• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    冀中坳陷束鹿凹陷潜山原油地球化学特征与油源对比

    王元杰 蔡川 肖阳 明锦 田然 任艺 朱张丽 张钰景 时聪

    王元杰, 蔡川, 肖阳, 明锦, 田然, 任艺, 朱张丽, 张钰景, 时聪, 2021. 冀中坳陷束鹿凹陷潜山原油地球化学特征与油源对比. 地球科学, 46(10): 3629-3644. doi: 10.3799/dqkx.2021.030
    引用本文: 王元杰, 蔡川, 肖阳, 明锦, 田然, 任艺, 朱张丽, 张钰景, 时聪, 2021. 冀中坳陷束鹿凹陷潜山原油地球化学特征与油源对比. 地球科学, 46(10): 3629-3644. doi: 10.3799/dqkx.2021.030
    Wang Yuanjie, Cai Chuan, Xiao Yang, Ming Jin, Tian Ran, Ren Yi, Zhu Zhangli, Zhang Yujing, Shi Cong, 2021. Geochemical Characteristics and Oil-Source Correlation of Crude Oils of Buried Hills in Shulu Sag, Jizhong Depression. Earth Science, 46(10): 3629-3644. doi: 10.3799/dqkx.2021.030
    Citation: Wang Yuanjie, Cai Chuan, Xiao Yang, Ming Jin, Tian Ran, Ren Yi, Zhu Zhangli, Zhang Yujing, Shi Cong, 2021. Geochemical Characteristics and Oil-Source Correlation of Crude Oils of Buried Hills in Shulu Sag, Jizhong Depression. Earth Science, 46(10): 3629-3644. doi: 10.3799/dqkx.2021.030

    冀中坳陷束鹿凹陷潜山原油地球化学特征与油源对比

    doi: 10.3799/dqkx.2021.030
    基金项目: 

    中国石油天然气股份有限公司重大科技专项 2017E-15

    华北油田公司校企合作项目 HBYT-YJY-2018-JS-177

    详细信息
      作者简介:

      王元杰(1968-), 男, 高级工程师, 主要从事石油天然气勘探研究工作.ORCID: 0000-0003-1434-6769.E-mail: yjy_wyj@petrochina.com.cn

    • 中图分类号: P618.13

    Geochemical Characteristics and Oil-Source Correlation of Crude Oils of Buried Hills in Shulu Sag, Jizhong Depression

    • 摘要: 为了探究束鹿凹陷潜山油藏的油气来源,利用聚类分析方法对主要烃源岩进行了精细划分,并通过生物标志化合物和油-岩成熟度对比,实现了潜山油源的精细对比.结果表明,潜山原油的地球化学特征总体相似,来自同一套烃源岩.Es1x烃源岩有机质以藻类和浮游生物输入为主,沉积于咸水、强还原环境,处于未熟-低成熟阶段,而Es3x烃源岩有机质以浮游生物和高等植物混合输入为主,沉积于淡水-微咸水、弱氧化-弱还原环境,成熟度随深度增加而增大,可细分为A、B、C、D四种类型,其中D类是最好的类型.油源对比表明,潜山原油主要来源于Es3x烃源岩,其中斜坡潜山原油主要来源于洼槽边缘浅层低成熟Es3x烃源岩,而洼中隆潜山原油主要来源于洼槽中心深层高-过成熟Es3x烃源岩.

       

    • 图  1  冀中坳陷束鹿凹陷区域位置(a)、构造单元划分(b)及油藏剖面图(c~e)

      Fig.  1.  The location map (a), tectonic units (b) and profile map(c-e) of Shulu sag, Jizhong depression

      图  2  束鹿凹陷Es1x和Es3x烃源岩有机质丰度评价图

      Fig.  2.  Evaluation of organic matter abundance of Es1x and Es3x source rocks in Shulu sag

      图  3  束鹿凹陷Es1x和Es3x烃源岩有机质类型和成熟度评价图

      Fig.  3.  Evaluation of organic matter type and maturity of Es1x and Es3x source rocks in Shulu sag

      图  4  束鹿凹陷潜山原油密度与粘度关系

      Fig.  4.  Plot of density and viscosity of crude oil of buried hills in Shulu sag

      图  5  束鹿凹陷不同区域潜山原油组分含量分布

      Fig.  5.  Distribution of component content of buried hill crude oil in different areas of Shulu sag

      图  6  束鹿凹陷潜山原油饱和烃色谱-质谱图

      Fig.  6.  Chromatography-mass spectra of saturated hydrocarbon of oil in buried hill of Shulu sag

      图  7  束鹿凹陷烃源岩、原油Pr/nC17-Ph/nC18关系图

      Fig.  7.  Plot of the Pr/nC17 versus the Ph/nC18 of crude oil and source rocks in the Shulu sag

      图  8  束鹿凹陷烃源岩、原油规则甾烷C27~C29相对含量三角图

      Fig.  8.  Ternary diagram of regular steranes (C27-C29) of crude oil and source rocks in the Shulu sag

      图  9  束鹿凹陷典型烃源岩及原油饱和烃色谱-质谱图

      Fig.  9.  Chromatography-mass spectra of saturated hydrocarbon of source rocks and oil in Shulu sag

      图  10  束鹿凹陷Es3x烃源岩聚类分析树状图及生标参数纵向变化图

      Fig.  10.  Tree diagram of hierarchical cluster analysis and longitudinal variation of biomarker parameters of Es3x source rock in Shulu sag

      图  11  束鹿凹陷烃源岩、原油Pr/Ph-Ga/C31H关系图

      Fig.  11.  Plot of Pr/Ph versus Ga/C31H of source rock and crude oil in the Shulu sag

      图  12  束鹿凹陷原油C29甾烷ββ/(αα+ββ)与C29甾烷20S/(20S+20R)成熟度比值交汇图

      Fig.  12.  Cross plot of C29 sterane ββ/(αα+ββ) and C29 sterane 20S/(20S+20R) maturity ratios of crude oils in the Shulu sag

      图  13  束鹿凹陷烃源岩成熟度判别图

      Fig.  13.  Identification of source rock maturity in Shulu sag

      表  1  实验样品与数据收集信息

      Table  1.   Information for experimental samples and collected data

      样品类型 层位 数量(件) 分布深度(m) 取样井 备注
      取样信息 烃源岩 Es1x 10 2 377~2 847 J58、J97、J116、ST1H 以灰色泥页岩为主,部分为膏质泥岩,油页岩
      Es3x 63 3 118~4 290 J94、J97、J100、J116、ST1H 以泥灰岩为主,部分为泥页岩
      原油 O 5 1 636.2~2 750.2 JG14-1、JG33、JG18(抽提液)、JG21、JG22
      收集数据信息 原油生标参数 Es1x 1 2 757.5 J52 收集自华北油田资料室
      Es3x 8 3 950~4 321 J98、J116、JG13、ST1H、ST2x、ST3
      O 2 4 051~4 623 JG1、JG2
      原油物性参数 O-$ {\rm{\rlap{-} C}}$ 56 1 332.1~4 769.1 JG6、JG33、JG14-1、J7、J23、J33、J34、JG22、JG23、JG1、JG2、JG4
      下载: 导出CSV

      表  2  束鹿凹陷潜山原油物性统计

      Table  2.   Statistical of physical properties of buried hill crude oil in Shulu sag

      构造带 密度(g/cm3) 粘度(mPa·s) 含硫量(%) 含蜡量(%) 胶质+沥青质(%) 原油类型
      洼中隆潜山 0.757~0.860 0.95~8.66 0.04~0.26 9.5~44.8 2.70~25.35 轻质油
      0.826 (23) 4.07 (23) 0.13 (23) 17.05 (23) 8.22 (23)
      斜坡北段 0.833~0.868 5.02~13.94 0.16~0.45 12.69~22.49 12.55~29.33 轻质油为主,部分中质油
      0.856 (11) 9.00 (11) 0.27 (11) 16.85 (11) 21.03 (11)
      斜坡南段 0.967~1.062 816~14 690 1.14~2.89 0.35~12.84 47.56~78.25 重质-超稠油
      1.016 (21) 4 683 (21) 1.64 (21) 5.46 (9) 59.28 (21)
      注:括号中数字为样品数.
      下载: 导出CSV

      表  3  束鹿凹陷潜山原油生物标志化合物参数

      Table  3.   Parameters of biomarker compounds of buried hill crude oil in Shulu sag

      井位 深度(m) Pr/Ph Pr/nC17 Ph/nC18 Ga/C31H ααα20R- C27(%) ααα20R- C28(%) ααα20R- C29(%) 20S/20(S+R)-C29 ββ/(αα+ββ)-C29
      JG14-1 2 050 1.49 0.79 0.48 - - - - - -
      JG33 2 755 2.35 0.58 0.28 0.08 40.28 14.79 44.93 0.47 0.33
      JG18 1 374 - - - 0.29 36.98 22.02 41.00 0.34 0.37
      JG21 1 870 0.69 0.46 0.68 0.27 43.90 16.30 39.79 0.34 0.31
      JG22 1 636 - - - 0.20 43.18 14.77 42.05 0.36 0.35
      JG1 4 051 1.97 0.27 0.15 - - - - - -
      JG2 4 623 0.95 0.40 0.45 0.15 - - - 0.54 0.45
      下载: 导出CSV
    • [1] Cai, C., 2020. Pathway System and Hydrocarbon Migration and Accumulation of Buried Hill in Shulu West Slope, Jizhong Depression (Dissertation). China University of Petroleum, Beijing(in Chinese with English abstract).
      [2] Cai, C., Qiu, N.S., Liu, N., et al., 2020. Unconformity Characteristics, Hydrocarbon Migration, and the Accumulation Model of the Buried Hill in the Shulu Sag, Jizhong Depression. Acta Geologica Sinica, 94(3): 888-904(in Chinese with English abstract).
      [3] Chen, Z.H., Moldowan, J., Liu, Z.Q., 2012. Selective Alteration of Steranes in Heavy Biodegraded Oils from Dongying Sag. Advances in Earth Science, 27(10): 1108-1114(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201210011.htm
      [4] Fu, J.M., Sheng, G.Y., Xu, J.Y., et al., 1990. Application of Biological Markers in the Assessment of Paleoenvironments of Chinese Non-Marine Sediments. Organic Geochemistry, 16 (4-6): 769-779. https://doi.org/10.1016/0146-6380(90)90116-H
      [5] Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2010. Charging of Oil Fields Surrounding the Shaleitian Uplift from Multiple Source Rock Intervals and Generative Kitchens, Bohai Bay Basin, China. Marine and Petroleum Geology, 27(9): 1910-1926. https://doi.org/10.1016/j.marpetgeo.2010.07.005
      [6] Huang, D.F., Zhang, D.J., Li, J.C., 1989. On Origin of 4-Methyl Steranes and Pregnanes. Petroleum Expoloration and Development, 16(3): 8-15(in Chinese with English abstract).
      [7] Huang, Y.X., Yu, Z.W., Zhang, A., et al., 2018. Main-Controlling Factors and Hydrocarbon Accumulation Patterns of the Buried-Hill Reservoirs in the Western Slope of Shulu Sag. Special Oil & Gas Reservoirs, 25(6): 60-64(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TZCZ201806011.htm
      [8] Justwan, H., Dahl, B., Isaksen, G. H., 2006. Geochemical Characterization and Genetic Origin of Oils and Condensates in the South Viking Graben, Norway. Marine and Petroleum Geology, 23(2): 213-239. https://doi.org/10.1016/j.marpetgeo.2005.07.003
      [9] Kong, X. X., Jiang, Z. X., Han, C., et al., 2020. Organic Matter Enrichment and Hydrocarbon Accumulation Models of the Marlstone in the Shulu Sag, Bohai Bay Basin, Northern China. International Journal of Coal Geology, 217: 103350. https://doi.org/10.1016/j.coal.2019.103350
      [10] Li, H.P., 2015. Sequence Stratigraphy and Characteristics of the Tight Reservoirs in the 3rd Member of the Eocene Shahejie Formation, Shulu Sag(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      [11] Li, Q., You, X. L., Jiang, Z. X., et al., 2017. A Type of Continuous Petroleum Accumulation System in the Shulu Sag, Bohai Bay Basin, Eastern China. AAPG Bulletin, 101(11): 1791-1811. https://doi.org/10.1306/01251715073
      [12] Liu, H., Jiang, Y.L., Cai, D.M., et al., 2006. Physical Properties and Influence Factors of Crude Oil from Paleogene in Dongying Sag. Petroleum Geology and Recovery Efficiency, 13(3): 8-11(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS200603002.htm
      [13] Ma, X.F., Yang, D.X., Wang, J., et al., 2019. The Geological Conditions, Resource Potential and Exploration Direction of Oil in Jizhong Depression, Bohai Bay Basin. Marine Origin Petroleum Geology, 24(3): 8-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HXYQ201903002.htm
      [14] Ni, C.H., Bao, J.P., Liang, S.Y., 2009. Overall Evaluation by Multi-Parameters on Maturity of Crude Oil from the Bozhong Sag, the Bohai Bay Basin. Petroleum Geology & Experiment, 31(4): 399-402, 408(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=SYSD200904018&dbcode=CJFD&year=2009&dflag=pdfdown
      [15] Peters, K. E, Walters, C.C., Moldowan, J.M., 2007. The Biomarker Guide: Volume 2, Biomarkers and Isotopes in Petroleum Systems and Earth History. Cambridge University Press, Cambridge.
      [16] Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Choice Reviews Online, 30(5): 30-2690-30-2690. https://doi.org/10.5860/choice.30-2690
      [17] Qiu, L.W., Ma, J., Wang, L.F., 2006. Effect of Tectonic Movement in Paleogene on Sedimentation of Shulu Depression. Petroleum Geology and Recovery Efficiency, 13(5): 3-6, 103(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS200605003.htm
      [18] Seifert, W.K., Moldowan, J.M., 1986. Use of Biological Markers in Petroleum Exploration. Methods in Geochemistry and Geophysics, 24: 261-290. http://www.researchgate.net/publication/279572663_Use_of_biological_markers_in_petroleum_exploration
      [19] Tang, X., Zhang, J.C., Jiang, Z.X., et al., 2018. Heterogeneity of Organic-Rich Lacustrine Marlstone Succession and Their Controls to Petroleum Expulsion, Retention, and Migration: A Case Study in the Shulu Sag, Bohai Bay Basin, China. Marine and Petroleum Geology, 96: 166-178. https://doi.org/10.1016/j.marpetgeo.2018.05.031
      [20] Wan, L., Liu, J., Mao, F., et al., 2014. The Petroleum Geochemistry of the Termit Basin, Eastern Niger. Marine and Petroleum Geology, 51: 167-183. https://doi.org/10.1016/j.marpetgeo.2013.11.006
      [21] Wang, S.C., 2014. Lacustrine Marl Reservoir Formation and Distribution of Shulu Sag (Dissertation). China University of Mining & Technology, Beijing (in Chinese with English abstract).
      [22] Waples, D.W., Machihara, T., 1990. Application of Sterane and Triterpane Biomarkers in Petroleum Exploration. Bulletin of Canadian Petroleum Geology, 38(03): 357-380. https://doi.org/10.35767/gscpgbull.38.3.357
      [23] Xiao, H., Li, M. J., Liu, J. G., et al., 2019. Oil-Oil and Oil-Source Rock Correlations in the Muglad Basin, Sudan and South Sudan: New Insights from Molecular Markers Analyses. Marine and Petroleum Geology, 103: 351-365. https://doi.org/10.1016/j.marpetgeo.2019.03.004
      [24] Xu, J.Y., Zhu, X.F., Song, Y., et al., 2019. Geochemical Characteristics and Oil-Source Correlation of Paleogene Source Rocks in the South Yellow Sea Basin. Earth Science, 44(3): 848-858(in Chinese with English abstract). http://www.researchgate.net/publication/333043206_Geochemical_Characteristics_and_Oil-Source_Correlation_of_Paleogene_Source_Rocks_in_the_South_Yellow_Sea_Basin
      [25] Yang, F., Wang, Q., Hao, F., et al., 2020. Biomarker Characteristics of Source Rock and Oil-Correlation in Raoyang Depression, Jizhong Sub-Basin. Earth Science, 45(1): 263-275(in Chinese with English abstract).
      [26] Zhao, W., Guo, X.W., He, S., 2016. Analysis on Validity of Maturity Parameters of Biomarkers: A Case Study from Source Rocks in Yitong Basin. Journal of Xi'an Shiyou University (Natural Science), 31(6): 23-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XASY201606004.htm
      [27] Zhao, X.Z., Zhu, J.Q., Zhang, R.F., et al., 2014. Characteristics and Exploration Potential of Tight Calcilutite-Rudstone Reservoirs in Shulu Sag, Jizhong Depression, North China. Acta Petrolei Sinica, 35(4): 613-622(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201404001.htm
      [28] Zhu, J.Q., Zhang, Y.M., Huang, Y.X., et al., 2019. The Hydrocarbon Accumulation Characteristics of Diverse Buried Hills in the Shulu Sag, Jizhong Depression. China Petroleum Exploration, 24(6): 791-798(in Chinese with English abstract).
      [29] 蔡川, 2020. 冀中坳陷束鹿西斜坡潜山输导体系与油气运聚规律研究(硕士学位论文). 北京: 中国石油大学(北京).
      [30] 蔡川, 邱楠生, 刘念, 等, 2020. 冀中坳陷束鹿凹陷潜山不整合特征与油气运聚模式. 地质学报, 94(3): 888-904. doi: 10.3969/j.issn.0001-5717.2020.03.015
      [31] 陈中红, Moldowan, J.M., 刘昭茜, 2012. 东营凹陷生物降解稠油甾烷分子的选择蚀变. 地球科学进展, 27(10): 1108-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201210011.htm
      [32] 黄第藩, 张大江, 李晋超, 1989. 论4-甲基甾烷和孕甾烷的成因. 石油勘探与开发, 16(3): 8-15. doi: 10.3321/j.issn:1000-0747.1989.03.002
      [33] 黄远鑫, 鱼占文, 张骜, 等, 2018. 束鹿凹陷西斜坡潜山成藏主控因素与成藏模式. 特种油气藏, 25(6): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201806011.htm
      [34] 李海鹏, 2015. 束鹿凹陷古近系沙三下亚段层序地层与致密油藏特征(硕士学位论文). 北京: 中国地质大学(北京).
      [35] 刘华, 蒋有录, 蔡东梅, 等, 2006. 东营凹陷古近系原油物性及其影响因素. 油气地质与采收率, 13(3): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200603002.htm
      [36] 马学峰, 杨德相, 王建, 等, 2019. 渤海湾盆地冀中坳陷石油地质条件、资源潜力及勘探方向. 海相油气地质, 24(3): 8-20. doi: 10.3969/j.issn.1672-9854.2019.03.002
      [37] 倪春华, 包建平, 梁世友, 2009. 渤海湾盆地渤中凹陷原油成熟度的多参数综合评价. 石油实验地质, 31(4): 399-402, 408. doi: 10.3969/j.issn.1001-6112.2009.04.016
      [38] 邱隆伟, 马郡, 汪丽芳, 2006. 束鹿凹陷古近纪构造活动对沉积作用的影响. 油气地质与采收率, 13(5): 3-6, 103. doi: 10.3969/j.issn.1009-9603.2006.05.002
      [39] 王少春, 2014. 束鹿凹陷湖相泥灰岩油气藏的形成与分布研究(博士学位论文). 北京: 中国矿业大学(北京).
      [40] 徐建永, 朱祥峰, 宋宇, 等, 2019. 南黄海盆地古近系烃源岩地球化学特征及油源对比. 地球科学, 44(3): 848-858. doi: 10.3799/dqkx.2018.377
      [41] 杨帆, 王权, 郝芳, 等, 2020. 冀中坳陷饶阳凹陷北部烃源岩生物标志物特征与油源对比. 地球科学, 45(1): 263-275. doi: 10.3799/dqkx.2018.374
      [42] 赵文, 郭小文, 何生, 2016. 生物标志化合物成熟度参数有效性: 以伊通盆地烃源岩为例. 西安石油大学学报(自然科学版), 31(6): 23-31. doi: 10.3969/j.issn.1673-064X.2016.06.004
      [43] 赵贤正, 朱洁琼, 张锐锋, 等, 2014. 冀中坳陷束鹿凹陷泥灰岩-砾岩致密油气成藏特征与勘探潜力. 石油学报, 35(4): 613-622. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201404001.htm
      [44] 朱洁琼, 张以明, 黄远鑫, 等, 2019. 冀中坳陷束鹿凹陷潜山多样性油气成藏特征. 中国石油勘探, 24(6): 791-798. doi: 10.3969/j.issn.1672-7703.2019.06.011
    • 加载中
    图(13) / 表(3)
    计量
    • 文章访问数:  406
    • HTML全文浏览量:  144
    • PDF下载量:  39
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-05-02
    • 网络出版日期:  2021-11-03
    • 刊出日期:  2021-11-03

    目录

      /

      返回文章
      返回