Hydrochemical Characteristics of Pore Water and Genesis of Soda Water in the Middle of the Northern Piedmont of Tianshan Mountain, Xinjiang
-
摘要: 天山北麓中段受构造控制,水文地质条件较为复杂.研究孔隙水水化学特征及苏打水(NaHCO3型)形成机制对了解天山北麓中段地下水水文地球化学过程与地质条件之间的联系具有重要意义.基于新疆天山北麓中段平原区209组地下水水样,结合地质条件,采用半变异函数模型、绝对主成分得分多元线性回归模型(PCA/APCS-MLR)剖析了潜水和承压水中水化学类型空间分布特征、地下水化学组分源贡献率、苏打水形成的地质条件控制因素以及水文地球化学作用.结果表明:山前倾斜平原潜水、冲积平原潜水和承压水分别以Na2SO4、NaHCO3和Na2SO4型水为主,其中苏打水分别占总水样的7.18%、14.83%、6.22%.承压水中Na+、HCO3-、TDS空间自相关性较强,潜水中Na+、HCO3-、TDS空间自相关性较弱,当水中TDS < 1 000 mg/L时更有利于NaHCO3型水的形成.溶滤-富集因子(F1)、外界输入因子(F2)、原生地质因子(F3)和地质环境因子(F4)对地下水中水化学指标的平均贡献率分别为29.44%、15.99%、7.70%和6.71%.苏打水形成过程不仅受控于矿物溶滤、阳离子交换、混合作用和脱硫酸作用等多种水文地球化学作用,还受到地质环境、地质构造及水文地质条件的影响.Abstract: The middle of the northern piedmont of Tianshan Mountain has complicated geological structure and developed faults. It is of great significance to ascertain the formation mechanism of soda water (NaHCO3 type) for understanding the relationship between groundwater hydrogeochemical process and geological conditions in the middle of the northern piedmont of Tianshan Mountain. Based on 209 groups of groundwater samples in the middle plain of the northern piedmont of Tianshan Mountain, Xinjiang, combined with geological conditions, semi-variation model, multiple linear regression of absolute principal component score model (PCA/APCS-MLR) were used to identify the spatial distribution characteristics of hydrochemical types in unconfined water and confined water, source contribution of groundwater chemical components, and the hydrogeochemical process of soda water formation and the controlling factors of geological conditions. The results showed that Na2SO4, NaHCO3 and Na2SO4 are the main types of unconfined groundwater in piedmont inclined plain, unconfined groundwater and confined groundwater in alluvial plain, respectively, the soda water in piedmont clinoplainun confined water, alluvial plain unconfined water and confined water accounted for 7.18%, 14.83% and 6.22% of the total water samples respectively. The spatial autocorrelation of Na+, HCO3- and TDS is strong in confined groundwater, but weak in unconfined groundwater, when TDS is less than 1 000 mg/L, NaHCO3 type water will be formed. The contribution rates of dissolution-enrichment factor (F1), external input factor (F2), native geological factor (F3) and geological environment factor (F4) to groundwater chemical components were 29.44%, 15.99%, 7.70% and 6.71% respectively. The formation process of soda water is not only controlled by various hydrogeochemical processes such as mineral dissolution, cation exchange, mixing and desulphidation, but also affected by geological conditions such as geological environment, geological structure, hydrogeological conditions.
-
图 1 研究区水文地质平面图(a);水文地质剖面图(b)(改自Wang et al., 2019)
Fig. 1. Hydrogeological map(a); hydrogeological profiles(b) of the study area (modified from Wang et al., 2019)
图 2 潜水(a, b, c)、承压水(d, e, f)中Na+、HCO3-、TDS及水化学类型水平分布特征(改自Mi et al., 2018)
Ⅰ. 北天山山前冲断带;Ⅱ. 中央凹陷;Ⅲ. 西部隆起;Ⅳ. 陆梁隆起;Ⅰ1. 柴窝堡盆地;Ⅰ2. 阜康断裂带;Ⅰ3. 齐古断裂带;Ⅰ4. 霍玛吐背斜带;Ⅰ5. 四棵树凹陷;Ⅱ1. 阜康凹陷;Ⅱ2. 莫南凸起;Ⅱ3. 沙湾凹陷;Ⅱ4. 白家海凸起;Ⅱ5. 东道海子凹陷;Ⅱ6. 莫索湾凸起;Ⅱ7. 莫北凸起;Ⅱ8. 盆1井西凹陷;Ⅱ9.达巴松凸起;Ⅱ10.玛湖凹陷;Ⅲ1.中拐凸起;Ⅲ2.红车断裂带;Ⅲ3.车牌子凸起;Ⅲ4.克百断裂带
Fig. 2. Horizontal distribution characteristics of Na+, HCO3-, TDS and hydrochemical types in unconfined groundwater (a, b, c) and confined groundwater (d, e, f)(modified from Mi et al., 2018)
图 4 天山北麓中段山前过渡带构造剖面
1.第四系;2.中部上新统;3.下部上新统;4.中新统;5.古近系;6.白垩系;7.侏罗系;8.三叠系;9.二叠系;10.石炭系;11.断层; 改自漆家福等(2008)
Fig. 4. Structural profiles of the piedmont transition belts in the middle of the northern piedmont of Tianshan Mountain
表 1 天山北麓中段地下水水化学指标统计
Table 1. Statistics of groundwater hydrochemical indexes in the middle of the northern piedmont of Tianshan Mountain
水化学指标/类型 山前倾斜平原潜水(n=99) 冲积平原潜水(n=50) 冲积平原承压水(n=60) 最大值 最小值 平均值/个数 最大值 最小值 平均值/个数 最大值 最小值 平均值/个数 pH 8.98 6.36 7.69 9.68 7.45 8.35 9.13 6.90 8.01 TDS 2 367.80 114.00 465.40 13 250.00 112.00 1 065.00 2 914.50 135.91 749.90 TH 1 050.80 30.87 243.97 2 489.74 5.98 297.29 2 101.70 18.10 270.56 K+ 6.40 0.11 2.28 5.70 0.09 1.21 4.40 0.25 1.45 Na+ 385.90 0.87 58.07 3 549.30 12.20 252.54 802.80 2.87 153.26 Ca2+ 316.60 7.98 68.44 378.46 1.20 60.76 565.10 4.03 66.68 Mg2+ 86.20 0.49 17.70 418.29 0.44 35.35 167.70 1.20 25.14 Cl- 302.00 5.50 58.96 3 742.44 3.52 243.32 1 797.30 5.50 186.76 SO42- 1 224.80 19.70 146.92 4 780.37 7.65 362.61 1 171.90 13.06 211.47 HCO3- 408.80 61.80 157.81 504.60 71.81 154.08 547.30 32.53 149.35 CO32- 6.20 0.00 0.14 25.08 0.00 4.19 21.32 0.00 1.69 SiO2 17.40 4.00 12.04 19.16 7.54 11.92 17.37 5.56 11.98 NO3-(以N计) 18.55 ND 3.77 1.88 ND 0.52 13.70 ND 1.07 F- 1.00 ND 0.33 10.06 ND 1.54 6.41 ND 0.97 Na2SO4 - - 59 - - 19 - - 31 NaHCO3 - - 15 - - 31 - - 15 MgCl2 - - 18 - - 0 - - 13 CaCl2 - - 7 - - 0 - - 1 注:水化学指标中pH为无量量纲,其余为mg/L;ND表示未检出. 表 2 地下水采样情况与离子组合特征参数
Table 2. Groundwater sampling and ion combination characteristic parameters
地下水类型 采样井类型 地下水温度(℃) 水井深度(m) 钠氯系数γNa/γCl 脱硫酸系数100×γSO4/γCl 变质系数(γCl-γNa)/γMg 山前倾斜平原潜水 民用手压井、农田灌溉机井 $ \frac{24.1\sim 11.2}{16.8} $ $ \frac{330.0\sim 20.0}{130.6} $ $ \frac{8.02\sim 0.13}{1.92} $ $ \frac{536.67\sim 55.11}{211.21} $ $ \frac{8.37\sim -16.47}{-0.82} $ 冲积平原潜水 民用手压井、农田灌溉机井、敞口井 $ \frac{19.8\sim 13.0}{15.8} $ $ \frac{180.0\sim 18.0}{59.8} $ $ \frac{19.11\sim 1.03}{4.30} $ $ \frac{783.96\sim 41.90}{213.47} $ $ \frac{-0.12\sim -83.77}{-8.04} $ 冲积平原承压水 农田灌溉机井、自流井 $ \frac{25.0\sim 13.0}{17.8} $ $ \frac{360.0\sim 63.2}{167.1} $ $ \frac{6.33\sim 0.19}{2.03} $ $ \frac{611.84\sim 3.95}{150.63} $ $ \frac{2.94\sim -19.75}{-2.44} $ 注:表中数据的格式为: $ \frac{最大值\sim 最小值}{平均值} $. 表 3 地下水中Na+、HCO3-、TDS的半变异函数理论模型及参数
Table 3. Semi-variation theoretical model and parameters of Na+, HCO3- and TDS in groundwater
地下水类型 化学组分 理论模型 块金值C0 基台值C0+C 块金系数C0/(C0+C)(%) 变程(km) R2 RSS 潜水 Na+ 高斯模型 0.62 1.24 49.96 0.54 0.58 0.26 HCO3- 线性模型 5.27e-06 6.81e-06 77.42 2.17 0.41 4.19e-12 TDS 线性模型 0.55 0.74 73.95 2.17 0.38 0.08 承压水 Na+ 指数模型 0.02 0.14 10.64 0.01 0.70 2.92e-03 HCO3- 球状模型 7.95e-04 2.23e-03 35.65 0.58 0.58 6.95e-07 TDS 线性模型 1.32e-03 1.89e-03 69.84 2.07 0.79 3.48e-07 表 4 成分矩阵及主成分贡献率
Table 4. Component matrix and principal component contribution rate
化学指标 公因子 贡献率(%) 实测平均浓度M 预测平均浓度P 比值(M/P) R2 F1 F2 F3 F4 F1 F2 F3 F4 其他 PH -0.18 0.54 0.19 0.56 4.63 11.53 2.37 18.96 62.51 7.94 7.97 0.996 0.73 TDS 0.96 0.23 0.00 -0.01 46.43 11.34 0.25 0.35 41.63 688.48 693.77 0.992 0.98 TH 0.95 -0.10 -0.03 0.02 69.04 7.23 2.43 0.59 20.71 263.70 265.60 0.993 0.91 K+ 0.42 -0.70 -0.03 0.32 18.97 41.46 1.38 4.14 34.05 1.42 1.43 0.993 0.78 Na+ 0.89 0.36 0.02 -0.03 38.00 15.68 1.05 0.72 44.55 131.02 132.12 0.992 0.92 Ca2+ 0.78 -0.30 -0.01 0.07 51.98 24.55 1.72 13.66 8.09 66.02 66.41 0.994 0.71 Mg2+ 0.94 0.15 -0.04 -0.03 58.93 9.32 2.53 2.07 27.15 23.95 24.17 0.991 0.91 Cl- 0.91 0.31 -0.04 -0.07 49.38 16.72 1.87 3.42 28.61 139.11 140.41 0.991 0.93 SO42- 0.93 0.19 0.03 0.00 43.02 9.12 1.62 0.61 45.63 216.38 218.07 0.992 0.90 HCO3- 0.43 -0.41 0.25 0.21 16.63 16.27 9.40 7.35 50.35 154.33 155.21 0.994 0.45 CO32- -0.21 0.49 0.18 0.63 2.59 7.01 3.33 14.16 72.91 1.54 1.55 0.994 0.83 F- -0.01 0.25 0.78 -0.16 0.29 8.18 24.76 3.83 62.94 0.46 0.46 1.000 0.70 NO3- 0.19 -0.71 0.16 0.38 5.79 26.04 5.27 7.67 55.23 1.46 1.48 0.986 0.71 SiO2 0.02 -0.27 0.73 -0.27 6.50 19.36 49.88 16.38 7.88 7.60 7.64 0.995 0.68 注:平均浓度中pH为无量量纲,其余单位为mg/L. -
[1] Chen, J.P., Wang, X.L., Ni, Y.Y., 2019. The Accumulation of Natural Gas and Potential Exploration Regions in the Southern Margin of the Junggar Basin. Acta Geologica Sinica, 93(5): 1002-1019+1189(in Chinese with English abstract). [2] Chen, Y.F., Zhou, J.L., Zeng, Y.Y., et al., 2017. Distribution of Nitrate Contents in Groundwater of Shihezi Area, Xinjiang Autonomous Region, China and Its Influencing Factors. Earth and Environment, 45(3): 298-305(in Chinese with English abstract). [3] Chen, Z.H., Wang, S.N., Wang, L., et al., 2012. Characteristics of Formation Water Chemical Fields and Its PetroleumSignificance of the Neogene in Dongying Sag, Shandong Province. Journal of Palaeogeography, 14(5): 685-693(in Chinese with English abstract). [4] Du, X.B., Xie, X.N., Lu, Y.C., et al., 2010. Hydrogeochemistry of Formation Water in Relation to Overpressures and Fluid Flow in the Qikou Depression of the Bohai Bay Basin, China. Journal of Geochemical Exploration, 106(1-3): 77-83. https://doi.org/10.1016/j.gexplo.2009.12.009 [5] Grobe, M., Machel, H.G., 2002. Saline Groundwater in the Munsterland Cretaceous Basin, Germany: Clues to Its Origin and Evolution. Marine & Petroleum Geology, 19(3): 307-322. https://doi.org/10.1016/S0264-8172(02)00019-3 [6] Huang, J.O., Xian, Y., Li, W., et al., 2021. Hydrogeochemical Evolution of Groundwater Flow System in the Typical Coastal Plain: A Case Study of Hangjiahu Plain. Earth Science, 46(7): 2565-2582 (in Chinese with English abstract) [7] Jia, R.L., Zhou, J.L., Zhou, Y.Z., et al., 2014. A Vulnerability Evaluation of the Phreatic Water in the Plain Area of the Junggar Basin, Xinjiang Based on the VDEAL Model. Sustainability, 6(12): 8604-8617. https://doi.org/10.3390/su6128604 [8] Khaled, M.A., Al Tammamy, A.M., Barseem, M.S., et al., 2016. Geoelectrical and Hydrogeological Study to Delineate the Geological Structures Affecting the Groundwater Occurrence in Wadi El Khariq Basin, Northwest El Maghara, North Sinai, Egypt. Arabian Journal of Geosciences, 9(4): 1-19. https://doi.org/10.1007/s12517-015-2286-5 [9] Li, J., Pang, Z.H., Froehlich, K., et al., 2015. Paleo-Environment From Isotopes and Hydrochemistry of Groundwater in East Junggar Basin, Northwest China. Journal of Hydrology, 529: 650-661. https://doi.org/10.1016/j.jhydrol.2015.02.019 [10] Li, Q., 2014. Spatial and Temporal Evolution of Groundwater Quality in the Plain Area of Jungar Basin(Dissertation). Xinjiang Agricultural University, Urumqi, 74-82 (in Chinese with English abstract). [11] Luan, F.J., Zhou, Y.Z., Zhou, J.L., et al., 2016. Distribution Characteristics and Enrichment Factors of Groundwater Fluorine in Shihezi Area of Xinjiang. Yellow River, 38(3): 64-67+71(in Chinese with English abstract). [12] Mi, Z.X., Wang, F.G., Yang, Y.Z., et al., 2018. Evaluation of the Potentiality and Suitability for CO2 Geological Storage in the Junggar Basin, Northwestern China. International Journal of Greenhouse Gas Control, 78: 62-72. https://doi.org/10.1016/j.ijggc.2018.07.024 [13] Qi, J.F., Chen, S.P., Yang, Q., et al., 2008. Characteristics of Tectonic Deformation with Intransitional Belt Between the Junggar Basin and the Northern Tian Shan Mountain. Oil & Gas Geology. 29(2): 252-260+282(in Chinese with English abstract). [14] Qian, H., Ma, Z.Y., Li, P.Y., 2012. Hydrogeochemistry. Geological Press, Beijing, 45-62(in Chinese). [15] Qiao, J.Q., Liu, L.F., Shang, X.Q., 2020. Deposition Conditions of the Jurassic Lacustrine Source Rocks in the East Fukang Sag, Junggar Basin, NW China: Evidence From Major and Trace Elements. Geological Journal, 55(7): 4936-4953. https://doi.org/10.1002/gj.3714 [16] Qiao, X.Y., Wang, W.K., Duan, L., et al., 2020. Regional Groundwater Cycle Patterns and Renewal Capacity Assessment at the South Edge of the Junggar Basin, China. Environmental Earth Sciences, 79(13): 334. https://doi.org/10.1007/s12665-020-09045-9 [17] Ravish, S., Setia, B., Deswal, S., 2020. Groundwater Quality Analysis of Northeastern Haryana Using Multivariate Statistical Techniques. Journal of the Geological Society of India, 95(4): 407-416. https://doi.org/10.1007/s12594-020-1450-z [18] Ren, G.X., Hou, D.J., Shi, Y.L., et al., 2013. Relationship between Formation Water Characteristics and Hydrocarbon Accumulationin Hongshangzui Oilfield in the Northwestern Margin of the Junggar Basin. Oil & Gas Geology, 34(2): 179-184(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/syytrqdz201302006 [19] Safia, K., Abderrahmane, B., 2018. Multivariate Statistical Characterization of Groundwater Quality in Fesdis, East of Algeria. Journal of Water & Land Development, 37(1): 65-74. https://doi.org/10.2478/jwld-2018-0026 [20] Shen, T.D., Chen, X.G., Wang, W.K., et al., 2009. Investigation and Evaluation of Groundwater Resources and Environmental Problems in Junggar Basin. Geological Press, Beijing, 26-86(in Chinese). [21] Si, C.S., Zhang, R.H., Yao, G.S., et al., 2016. Tectonism and Hydrocarbon Preservation Conditions of Qianbei Depression and Its Margin. Journal of China University of Mining & Technology, 45(5): 1010-1021(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD201605020.htm [22] Sun, H.Y., Wei, X.F., Sun, X.M., et al. 2020. Formation Mechanism and Geological Construction Constraints of Metasilicate Mineral Water in Yudaokou Hannuoba Basalt Area. Earth Science, 45(11): 4236-4253(in Chinese with English abstract). [23] Talib, M.A., Tang, Z.H., Shahab, A., et al., 2019. Hydrogeochemical Characterization and Suitability Assessment of Groundwater: A Case Study in Central Sindh, Pakistan. International Journal of Environmental Research and Public Health, 16(5): 886. https://doi.org/10.3390/ijerph16050886 [24] Tan, K.J., Zhang, F., Yin, L., 2012. Preservation Conditions for Formation Water and Hydrocarbon in Wuxia Area, Junggar Basin. Petroleum Geology & Experiment, 34(1): 36-39(in Chinese with English abstract). [25] Thurston, G.D., Spengler, J.D., 1985. A Quantitative Assessment of Source Contributions to Inhalable Particulate Matter Pollution in Metropolitan Boston. Atmospheric Environment, 19(1): 9-25. https://doi.org/10.1016/0004-6981(85)90132-5 [26] Wang, J., Liang, X., Liu, Y., et al., 2019. Hydrogeochemical Evolution Along Groundwater Flow Paths in the Manas River Basin, Northwest China. Ground Water, 57(4): 575-589. https://doi.org/10.1111/gwat.12829 [27] Wang, Y., Shvartsev, S.L., Su, C., 2009. Genesis of Arsenic/Fluoride-Enriched Soda Water: A Case Study at Datong, Northern China. Applied Geochemistry, 24(4): 641-649. https://doi.org/10.1016/j.apgeochem.2008.12.015 [28] Wang, Z.H., Zhang, S.J., 1998. Discovery and Characteristics of High-Mineralized Soda-Dicarbonate-Typed Water in Karamay Oil Region. Petroleum Geology & Experiment, (1): 39-43(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD199801007.htm [29] Weaver, T.R., Cartwright, I., Tweed, S.O., et al., 2006. Controls on Chemistry During Fracture-Hosted Flow of Cold CO2-Bearing Mineral Waters, Daylesford, Victoria, Australia: Implications for Resource Protection. Applied Geochemistry, 21(2): 289-304. https://doi.org/10.1016/j.apgeochem.2005.09.011 [30] Wei, X., Zhou, J.L., Nai, W.H., et al., 2019. Hydrochemical Characteristics and Evolution of Groundwater in the Kashgar Delta Area in Xinjiang. Environmental Science, 40(9): 4042-4051(in Chinese with English abstract). [31] Wu, Y., Lu, B., Zhu, X., et al., 2019. Seasonal Variations, Source Apportionment, and Health Risk Assessment of Heavy Metals in PM_(2.5) in Ningbo, China. Aerosol and Air Quality Research, 19(9): 2083-2092. https://doi.org/10.1016/j.apr.2020.09.017 [32] Xiao, C.L., 2018. Hydrogeology. Tsinghua University Press, Beijing, 41-42(in Chinese). [33] Xu, P.P., Feng, W.W., Qian, H., et al., 2019. Hydrogeochemical Characterization and Irrigation Quality Assessment of Shallow Groundwater in the Central-Western Guanzhong Basin, China. International Journal of Environmental Research and Public Health, 16(9): 1492. https://doi.org/10.3390/ijerph16091492 [34] Yang, L.J., Hou, D.J., Chen, X.D., et al., 2018. Chemical Characteristics and Geological Significance of Palaeogene Formationin Central Xihu Depression, East China Sea Basin. Natural Gas Geoscience, 29(4): 559-571+596(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201804013.htm [35] Zeng, Y.Y., Zhou, Y.Z., Zhou, J.L., et al., 2018. Distribution and Enrichment Factors of High-Arsenic Groundwater in Inland Arid Area of P. R. China: A Case Study of the Shihezi Area, Xinjiang. Exposure & Health, 10(1): 1-13. https://doi.org/10.1007/s12403-016-0241-7 [36] Zhang, J., Zhou, J.L., Nai, W.H., et al., 2019. Spatial Distribution and Cause of Salinization of Shallow Groundwater in Plain Terrain of the Yarkant River Basin, Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 35(23): 126-134(in Chinese with English abstract). [37] Zhao, S.J., Li, S.Z., Liu, X., et al., 2014. Intercontinental Orogenic Transition: Insights From Structures of the Eastern Junggar Basin Between the Altay and Tianshan Orogens. Journal of Asian Earth Sciences, 88(7): 137-148. https://doi.org/10.1016/j.jseaes.2014.03.008 [38] Zhou, X.Y., Wang, X.R., 2019. Impact of Industrial Activities on Heavy Metal Contamination in Soils in Three Major Urban Agglomerations of China. Journal of Cleaner Production, 230(9): 1-10. https://doi.org/10.1016/j.jclepro.2019.05.098 [39] 陈建平, 王绪龙, 倪云燕, 等, 2019. 准噶尔盆地南缘天然气成藏及勘探方向. 地质学报, 93(5): 1002-1019+1189. doi: 10.3969/j.issn.0001-5717.2019.05.002 [40] 陈云飞, 周金龙, 曾妍妍, 等, 2017. 新疆石河子地区地下水硝酸盐含量分布及影响因素分析. 地球与环境, 45(3): 298-305. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201703007.htm [41] 陈中红, 王书南, 王黎, 等, 2012. 山东东营凹陷新近系地层水化学场特征及油气意义. 古地理学报, 14(5): 685-693. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201205016.htm [42] 黄金瓯, 鲜阳, 黎伟, 等, 2021. 典型滨海平原区地下水流系统水化学场演化及成因: 以杭嘉湖平原为例. 地球科学, 46(7): 2565-2582. doi: 10.3799/dqkx.2020.230 [43] 李巧, 2014. 准噶尔盆地平原区地下水水质时空演化研究(博士学位论文). 乌鲁木齐: 新疆农业大学, 74-82. [44] 栾风娇, 周殷竹, 周金龙, 等, 2016. 新疆石河子地区地下水氟分布及富集因素分析. 人民黄河, 38(3): 64-67+71. doi: 10.3969/j.issn.1000-1379.2016.03.018 [45] 漆家福, 陈书平, 杨桥, 等, 2008. 准噶尔-北天山盆山过渡带构造基本特征. 石油与天然气地质, 29(2): 252-260+282. doi: 10.3321/j.issn:0253-9985.2008.02.015 [46] 钱会, 马致远, 李培月, 等, 2012. 水文地球化学. 北京: 地质出版社, 45-62. [47] 任国选, 侯读杰, 史玉玲, 等, 2013. 准噶尔盆地西北缘红山嘴油田地层水特征与油气藏聚集关系. 石油与天然气地质, 34(2): 179-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201302008.htm [48] 谌天德, 陈旭光, 王文科, 等, 2009. 准噶尔盆地地下水资源及其环境问题调查评价. 北京: 地质出版社, 26-86. [49] 斯春松, 张润合, 姚根顺, 等, 2016. 黔北坳陷及周缘构造作用与油气保存条件研究. 中国矿业大学学报, 45(5): 1010-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201605020.htm [50] 孙厚云, 卫晓锋, 孙晓明, 等, 2020. 御道口汉诺坝玄武岩偏硅酸矿泉水形成机制及其地质建造制约. 地球科学, 45(11): 4236-4253. doi: 10.3799/dqkx.2020.011 [51] 谭开俊, 张帆, 尹路, 等, 2012. 准噶尔盆地乌夏地区地层水与油气保存条件. 石油实验地质, 34(1): 36-39. doi: 10.3969/j.issn.1001-6112.2012.01.007 [52] 王仲侯, 张淑君, 1998. 克拉玛依油区高矿化度重碳酸钠型水的发现与特征. 石油实验地质, (1): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199801007.htm [53] 魏兴, 周金龙, 乃尉华, 等, 2019. 新疆喀什三角洲地下水化学特征及演化规律. 环境科学, 40(9): 4042-4051. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201909022.htm [54] 肖长来, 2018. 水文地质学. 北京: 清华大学出版社, 41-42. [55] 杨丽杰, 侯读杰, 陈晓东, 等, 2018. 东海盆地西湖凹陷中部古近系地层水化学特征及地质意义. 天然气地球科学, 29(4): 559-571+596. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201804013.htm [56] 张杰, 周金龙, 乃尉华, 等, 2019. 新疆叶尔羌河流域平原区浅层地下水咸化空间分布及成因. 农业工程学报, 35(23): 126-134. doi: 10.11975/j.issn.1002-6819.2019.23.016