰州: 兰州大学. [40] 谌佳伟, 葛继稳, 冯亮, 等, 2020. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45(3): 1082-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202003031.htm [41] 管崇帆, 何方杰, 韩辉邦, 等, 2020. 环境和微生物因子对隆宝滩不同植被类型土壤甲烷通量的影响. 生态环境学报, 29(5): 987-995. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ202005015.htm [42] 胡启武, 欧阳华, 刘贤德, 2006. 祁连山北坡垂直带土壤碳氮分布特征. 山地学报, (6): 654-661. doi: 10.3969/j.issn.1008-2786.2006.06.003 [43] 李大明, 成艳红, 刘满强, 等, 2013. 双季稻田甲烷排放与土壤产甲烷菌群落结构和数量关系研究. 农业环境科学学报, 32(4): 866-873. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201304031.htm [44] 李丽丽, 2018. 黑河上游多年冻土区微环境与植被相关性研究(博士学位论文). 兰州: 兰州大学. [45] 李忠佩, 吴晓晨, 陈碧云, 2007. 不同利用方式下土壤有机碳转化及微生物群落功能多样性变化. 中国农业科学, (8): 1712-1721. doi: 10.3321/j.issn:0578-1752.2007.08.017 [46] 欧阳林梅, 曾冬萍, 闵庆文, 等, 2014. 鼓山茶园土壤碳氮磷生态化学计量学特征. 水土保持学报, 28(2): 297-301. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201402057.htm [47] 秦璐, 吕光辉, 何学敏, 2013. 艾比湖地区冻融作用对土壤微生物数量和群落结构的影响. 冰川冻土, 35(6): 1590-1599. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201306026.htm [48] 王宪伟, 李秀珍, 吕久俊, 等, 2010. 温度对大兴安岭北坡多年冻土湿地泥炭有机碳矿化的影响. 第四纪研究, 30(3): 591-597. doi: 10.3969/j.issn.1001-7410.2010.03.18 [49] 王艳发, 魏士平, 崔鸿鹏, 等, 2016. 祁连山冻土区土壤活动层与冻土层中甲烷代谢微生物群落结构特征. 应用与环境生物学报, 22(4): 592-598. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201604010.htm [50] 王玉芳, 蔡元锋, 侯扶江, 等, 2019. 典型草地土壤好氧甲烷氧化的微生物生态过程. 微生物学报, 59(6): 1116-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201906012.htm [51] 吴晓东, 吴通华, 2020. 多年冻土退化对气候和人类产生重要影响. 自然杂志, 42(5): 425-431. doi: 10.3969/j.issn.0253-9608.2020.05.011 [52] 阳勇, 陈仁升, 吉喜斌, 2007. 近几十年来黑河野牛沟流域的冰川变化. 冰川冻土, (1): 100-106. doi: 10.3969/j.issn.1000-0240.2007.01.015 [53] 赵庆芳, 2006. 青藏高原东部嵩草属植物遗传多样性研究(博士学位论文). 兰州: 兰州大学. [54] 赵云飞, 洪苗苗, 欧延升, 等, 2018. 青藏高原东部山地草地土壤碳、氮、磷元素计量特征. 生态科学, 37(5): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-STKX201805004.htm