• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于遥感技术估算藏东南山区地下水径流模数方法

    张家森 许模 张强 漆继红 王杨双 夏强

    张家森, 许模, 张强, 漆继红, 王杨双, 夏强, 2022. 基于遥感技术估算藏东南山区地下水径流模数方法. 地球科学, 47(2): 642-651. doi: 10.3799/dqkx.2021.034
    引用本文: 张家森, 许模, 张强, 漆继红, 王杨双, 夏强, 2022. 基于遥感技术估算藏东南山区地下水径流模数方法. 地球科学, 47(2): 642-651. doi: 10.3799/dqkx.2021.034
    Zhang Jiasen, Xu Mo, Zhang Qiang, Qi Jihong, Wang Yangshuang, Xia Qiang, 2022. Estimating Groundwater Runoff Modulus Method Based on Remote Sensing in Mountainous Areas of Southeast Tibet. Earth Science, 47(2): 642-651. doi: 10.3799/dqkx.2021.034
    Citation: Zhang Jiasen, Xu Mo, Zhang Qiang, Qi Jihong, Wang Yangshuang, Xia Qiang, 2022. Estimating Groundwater Runoff Modulus Method Based on Remote Sensing in Mountainous Areas of Southeast Tibet. Earth Science, 47(2): 642-651. doi: 10.3799/dqkx.2021.034

    基于遥感技术估算藏东南山区地下水径流模数方法

    doi: 10.3799/dqkx.2021.034
    详细信息
      作者简介:

      张家森(1995-), 男, 博士研究生, 主要从事工程和环境水文地质研究. ORCID: 0000-0002-9201-6936. E-mail: 464436905@qq.com

      通讯作者:

      许模, ORCID: 0000-0002-7470-7274. E-mail: xm@cdut.edu.cn

    • 中图分类号: P641.6

    Estimating Groundwater Runoff Modulus Method Based on Remote Sensing in Mountainous Areas of Southeast Tibet

    • 摘要: 如何科学评估野外场地条件下的地下水径流模数对于满足工程水文地质需求具有重要应用价值.结合现场调查、遥感解译和气象水文观测等技术手段,通过建立线性回归模型,开展了帕隆藏布流域场地条件下的地下水径流模数估算研究.结果表明:研究区具有典型的季节性积雪融雪规律.冬季积雪在夏季大量融化产流,作为地下水的一个额外补给源.去除融雪产流对径流模数影响后,研究区岩浆岩裂隙型、变质岩裂隙型、碎屑岩裂隙型、碳酸盐岩-碎屑岩裂隙溶隙型含水介质地下水径流模数分别在1.081~2.792 L/s·km2、1.833~3.225 L/s·km2、1.128~2.889 L/s·km2、3.455~3.879 L/s·km2之间.估算结果显示本文所建立的地下水径流估算模型可作为藏东南地区及类似条件区域地下水径流模数估算新方法,为雅鲁藏布江下游梯级开发等大型基础工程提供重要的水文地质参数支撑.

       

    • 图  1  藏东南地区帕隆藏布流域位置和地形图

      地图参考自然资源部标准地图 1:130 000 000世界地图,审图号GS(2016)2945号

      Fig.  1.  Study area topography and watershed location

      图  2  典型小流域Landsat8影像与NDSI识别积雪覆盖范围对比

      Fig.  2.  Comparing Landsat 8 image and snow cover area identified by NDSI in typical subordinate watershed

      图  3  A09、A13流域地下水径流剖面

      Fig.  3.  Section of groundwater runoff at A09 and A13 watershed

      图  4  融雪补给地下水产流量及流域积雪面积关系

      Fig.  4.  Relationship between groundwater runoff recharged by snowmelt and area of watershed

      图  5  研究区小流域各地层面积占比$ {A}_{nm} $及径流模数$ {\overline{M}}_{gn} $

      面积占比为小流域内各地层面积占小流域面积的比例,径流模数为小流域内平均地下水径流模数. 图例各地层代号为所有小流域涉及地层,其中E1ηγ、K1ηγ、J3ηδ、D1ηγ为岩浆岩;AnNqa、AnNqb、AnOI、AnP、w为变质岩;C2P1l、C1n、P3x、K1d、J2-3l、J2m为碎屑岩;P2l、D2-3s为碳酸盐岩-碎屑岩互层

      Fig.  5.  Stratums area proportion in subordinate watershed($ {A}_{nm} $) and groundwater runoff modulus($ {\overline{M}}_{gn} $)

      图  6  3个区域内各小流域平均地下水径流模数对比

      Fig.  6.  Average groundwater runoff modulus at different subordinate watersheds in three zones

      图  7  A区部分流域与裂隙溶隙含水岩组位置关系

      Fig.  7.  Locational relationship between part of watersheds in A zone and carbonate-clastic aquifer

      表  1  来古冰川融雪产流模数

      Table  1.   Snowmelt runoff modulus in Laigu glacier

      积雪面积(km2 流量(L/s) 融雪产流模数(L/s·km2
      258.212 4 132.180 16.003
      下载: 导出CSV

      表  2  A、B、C分区平均地下水径流模数统计

      Table  2.   Average groundwater runoff modulus in A、B and C zone

      流域分区 平均地下水径流模数$ {\overline{M}}_{g} $(L/s·km2) 均方差σ2
      A 2.297 0.642
      B 2.696 0.195
      C 3.099 0.165
      下载: 导出CSV

      表  3  不同区域含水岩组径流模数回归结果

      Table  3.   Linear regression result of aquifer groundwater runoff modulus in different zone

      地层 含水介质类型 $ {M}_{gm\mathrm{A}} $ $ {M}_{gm\mathrm{B}} $ $ {M}_{gm\mathrm{C}} $
      E1ηγ 岩浆岩裂隙型 1.081 \ 2.561
      K1ηγ 1.919 1.298 2.286
      J3ηδ 1.536 2.459 \
      D1ηγ \ 2.792 \
      AnNqa 变质岩裂隙型 2.812 2.816 3.021
      AnNqb \ 3.039 3.225
      AnOI \ 1.835 2.127
      AnP \ \ 1.833
      w \ \ 2.764
      C2P1l 碎屑岩裂隙型 1.646 1.997 1.816
      C1n 2.872 2.889 2.492
      P3x 2.810 \ \
      K1d 1.128 \ \
      J2-3l 1.792 \ \
      J2m 2.392 \ \
      P2l 碳酸盐岩-碎屑岩裂隙溶隙型 3.455 \ \
      D2-3s 3.879 3.781 \
      残差均值$ \stackrel{-}{\varepsilon } $ 0.233 0.071 0.097
      $ {R}^{2} $ 0.891 0.704 0.834
      注:\表示分区内测流流域未涉及该含水岩组.
      下载: 导出CSV
    • [1] Burg, J.P., Davy, P., Nievergelt, P., et al., 1997. Exhumation During Crustal Folding in the Namche Barwa Syntaxis. Terra Nova, (2): 53-56. https://doi.org/10.1111/j.1365-3121.1997.tb00001.x
      [2] Burs, D., Bruckmann, J., Rüde, T.R., 2016. Developing a Structural and Conceptual Model of a Tectonically Limited Karst Aquifer: a Hydrogeological Study of the Hastenrather Graben near Aachen, Germany. Environ. Earth Sci., 1253: 1-21. https://doi.org/10.1007/s12665-016-6039-x
      [3] Dankers, R., De, J. SM., 2004. Monitoring Snow-Cover Dynamicsin Northern Fennoscandia with Spot Vegetation Images. International Journal of Remote Sensing, 25: 2933-2949. https://doi.org/10.1080/01431160310001618374
      [4] Montgomery, D.C., 2012. Introduction to Linear Regression Analysis, Fifth Edition. John Wiley & Sons, New York.
      [5] Ding, L., Zhong, D.L., Yin, A., et al., 2001. Cenozoic Structural and Metamorphic Evolution of the Eastern Himalayan Syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192: 423-438. https://doi.org/10.1016/S0012-821X(1)00463-0
      [6] Gul, C., Kang, S.C., Ghauri, B., et al., 2017. Using Landsat Images to Monitor Changes in the Snow-Covered Area of Selected Glaciers in Northern Pakistan. Journal of Mountain Science, 14(10): 2013-2027. https://doi.org/10.1007/s11629-016-4097-x
      [7] Hall, D.K., Riggs, G.A., Salomonson, V.V., et al., 1995. Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data. Remote Sensing of Environment, 54 (2): 127-140. https://doi.org/10.1016/0034-4257(95)00137-P
      [8] Jodar, J., Cabrera, J.A., Martos-Rosillo, S., et al., 2017. Groundwater Discharge in High-Mountain Watersheds: A Valuable Resource for Downstream Semi-Arid Zones. The Case of the Berchules River in Sierra Nevada (Southern Spain). Sci. Total Environ. , 593: 760-772. https://doi.org/10.1016/j.scitotenv.2017.03.190
      [9] Leng, J.F., Gao, X., Zhu, J.P., 2016. Application of Multiple Linear Regression Statistical Forecast Model. Statistics & Decision, (7): 82-85 (in Chinese with English abstract).
      [10] Li, X.S., Wang, L.S., 2016. Parameter Estimation of Multiple Linear Regression Model with Linear Constraints. Statistical Research, 33(11): 85-92(in Chinese with English abstract).
      [11] Liang, H., 1998. A Relative Analysis Between The Lithological Features and The Characteristics of Flood Discharge and Low Flow in Karst District: Case Study of The Rivers, Guizhou Province. Carsologica Sinica, 17(1): 67-73(in Chinese with English abstract).
      [12] Liu, J.T., Song, H.Q., Zhang X.N., et al., 2014. The Development and Discussion of Theoretical Research on Xin'anjiang Model. Journal of China Hydrology, 34(1): 1-6(in Chinese with English abstract).
      [13] Liu, X.L., Yang, S.T., Zhao, C.S., et al., 2015. Research and Application of SRM Model Driven by Multi-Source Remote Sensing in Data-Deficient Areas. Remote Sensing Technology and Application, 30(4): 645-652(in Chinese with English abstract).
      [14] Mario, R., Nadine, S., Markus, S., et al., 2013. Missing (In-Situ) Snow Cover Data Hampers Climate Change and Runoff Studies in The Greater Himalayas. Science of the Total Environment, 468: S60-S70. https://doi.org/10.1016/j.scitotenv.2013.09.056
      [15] Meng, X.Y., Ji, X.N., Liu, Z.H., et al., 2014. Research on Improvement and Application of Snow Melting Module of SWAT Model. Journal of Natural Resources, 29(3): 528-539(in Chinese with English abstract).
      [16] Mogaji, K.A., Lim, H.S., Abdullah, K., et al., 2017. Modeling of Groundwater Recharge Using A Multiple Linear Regression (MLR) Recharge Model Developed From Geophysical Parameters: A Case of Groundwater Resources Management. Environmental Earth Sciences, 73(3): 1217-1230. https://doi.org/10.1007/s12665-014-3476-2
      [17] Mo, X.X., Zhao, Z.D., Zhu, D.C., et al., 2009. Lithosphere of India-Asia Collision Zone in Southern Tibet: Petrological-Geochemical Constraints. Earth Science, 34(1): 17-27(in Chinese with English abstract).
      [18] Pan, G.T., Ren, F., Yin, F.G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304(in Chinese with English abstract).
      [19] Tallaksen, L.M., 1995. A Review of Baseflow Recession Analysis. Journal of Hydrology, 165: 349-370. https://doi.org/10.1016/0022-1694(94)02540-R
      [20] Wang, X.N., Tang, F.T., Shao, C.R., 2018. The Current Movement Characters of Main Faults Surrounding the Namcha Barwa Syntaxis. Technology for Earthquake Disaster Prevention, 13(2): 267-275(in Chinese with English abstract).
      [21] Wang, Y., Qin, F., Li, D.T., 2005. Groundwater Runoff Modulus, Rock Permeability and Prediction of Water Quantities of Tunnel in West Route of South-to-North Water Transfer Project. Chinese Journal of Rock Mechanics and Engineering, 24(20): 3673-3678(in Chinese with English abstract).
      [22] Xu, L.L., Liu, J.L., Jin, C.J., et al., 2011. Baseflow Separation Methods in Hydrological Process Research: A Review. Chinese Journal of Applied Ecology (11): 3073-3080(in Chinese with English abstract).
      [23] Xu, Z.Q., Ji, S.C., Cai, Z.H., et al., 2012. Kinematics And Dynamics of The Namche Barwa Syntaxis, Eastern Himalaya: Constraints From Deformation, Fabrics And Geochronology. Gondwana Research, 21(1): 19-36. https://doi.org/10.1016/j.gr.2011.06.010
      [24] Yang, Y.D., 1986. Regression Equation Applying in Groundwater Analysis. Hydrogeology & Engineering Geology, 1: 38-41(in Chinese).
      [25] Yang, Z.N., Hu, M.G., 1990. River Runoff Feature at East Tibet Plateau. Journal of Glaciology and Geocryology, 12(3): 219-226(in Chinese).
      [26] Zeng, Q.G., Wang, B.D., Xiluo, L.J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763(in Chinese with English abstract).
      [27] Zhang, P.Q., Gao, M.X., Lei, Y.L., et al., 2009. Quantitative Geomorphic Features and Causes of the Great Bend Area of the Yarlung Zangbo River in Tibet. Earth Science, 34(4): 595-603(in Chinese with English abstract).
      [28] Zhao, L., Zhang, L., Cheng, L., et al., 2015. Groundwater Storage Trends in The Loess Plateau of China Estimated From Streamflow Records. Journal of Hydrology, 530: 281-290. https://doi.org/10.1016/j.jhydrol.2015.09.063
      [29] 冷建飞, 高旭, 朱嘉平, 2016. 多元线性回归统计预测模型的应用. 统计与决策(7): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201607023.htm
      [30] 李小胜, 王申令, 2016. 带线性约束的多元线性回归模型参数估计. 统计研究, 33(11): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYJ201611012.htm
      [31] 刘金涛, 宋慧卿, 张行南, 等, 2014. 新安江模型理论研究的进展与探讨. 水文, 34(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201401001.htm
      [32] 刘晓林, 杨胜天, 赵长森, 等, 2015. 多源遥感驱动的SRM模型在缺资料地区的研究及应用. 遥感技术与应用, 30(4): 645-652. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201504006.htm
      [33] 孟现勇, 吉晓楠, 刘志辉, 等, 2014. SWAT模型融雪模块的改进与应用研究. 自然资源学报, 29(3): 528-539. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201403016.htm
      [34] 莫宣学, 赵志丹, 朱弟成, 等, 2009. 西藏南部印度-亚洲碰撞带岩石圈: 岩石学-地球化学约束. 地球科学, 34(1): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901004.htm
      [35] 潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45(7): 2293-2304. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202007007.htm
      [36] 王晓楠, 唐方头, 邵翠茹, 2018. 南迦巴瓦构造结周边地区主要断裂现今运动特征. 震灾防御技术, 13(2): 267-275. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201802024.htm
      [37] 王媛, 秦峰, 李冬田, 2005. 南水北调西线工程区地下径流模数、岩体透水性及隧洞涌水量预测. 岩石力学与工程学报, 24(20): 3673-3678. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200520010.htm
      [38] 徐磊磊, 刘敬林, 金昌杰, 等, 2011. 水文过程的基流分割方法研究进展. 应用生态学报, (11): 3073-3080. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201111041.htm
      [39] 杨远东, 1986. 回归方程在地下水分析中的应用. 水文地质工程地质, 1: 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198601012.htm
      [40] 杨针娘, 胡鸣高, 1990. 青藏高原东部河川径流特征. 冰川冻土, 12(3): 219-226. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199003005.htm
      [41] 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202008001.htm
      [42] 张沛全, 高明星, 雷永良, 等, 2009. 西藏雅鲁藏布江大拐弯地区量化地貌特征及其成因. 地球科学, 34(4): 595-603. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200904005.htm
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  303
    • HTML全文浏览量:  96
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-10-22
    • 刊出日期:  2022-02-25

    目录

      /

      返回文章
      返回