• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    河套平原盐渍化地区非饱和带氮的分布特征及影响因素

    高爽 苏春利 谢先军 陶彦臻 曾邯斌 潘洪捷 闫福贵

    高爽, 苏春利, 谢先军, 陶彦臻, 曾邯斌, 潘洪捷, 闫福贵, 2022. 河套平原盐渍化地区非饱和带氮的分布特征及影响因素. 地球科学, 47(2): 568-576. doi: 10.3799/dqkx.2021.036
    引用本文: 高爽, 苏春利, 谢先军, 陶彦臻, 曾邯斌, 潘洪捷, 闫福贵, 2022. 河套平原盐渍化地区非饱和带氮的分布特征及影响因素. 地球科学, 47(2): 568-576. doi: 10.3799/dqkx.2021.036
    Gao Shuang, Su Chunli, Xie Xianjun, Tao Yanzhen, Zeng Hanbin, Pan Hongjie, Yan Fugui, 2022. Distribution Characteristics and Influencing Factors of Nitrogen in Unsaturated Zone in Salinized Area of Hetao Plain. Earth Science, 47(2): 568-576. doi: 10.3799/dqkx.2021.036
    Citation: Gao Shuang, Su Chunli, Xie Xianjun, Tao Yanzhen, Zeng Hanbin, Pan Hongjie, Yan Fugui, 2022. Distribution Characteristics and Influencing Factors of Nitrogen in Unsaturated Zone in Salinized Area of Hetao Plain. Earth Science, 47(2): 568-576. doi: 10.3799/dqkx.2021.036

    河套平原盐渍化地区非饱和带氮的分布特征及影响因素

    doi: 10.3799/dqkx.2021.036
    基金项目: 

    内蒙古自治区河套灌区盐碱地生物修复与综合开发研究 2019046338

    详细信息
      作者简介:

      高爽(1997-), 女, 硕士研究生, 主要从事水文地球化学与生态环境的研究.ORCID: 0000-0001-6808-5352.E-mail: 1073358995@qq.com

      通讯作者:

      苏春利, E-mail: chl.su@cug.edu.cn

    • 中图分类号: S153.6+1

    Distribution Characteristics and Influencing Factors of Nitrogen in Unsaturated Zone in Salinized Area of Hetao Plain

    • 摘要: 土壤氮在植物生长、土壤理化性质和微生物活动中扮演着重要的角色.为了识别盐渍化地区非饱和带氮的迁移过程,以河套灌区典型盐渍化耕地为例,通过非饱和带监测和水化学统计分析,探究了土壤剖面中氮素分布的差异性及主要影响因素.结果表明,研究区0~100 cm土层深度土壤氮含量处于较低水平,NO3-N、NH4-N和NO2-N含量平均值分别为4.88、1.63和0.04 mg/kg.土壤氮的空间分布与土层深度和理化性质有关,随深度增大,NO3-N含量呈逐渐增加的趋势,高值区主要分布于40~80 cm深度的土层,NH4-N含量多集中在60~100 cm深度的土层.土壤NO3-N含量主要与土壤pH、含水率和水溶性盐分含量(TDS、Cl-、SO42-、Na+)有关,而NH4-N含量主要受含水率、黏粒和TOC含量的影响.NO3-N和NH4-N在土壤中的积累与水盐运移、土壤矿物的静电吸附和微生物的控制有关,这在很大程度上受土壤粒度组成、pH、有机质含量和竞争性阴、阳离子含量的影响.

       

    • 图  1  研究区位置(a)、采样点布置图(b)及研究区全貌(c)

      Fig.  1.  Location (a), distribution of sampling points (b) and the photo of Field Test Site (c)

      图  2  土壤剖面NO3-N(a)和NH4-N(b)含量分布图以及NO3-N累积量分布图(c)

      Fig.  2.  Distribution of NO3-N(a) and NH4-N(b) contents and NO3-N cumulant(c) in soil profile

      图  3  各剖面土壤NO3-N、Cl-与含水率分布

      Fig.  3.  Soil NO3-N, Cl- and water content distribution in each profile

      图  4  非饱和带土壤NH4-N与TOC分布图

      Fig.  4.  NH4-N and TOC distribution in unsaturated soil

      图  5  土壤质地分类三角图(a)和土壤NH4-N与黏粒含量关系(b)

      Fig.  5.  Triangulation of soil texture classification(a) and relationship between NH4-N and clay content (b)

      图  6  非饱和带氮迁移转化概念模型

      Fig.  6.  Conceptual model of nitrogen transfer and transformation in unsaturated zone

      表  1  土壤氮素含量统计特征

      Table  1.   Statistical characteristics of soil nitrogen content

      最小值 最大值 平均值 标准差 变异系数(%)
      NO2-N(mg/kg) 0.03 0.06 0.04 0.006 5 15.28
      NH4-N(mg/kg) 0.33 14.36 1.63 2.970 0 181.92
      NO3-N(mg/kg) 0.45 18.46 4.88 4.750 0 97.34
      下载: 导出CSV

      表  2  土壤氮素与土壤黏粒含量以及孔隙水水化学的相关性

      Table  2.   Correlation of soil nitrogen with soil clay content and pore water hydrochemistry

      含水率 NO2-N NH4-N NO3-N pH EC 黏粒含量 HCO3- Cl- SO42- Na+ Mg2+ K+ Ca2+ TDS
      含水率 1
      NO2-N 0.358* 1
      NH4-N 0.318* -0.016 1
      NO3-N 0.506** 0.071 0.305 1
      pH -0.181 -0.029 -0.342* -0.360* 1
      EC 0.534** 0.224 0.342* 0.582** -0.640** 1
      黏粒含量 0.304 -0.032 0.826** 0.243 0.192 0.273 1
      HCO3- 0.495* 0.322 -0.029 0.274 0.255 0.067 0.652** 1
      Cl- 0.582** 0.312 0.449* 0.654** -0.367 0.935** 0.352 0.179 1
      SO42- 0.361 -0.008 0.857** 0.482* -0.706** 0.913** 0.186 -0.048 0.723** 1
      Na+ 0.627** 0.305 0.534* 0.650** -0.361 0.959** 0.364 0.256 0.972** 0.798** 1
      Mg2+ 0.098 -0.249 0.849** 0.340 -0.821** 0.761** -0.157 -0.287 0.512* 0.934** 0.567** 1
      K+ -0.447* -0.428 0.160 -0.100 -0.552* -0.171 -0.118 -0.196 -0.353 0.078 -0.342 0.314 1
      Ca2+ 0.115 -0.229 0.903** 0.322 -0.798** 0.692** -0.325 -0.251 0.421 0.911** 0.496* 0.979** 0.309 1 .
      TDS 0.501* 0.123 0.754** 0.597** -0.594** 0.985** 0.374 0.107 0.886** 0.956** 0.937** 0.813** -0.101 0.764** 1
      注:*. 在0.05水平(双侧)上显著相关; **. 在0.01水平(双侧)上显著相关.
      下载: 导出CSV
    • [1] Berlin, M., Nambi, I. M., Kumar, G. S., 2015. Experimental and Numerical Investigations on Nitrogen Species Transport in Unsaturated Soil during Various Irrigation Patterns. Sadhana, 40(8): 1-27. https://doi.org/10.1007/s12046-015-0420-4
      [2] Burt, T. P., Matchett, L. S., Goulding, K. W. T., et al., 2015. Denitrification in Riparian Buffer Zones: the Role of Floodplain Hydrology. Hydrological Processes, 13(10): 1451-1463. https://doi.org/10.1002/(SICI)1099-1085(199907)13:10<1451:AID-HYP822>3.0.CO;2-W doi: 10.1002/(SICI)1099-1085(199907)13:10<1451:AID-HYP822>3.0.CO;2-W
      [3] Deng, J. C., Chen, L. M., Jiang, X., et al., 2005. Nitrate Vertical Transport and Simulating Model in Saturated Soils in Typical Region. Environmental Science, 26(2): 200-205(in Chinese with English abstract).
      [4] Dontsova, K. M., Norton, L. D., Johnston, C. T., 2005. Calcium and Magnesium Effects on Ammonia Adsorption by Soil Clays. Soil Science Society of America Journal, 69(4): 1225-1232. https://doi.org/10.2136/sssaj2004.0335
      [5] Gheysari, M., Mirlatifi, S. M., Homaee, M., et al., 2009. Nitrate Leaching in A Silage Maize Field under Different Irrigation and Nitrogen Fertilizer Rates. Agricultural Water Management, 96(6): 946-954. https://doi.org/10.1016/j.agwat.2009.01.005
      [6] Feng, B. Q., Cui, J., Wu, D., et al., 2019. Preliminary Studies on Causes of Salinization and Alkalinization in Irrigation Districts of Northwest China and Countermeasures. China Water Resources, (9): 43-46(in Chinese with English abstract).
      [7] Feng, Z. Z., Wang, X. K., Feng, Z. W., et al., 2003. Influence of Autumn Irrigation on Soil N Leaching Loss of Different Farmlands in Hetao Irrigation District, China. Acta Ecologica Sinica, 23(10): 2027-2032(in Chinese with English abstract). https://europepmc.org/abstract/CBA/534256
      [8] Guo, Y. B., Dai, J., Feng, H., et al., 2013. Standard Mapping of Soil Textural Triangle and Automatic Query of Soil Texture Classes. Acta Pedologica Sinica, 50(6): 1221-1225(in Chinese with English abstract).
      [9] Guo, Z., Yan, C., Wang, Z., et al., 2019. Quantitative Identification of Nitrate Sources in A Coastal Peri-Urban Watershed Using Hydrogeochemical Indicators and Dual Isotopes Together with the Statistical Approaches. Chemosphere, 243: 125364. https://doi.org/10.1016/j.chemosphere.2019.125364
      [10] Jing, Y. P., Lin, C. Y., Zhao, P. Y., et al., 2020. Salinized Soil Improvement by Planting 5 Plant Species in Hetao Irrigation Area. Soils and Crops, 9(2): 114-125(in Chinese with English abstract).
      [11] Li, G., Han, Z. W., Shen, C. H., Zeng, X. Y., 2019. Distribution Characteristics and Causes of Nitrate in Waters of Typical Small Karst Catchment: A Case of the Houzhai River Catchment. Earth Science, 44(9): 2899-2908(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0169772220302898
      [12] Li, J. B., Fang, Z. Q., Ji, Q. J., et al., 2016. Triangle Coordinate Diagram Automatic Recognition System Software Design Based on WPF: A Case Study of Soil Texture. Journal of Drainage and Irrigation Machinery Engineering, 34(4): 339-345(in Chinese with English abstract).
      [13] Lu, Y. C., Wang, C., Liu, L. L., et al., 2019. Effects of Irrigation Amount on Leaching Characteristics of Salt and Urea Nitrogen in Coastal Saline Soil. Chinese Journal of Soil Science, 50(6): 1442-1446(in Chinese with English abstract).
      [14] Ma, T., Shen, S., Deng, Y. M., et al., 2020. Theoretical Approaches of Survey on Earth's Critical Zone in Basin: An Example from Jianghan Plain, Central Yangtze River. Earth Science, 45(12): 4498-4511(in Chinese with English abstract).
      [15] Menon, M., Parratt, R. T., Kropf, C. A., et al., 2010. Factors Contributing to Nitrate Accumulation in Mesic Desert Vadose Zones in Spanish Springs Valley, Nevada (USA). Journal of Arid Environments, 74(9): 1033-1040. https://doi.org/10.1016/j.jaridenv.2010.03.005
      [16] Su, Y. Z., Yang, X., Yang, R., 2014. Effect of Soil Texture in Unsaturated Zone on Soil Nitrate Accumulation and Groundwater Nitrate Contamination in a Marginal Oasis in the Middle of Heihe River Basin. Environmental Science, 35(10): 3683-3691(in Chinese with English abstract).
      [17] Wang, S. Q., Wei, S. C., Liang, H. Y., et al., 2019. Nitrogen Stock and Leaching Rates in a Thick Vadose Zone below Areas of Long-Term Nitrogen Fertilizer Application in the North China Plain: A Future Groundwater Quality Threat. Journal of Hydrology, 576: 28-40. https://doi.org/10.1016/j.jhydrol.2019.06.012
      [18] Wu, H., Song, X., Liu, F., et al., 2020. Regolith Property Controls on Nitrate Accumulation in a Typical Vadose Zone in Subtropical Chin. Catena, 2020, 192: 104589. https://doi.org/10.1016/j.catena.2020.104589 http://www.sciencedirect.com/science/article/pii/S0341816220301399
      [19] Yuan, L. J., Pang, Z. H., 2012. Differences in Nitrate Distribution in the Unsaturated Zone and its Formation Mechanism: A Case Study of Zhengding and Luancheng. Hydrogeology & Engineering geology, 39(1): 75-80(in Chinese with English abstract).
      [20] Zhang, D., Fan, M., Liu, H., et al., 2020. Effects of Shallow Groundwater Table Fluctuations on Nitrogen in the Groundwater and Soil Profile in the Nearshore Vegetable Fields of Erhai Lake, Southwest China. Journal of Soils and Sediments, 20(1): 42-51. https://doi.org/10.1007/s11368-019-02382-8
      [21] Zhang, D. T., Liu, L., Ma, T., et al., 2020. Occurrence, Migration and Transformation Characteristics of Nitrogen Forms in Clay Aquitards. Safety and Environmental Engineering, 27(3): 118-125(in Chinese with English abstract).
      [22] Zhao, L., 2016. Research Overview of Transport and Transformation of "Tri-Nitrogen" in Groundwater and Aeration Zone and In-Situ Remediation Technology. Ground water, 38(3): 24-26+62(in Chinese with English abstract).
      [23] 邓建才, 陈效民, 蒋新, 等, 2005. 典型地区饱和土壤中硝态氮垂直运移及拟合. 环境科学, 26(2): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200502041.htm
      [24] 冯保清, 崔静, 吴迪, 等, 2019. 浅谈西北灌区耕地盐碱化成因及对策. 中国水利, (9): 43-46. doi: 10.3969/j.issn.1000-1123.2019.09.018
      [25] 冯兆忠, 王效科, 冯宗炜, 等, 2003. 河套灌区秋浇对不同类型农田土壤氮素淋失的影响. 生态学报, 23(10): 2027-2032. doi: 10.3321/j.issn:1000-0933.2003.10.010
      [26] 郭彦彪, 戴军, 冯宏, 等, 2013. 土壤质地三角图的规范制作及自动查询. 土壤学报, 50(6): 1221-1225. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201306019.htm
      [27] 景宇鹏, 林春野, 赵沛义, 等, 2020.5种植物改良河套灌区盐渍化土壤的效果研究. 土壤与作物, 9(2): 114-125. https://www.cnki.com.cn/Article/CJFDTOTAL-TRZW202002002.htm
      [28] 李耕, 韩志伟, 申春华, 曾祥颖, 2019. 典型岩溶小流域水体中硝酸盐分布特征及成因: 以普定后寨河流域为例. 地球科学, 44(9): 2899-2908. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909008.htm
      [29] 李建波, 房宗启, 纪全菊, 等, 2016. 基于WPF的三角图自动识别系统构建方法——以土壤质地分类系统为例. 排灌机械工程学报, 34(4): 339-345. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201604011.htm
      [30] 陆宇辰, 王冲, 刘萌丽, 2019. 灌水量对滨海盐碱土中盐分和尿素氮淋洗特征的影响. 土壤通报, 50(6): 1442-1446. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201906024.htm
      [31] 马腾, 沈帅, 邓娅敏, 等, 2020. 流域地球关键带调查理论方法: 以长江中游江汉平原为例. 地球科学, 45(12): 4498-4511. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012014.htm
      [32] 苏永中, 杨晓, 杨荣, 2014. 黑河中游边缘荒漠-绿洲非饱和带土壤质地对土壤氮积累与地下水氮污染的影响. 环境科学, 35(10): 3683-3691. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201410007.htm
      [33] 袁利娟, 庞忠和, 2012. 包气带硝酸盐分布的差异性及其形成机理: 以正定、栾城为例. 水文地质工程地质, 39(1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201201016.htm
      [34] 张董涛, 刘璐, 马腾, 等, 2020. 黏性土弱透水层氮形态的赋存特征及迁移转化——以江汉平原沉湖沉积物为例. 安全与环境工程, 27(3): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202003017.htm
      [35] 赵丽, 2016. "三氮"在地下水-包气带中的迁移转化及原位修复技术研究概述. 地下水, 38(3): 24-26+62. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201603009.htm
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  371
    • HTML全文浏览量:  58
    • PDF下载量:  35
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-06-18
    • 刊出日期:  2022-02-25

    目录

      /

      返回文章
      返回