Genetic Classification of Lakes in Wuhan Based on River and Lake Geological Process
-
摘要: 武汉市位于长江中游,长江与汉江在此交汇,城区河网纵横,湖泊众多,素有"江城"和"百湖之市"之称.湖泊对于武汉城市的可持续发展及宜居城市建设有着特别重要的意义.关于武汉市的湖泊前人曾开展了大量的研究,但对于湖泊的成因则研究较少.湖泊的成因不仅对武汉市近代地质环境演化具有重要意义,同时也是湖泊保护的基础科学问题.在地质地貌调查上,通过江湖古地理演变分析,结合历史文献记录等综合研究,认为武汉湖泊的形成与河流地质作用过程密切相关,据此将武汉市湖泊的成因类型划分为:河道遗迹湖(又分河道废弃湖和河道洲滩夹湖)、河堤溃口湖、河间洼地湖和沟谷壅塞湖四种类型.分析了各类湖泊的特征、地貌分布及形成过程.其中沟谷壅塞湖是现存湖泊的主要类型,其形成演化与区域气候变化背景下的河海相互作用密切相关,分别经历了湖盆形成期(20~14 ka)、湖泊形成期(14~7 ka)和湖泊发展期(7 ka以来)3个阶段.此外,武汉的城市与湖泊经历了由"湖中城"到"城中湖"的发展历程,围湖造地是武汉市最重要人为改造自然工程,依湖泊类型的不同采取了不同的围湖发展方式,汉口地区以河间洼地湖为主,主要以"筑堤-排水-造地"填湖发展;武昌和汉阳地区以沟谷壅塞湖为主,采取的是"堵塞湖汊造地"的环湖发展方式.在未来的城市建设中,有计划地实施湖-湖连通和河-湖连通工程是十分必要的.Abstract: Wuhan is located on the confluence of the Yangtze and Han river in the middle reaches of the Yangtze River. Wuhan is known as "River City" and "City with hundreds of lakes" because of dense river network and numerous lakes in Wuhan. The lakes in Wuhan are of great significance to the sustainable development of Wuhan and the construction of livable city. Many studies have been carried out on the lakes in Wuhan, but few on factors controlling formation of the lakes. The study of genesis of lakes is not only great significance to the Wuhan's modern geoenvironmental evolution but also is a basic scientific issue of lake protection. Based on geological and geomorphic survey, a comprehensive study was carried out on the evolution of river and lake palaeogeography and the historical literature records and so on. The results suggest that the formation of the lakes in Wuhan is closely related to river geological process. And the lakes in Wuhan can be divided into four types based on cause of lake formation: Oxbow lakes (also called abandoned channel lake and lake bounded by a channel and a shoal), bank burst lake, interfluvial depression lake and valley barrier lake. Based on the characteristics, geomorphic distribution and formation process of all types of lakes, we suggest that valley barrier lake is the main type of lakes inWuhan and that its formation and evolution are closely related to the interaction between river and sea controlled by climate change. The valley barrier lakes have experienced three stages: lake basin formation (20-14 ka), lake formation (14-7 ka) and lake development (since 7 ka). In addition, Wuhan has experienced the development process from "the lakes encircling a city" to "the city surrounding lakes". The reclamation of the lakes is the most important man-made natural reconstruction project in Wuhan, which is also the main cause of the tension between man and land at present. The major lakes in Hankou area are interfluvial depression lake. The mode of filling development of these lakes is "Dike-Draining-Land". The lakes in Wuchang and Hanyang areas are dominated by valley barrier lakes. The mode of lake surrounding development of these lake is "Lake branches filling and Land forming".
-
Key words:
- Wuhan city /
- genesis of lake /
- river geological process /
- river-lake system /
- hydrogeology
-
表 1 武汉市主要湖泊(面积 > 10 km2)一览表
Table 1. List of Major lakes in Wuhan (area > 10 km)2
湖泊名称 所属水系 湖泊面积(km2) 湖深(m) 岸线K值/(K=L/2πR) 湖泊形状 梁子湖 梁子湖水系 271.0 4.51 8.80 树枝状 斧头湖 162.4 2.50 6.00 斧头形 汤逊湖 汤逊湖水系 47.6 3.50 4.87 树枝状 鲁湖 44.9 2.20 树枝状 后官湖 蔡甸南湖水系 37.3 2.55 6.85 树枝状 东湖 东沙湖水系 33.9 4.66 5.84 树枝状 豹澥湖 梁子湖水系 28.0 2.00 树枝状 武湖 25.5 3.30 3.70 “山”字状 后湖 东沙湖水系 16.3 2.50 锯齿状 严西湖 北湖水系 14.2 2.50 4.90 树枝状 西湖 汤逊湖水系 10.6 3.00 树枝状 -
[1] Cao, G. J., Wang, J., Wang, L. J., et al., 2010. Characteristics and Runoff Volume of the Yangtze River Paleo-Valley at Nanjing Reach in the Last Glacial Maximum. Journal of Geographical Sciences, 20(3): 431-440. https://doi.org/10.1007/s11442-010-0431-3 [2] Chen, D. P., Li, C. A., Bai, D. Y., et al., 2014. Preliminary Discussion on the Quaternary Stratigraphic Framework of Dongting Basin. Geological Science and Technology Information, 33(1): 67-73(in Chinese with English abstract). [3] Chen, Z. Y., Stanley, D. J., 1998. Sea-Level Rise on Eastern China's Yangtze Delta. Journal of Coastal Research, 14(1): 360-366. https://www.jstor.org/stable/pdf/4298785.pdf [4] Gu, Y. S., Li, X. Y., Qiu, H. O., et al., 2008a. Sediments Records of Eutrophication History in the Donghu Lake, Wuhan, over the Past 100 Years. Ecology and Environment, 17(1): 35-40(in Chinese with English abstract). [5] Gu, Y. S., Qiu, H. O., Xie, S. C., et al., 2008b. Lake Sediment Records for Eutrophication History in Response to Human Activity during Recent Century in the Liangzi Lake, Hubei Province. Earth Science, 33(5): 679-686 (in Chinese with English abstract). [6] He, B. Y., 2002. The Origin Types and Their Characteristics of the Lakes in Jianghan Plain. Journal of Central China Normal University (Nat. Sci. ), 36(2): 241-244(in Chinese with English abstract). [7] He, Q. H., Yu, D. Q., Wang, L. C., et al., 2020. Evolution Process and Characteristics of Lower Jingjiang Paleo-Channel in Recent 400 Years. Earth Science, 45(6): 1928-1936(in Chinese with English abstract). [8] Lambeck, K., Rouby, H., Purcell, A., et al., 2014. Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America, 111(43): 15296-15303. https://doi.org/10.1073/pnas.1411762111 [9] Li, C. A., 1998. Effect of Tilted Uplift of Tongbai-Dabie Mountains on Middle Yangtze River Environment. Earth Science, 23(6): 562-566(in Chinese with English abstract). [10] Li, C. A., Chen, J., Chen, Z. Y., et al., 2009. Consideration on Research of Water Environment of Yangtze River Basin. Journal of Yangtze River Scientific Research Institute, 26(5): 11-17(in Chinese with English abstract). [11] Li, C. A., Yin, H. F., Yu, L. Z., et al., 2000. Concept Model on the Fluvial Environmental System: Mountain-River-Lake-Sea Interaction and Sensitive Responding to Global Change. Resources and Environment in the Yangtze Basin, 9(3): 358-363(in Chinese with English abstract). [12] Li, C.A., Zhang, Y.F., 2021. The Formation and Development of Wuhan City and the Evolution of Man-Land Relationship. Acta Geologica Sinica, 95(3): 940-942(in Chinese with English abstract). [13] Li, C. X., Chen, Q. Q., Zhang, J. Q., et al., 2000. Stratigraphy and Paleoenvironmental Changes in the Yangtze Delta during the Late Quaternary. Journal of Asian Earth Sciences, 18(2000): 453-469. https://doi.org/10.1016/S1367-9120(99)00078-4 [14] Liu, J. P., Milliman, J. D., Gao, S., et al., 2004. Holocene Development of Yellow River's Subaqueous Delta, North Yellow Sea. Marine Geology, 209(1-4): 45-67. https://doi.org/10.1016/j.margeo.2004.06.009 [15] Ma, J. W., Huang, S. F., Xu, Z. N., 2017. Satellite Remote Sensing of Lake Area in Wuhan from 1973 to 2015. Journal of Hydraulic Engineering, 48(8): 903-913(in Chinese with English abstract). [16] Ma, R. H., Yang, G. S., Duan, H. T., et al., 2010. China's Lakes at Present: Number, Area and Spatial Distribution. Sci. China Earth Sci. , 54(2): 283-289. https://doi.org/10.1007/.e11430-010-4052-6 [17] Pei, L. Z., Yan, D. P., Zhang, H. X., et al., 2018. Research on Evolution Characteristics and Causes of Urban Lakes in Wuhan from 1960s. Geology and Mineral Resources of South China, 34(1): 78-86(in Chinese with English abstract). [18] Song, B., Li, Z., Saito, Y., et al., 2013. Initiation of the Changjiang (Yangtze) Delta and Its Response to the Mid-Holocene Sea Level Change. Palaeogeography Palaeoclimatology Palaeoecology, 388: 81-97. https://doi.org/10.1016/j.palaeo.2013.07.026 [19] Tu, G. P., Zhang, Y. F., Li, C. A., et al., 2021. Study on the Evolution of Yingwuzhou and Related Discussion. Journal of Central China Normal University(Nat. Sci. ), 55(1): 98-109(in Chinese with English abstract). [20] Xie, Z. R., Yuan, L. W., 2012. Fluctuation Characteristics of Holocene Sea Level Change and Its Environmental Implications. Quaternary Sciences, 32(6): 1065-1077(in Chinese with English abstract). [21] Xu, Y. T., Lai, Z. P., Li, C.A., 2019. Sea-Level Change as the Driver for Lake Formation in the Yangtze Plain-A Review. Global and Planetary Change, 181: 102980. https://doi.org/10.1016/j.gloplacha.2019.102980. [22] Yang, D. Y., 1986. The Paleoenvironment of the Mid-Lower Regions of Changjiang in the Full-Glacial Period of Late Pleistocene. Acta Geographica Sinica, 41(4): 302-310(in Chinese with English abstract). doi: 10.11821/xb198604002 [23] Yang, H. R., Xie, Z. R., 1984. Sea-Level Changes along the East Coast of China over the Last 20, 000 Years. Oceanogia et Limnologia Sinica, 15(1): 1-13(in Chinese with English abstract). [24] Yang, K., Duan, G. H., Niu, R. Q., et al., 2016. Analysis of Lake Changes in Wuhan Based on Multi-Source Remote Sensing Data. Journal of Yangtze River Scientific Research Institute, 33(1): 139-142, 146(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-CJKB201601032.htm [25] Yang, S. Y., Bi, L., Li, C., et al., 2015. Major Sinks of the Changjiang (Yangtze River): Derived Sediments in the East China Sea during the Late Quaternary. Geological Society of London Special Publications, 429(6): 137-152. https://doi.org/10.1144/SP429.6 [26] Zhao, X. T., Tang, L. Y., Shen, C. M., et al., 1994. Climate Change and Sea Level Change in Qingfeng profile, Jianhu, Jiangsu in Holocene. Acta Oceanologica Sinica, 16(1): 78-88(in Chinese). [27] Zheng, H. B., Zhou, Y. S., Yang, Q., et al., 2018. Spatial and Temporal Distribution of Neolithic Sites in Coastal China: Sea Level Changes, Geomorphic Evolution and Human Adaption. Scientia Sinica Terrae, 48(2): 127-137. doi: 10.1360/N072017-00099 [28] 陈渡平, 李长安, 柏道远, 等, 2014. 洞庭盆地第四纪地层格架初拟. 地质科技情报, 33(1): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401011.htm [29] 顾延生, 李雪艳, 邱海鸥, 等, 2008a. 100年来东湖富营养化发生的沉积学记录. 生态环境, 17(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200801009.htm [30] 顾延生, 邱海鸥, 谢树成, 等, 2008b. 湖北梁子湖近代沉积记录对人类活动的响应. 地球科学, 33(5): 679-686. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200805014.htm [31] 何报寅, 2002. 江汉平原湖泊的成因类型及其特征. 华中师范大学学报(自然科学版), 36(2): 241-244. doi: 10.3321/j.issn:1000-1190.2002.02.024 [32] 贺秋华, 余德清, 王伦澈, 等, 2020. 近400多年下荆江河段古河道演变过程及特征. 地球科学, 45(6): 1928-1936. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006006.htm [33] 李长安, 1998. 桐柏-大别山掀斜隆升对长江中游环境的影响. 地球科学, 23(6): 562-566. doi: 10.3321/j.issn:1000-2383.1998.06.004 [34] 李长安, 陈进, 陈中原, 等, 2009. 长江流域水环境问题研究之思考——基于流域演化"山-河-湖-海互动理论"的认识. 长江科学院院报, 26(5): 11-17. doi: 10.3969/j.issn.1001-5485.2009.05.004 [35] 李长安, 殷鸿福, 俞立中, 等, 2000. 流域环境系统演化概念模型: 山-河-湖-海互动及对全球变化的敏感响应——以长江为例. 长江流域资源与环境, 9(3): 358-363. doi: 10.3969/j.issn.1004-8227.2000.03.014 [36] 李长安, 张玉芬, 2021. 武汉城市形成发展及人地关系演变. 地质学报, 95(3): 940-942. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202103024.htm [37] 马建威, 黄诗峰, 许宗男, 2017. 基于遥感的1973~2015年武汉市湖泊水域面积动态监测与分析研究. 水利学报, 48(8): 903-913. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201708003.htm [38] 裴来政, 鄢道平, 张宏鑫, 等, 2018.1960年代以来武汉市湖泊演化特征及其成因浅析. 华南地质与矿产, 34(1): 78-86. doi: 10.3969/j.issn.1007-3701.2018.01.009 [39] 涂格平, 张玉芬, 李长安, 等, 2021. 鹦鹉洲的演化及相关问题的讨论. 华中师范大学学报(自然科学版), 55(1): 98-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ202101015.htm [40] 谢志仁, 袁林旺, 2012. 略论全新世海面变化的波动性及其环境意义. 第四纪研究, 32(6): 1065-1077. doi: 10.3969/j.issn.1001-7410.2012.06.02 [41] 杨达源, 1986. 晚更新世冰期最盛时长江中下游地区的古环境. 地理学报, 41(4): 302-310. doi: 10.3321/j.issn:0375-5444.1986.04.002 [42] 杨怀仁, 谢志仁, 1984. 中国东部近20000年来的气候波动与海面升降运动. 海洋与湖沼, 15(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ198401000.htm [43] 杨柯, 段功豪, 牛瑞卿, 等, 2016. 基于多源遥感影像的武汉都市发展区湖泊变迁分析. 长江科学院院报, 33(1): 139-142, 146. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201601032.htm [44] 赵希涛, 唐领余, 沈才明, 等, 1994. 江苏建湖庆丰剖面全新世气候变迁和海面变化. 海洋学报, 16(1): 78-88. doi: 10.3321/j.issn:0253-4193.1994.01.004