Lithological Combination Types and Characteristics of Continental Shale Strata in the Second Sub-Member of Da'anzhai in Central Sichuan
-
摘要: 川中地区下侏罗统自流井组大安寨段湖相页岩非均质性强,有利岩性组合的研究对目标层段的选取较为关键.通过对21口井的岩心观察与描述、有机质含量与主微量元素测定等,划分了岩性段及组合类型,并探讨了各组合类型特征.结果表明:大二亚段页岩层系主要发育泥质介壳灰岩、灰黑色页岩、含介壳页岩3类岩性,针对其生物介壳发育的特征,识别出特殊的介壳层岩性段;进一步总结出4类岩性段类型,A块状介壳灰岩段、B页岩与介壳层互层段、C页岩夹介壳层段、D纯页岩段.4类岩性段的古环境特征差异反映了不同的页岩油潜力,半潮湿-潮湿的古气候、较高的古生产力、合适的沉积速率,以及缺氧还原、半咸水-淡水环境有利于有机质的富集与保存,由此综合优选出有利岩性段类型为C页岩夹介壳层段,D纯页岩段次之.Abstract: The lacustrine shale in the Da'anzhai Member of Ziliujing Formation of Lower Jurassic in Central Sichuan has strong heterogeneity, and the study of favorable lithological combinations is critical to the selection of the target interval. Through the observation and description of cores of more than 21 wells, the determination of organic matter contents and major and trace elements, it classifies lithological combinations and discusses the characteristics of each type. The results show that the shale strata of Da2 sub-member mainly developed three types of lithology: muddy shell limestone, gray-black shale, and shell-bearing shale. Then, according to the characteristics of its biological shell development, the special shell-rich layer was identified. Furthermore, it summarizes 4 types of lithological sections: A massive shell limestone section, B shale and shell-rich layer interbedded section, C shale intercalated shell-rich layer section, D pure shale section. The differences in paleoenvironmental characteristics of the 4 lithological sections types reflect different shale oil potentials. Therefore, comprehensive analysis indicates that from semi-humid to humid paleoclimate, high paleoproductivity, suitable deposition rate, as well as anoxic reduction, brackish-freshwater environment are conducive to the enrichment and preservation of organic matter. Finally, the favorable lithology section types as C shale intercalated shell-rich layer section were comprehensively optimized, followed by D pure shale section.
-
图 4 大安寨段岩石镜下照片和岩心照片
a.单偏光,25x,蓬莱10,介壳灰岩,2 033.30 m,大量介壳破碎堆积;b.单偏光,25x,蓬莱10,含介壳页岩,2 019.10 m,含细小介壳的页岩与介壳层互层;c.单偏光,25x,蓬莱10,含介壳页岩,2 029.80 m,完整生物介壳零星分布,无压实现象;d.单偏光,25x,蓬莱10,纯页岩,1 995.30 m,几乎不含生物介壳;e.蓬莱10,含介壳页岩,2 014.95~2 016.75 m,介壳破碎堆积,灰黑色页岩与介壳层呈突变接触,底部可见冲刷面;f.蓬莱10,灰色块状介壳灰岩,2 014.95~2 016.75 m,生物介壳破碎细小并呈定向排列;g.文10,含介壳页岩,页岩夹介壳层,2 016.30 m,可见油浸现象
Fig. 4. Microscopic photos of different lithologies in the Da'anzhai Member
表 1 大安寨段部分样品有机碳含量及主微量元素含量
Table 1. Contents of TOC and major and trace element of part of samples in the Da'anzhai Member
样品号 深度(m) TOC (%) 主量元素(%) 微量元素(10-6) Fe Mn Ca Mg K Na Al Sr Ba Ni V Cr Ce La Yb PL10-3 2 035.7 0.40 3.56 0.03 32.09 0.62 0.71 0.24 3.20 917.60 257.20 44.58 38.94 38.06 55.88 22.90 2.87 PL10-6 2 031.6 0.99 3.52 0.05 13.35 1.10 2.02 0.31 8.30 230.00 525.60 32.74 122.14 91.16 53.00 25.28 2.01 PL10-7 2 029.8 0.60 5.96 0.13 5.01 1.32 2.17 0.33 9.29 243.80 489.80 41.14 108.98 109.36 72.02 33.08 2.73 PL10-12 2 022.7 0.73 4.06 0.04 2.20 1.24 2.45 0.35 10.30 404.20 534.80 36.38 112.62 84.42 49.02 25.66 2.22 PL10-14 2 021.1 0.69 1.95 0.09 47.46 0.39 0.18 0.07 1.07 1 004.00 230.60 8.88 12.69 9.57 9.99 4.90 0.42 PL10-17 2 019.1 1.41 4.73 0.03 2.63 1.22 2.60 0.38 10.32 196.70 647.80 49.20 115.88 109.42 61.74 30.74 2.68 PL10-22 2 014.3 2.90 5.18 0.03 1.64 1.27 2.66 0.40 10.61 166.72 659.60 49.82 173.30 105.38 48.04 24.28 2.14 PL10-32 1 998.6 1.61 4.28 0.02 0.95 1.69 3.26 0.53 11.23 212.00 751.60 45.80 218.60 124.10 53.50 26.22 2.22 X29-1 1 983.6 0.25 0.69 0.02 51.56 0.56 0.22 0.04 0.92 439.60 101.46 8.09 11.54 14.89 6.06 2.99 0.21 X29-2 1 986.0 0.57 1.21 0.03 44.64 0.32 0.50 0.07 2.10 896.80 214.20 12.18 21.36 22.04 14.04 6.85 0.48 X29-6 1 996.2 0.41 4.17 0.02 1.39 1.47 3.33 0.34 12.15 140.86 597.80 53.52 192.86 143.54 82.72 39.22 2.68 X29-12 2 005.5 0.70 6.22 0.03 6.91 1.34 1.63 0.17 7.52 392.00 370.00 36.20 95.84 72.64 49.64 21.60 2.11 X29-13 2 006.8 0.68 4.91 0.03 1.90 1.57 3.10 0.28 11.77 224.40 625.40 49.42 130.50 129.88 68.66 32.80 2.28 LQ-3 2 118.7 1.18 1.80 0.07 40.95 0.64 0.41 0.11 1.79 2 126.00 387.40 9.44 24.72 14.58 14.77 7.17 0.68 LQ-5 2 113.8 1.11 4.48 0.06 0.71 1.32 2.17 0.91 8.69 151.08 642.80 45.04 119.52 104.24 62.20 29.94 3.06 LQ-7 2 110.4 0.48 0.96 0.08 45.90 0.53 0.30 0.16 1.42 1 178.20 191.00 9.78 17.92 14.14 13.04 6.01 0.45 LQ-12 2 088.5 2.50 3.30 0.05 13.27 0.79 1.72 0.37 6.83 510.00 541.20 44.84 105.20 68.20 126.30 51.26 4.25 L21-1 1 965.7 0.75 6.03 0.09 1.23 1.79 3.02 0.36 11.23 165.90 602.80 46.94 152.32 127.16 86.42 40.30 2.80 L21-6 1 958.7 0.36 4.21 0.03 4.61 1.42 2.88 0.33 10.83 241.60 590.80 47.76 151.66 116.66 82.08 39.34 2.42 L21-8 1 955.4 0.89 3.63 0.05 10.40 1.21 2.66 0.30 10.22 269.00 724.00 47.78 133.06 113.28 77.66 35.76 2.59 L21-9 1 952.7 0.53 4.56 0.04 0.94 1.21 2.91 0.34 11.18 118.28 647.80 58.00 198.24 138.84 111.86 51.84 3.74 L21-11 1 948.6 0.66 1.44 0.05 41.32 0.31 0.46 0.10 2.03 898.20 285.20 12.92 24.54 20.80 31.50 14.12 0.87 表 2 各类岩性段有机质丰度及古沉积环境参数统计表
Table 2. Statistics of organic matter abundance and paleo-sedimentary environment parameters of various lithological sections
岩性段类型 有机质丰度 古气候 氧化还原环境 古生产力 沉积速率 古盐度 TOC 气候指数C V/(V+Ni) Babio (La/Yb)N Sr/Ba 数值(%) 数量(个) 数值 数量(个) 数值 数量(个) 均值(10-6) 数量(个) 均值 数量(个) 均值 数量(个) A段 $ \frac{{0.03 \sim 1.18}}{{0.35}}$ 25 $ \frac{{0.014 \sim 0.044}}{{0.031}}$ 8 $ \frac{{0.376 \sim 0.724}}{{0.612}}$ 8 204.48 8 1.34 8 4.90 8 B段 $\frac{{0.27 \sim 2.25}}{{0.72}} $ 21 $ \frac{{0.027 \sim 0.848}}{{0.489}}$ 16 $\frac{{0.466 \sim 0.814}}{{0.718}} $ 16 530.10 15 1.22 16 1.00 16 C段 $\frac{{0.42 \sim 3.11}}{{1.34}} $ 33 $\frac{{0.136 \sim 0.950}}{{0.609}} $ 20 $ \frac{{0.557 \sim 0.811}}{{0.728}}$ 20 625.40 20 1.23 20 0.40 20 D段 $ \frac{{0.32 \sim 2.40}}{{1.17}}$ 18 $ \frac{{0.265 \sim 1.008}}{{0.640}}$ 9 $ \frac{{0.584 \sim 0.827}}{{0.748}}$ 9 596.84 9 1.18 9 0.37 9 准噶尔盆地芦草沟组页岩 $\frac{{2.23 \sim 9.42}}{{4.47}} $ — $\frac{{0.480 \sim 0.610}}{{0.540}} $ — $ \frac{{0.600 \sim 0.800}}{{0.740}}$ — — — — — 1.29 — 沧东凹陷孔二段页岩 $ \frac{{0.13 \sim 12.92}}{{4.87}}$ — — — $ \frac{{0.480 \sim 0.910}}{{0.720}}$ — — — — — — — 济阳坳陷沙三段页岩 $ \frac{{0.49 \sim 1.74}}{{1.12}}$ — — — $ \frac{{0.790 \sim 0.960}}{{0.880}}$ — 284 — — — — — 注:$ \frac{最小值~最大值}{平均值}$;符号“—”代表无数据信息;准噶尔盆地芦草沟组页岩据林晓慧等(2019),蒋中发等(2020);沧东凹陷孔二段页岩据周立宏等(2018),李圯等(2020);济阳坳陷沙三段页岩据 Wang et al. (2020) .表 3 大安寨段页岩有利岩性段评价标准
Table 3. Evaluation criteria for favorable lithology combinations of shale in Da'anzhai Member
评价参数 评价标准 TOC > 1.0 古气候 半潮湿-潮湿 古盐度 半咸水-淡水 古生产力(Babio) > 500×10-6 水体环境 缺氧还原环境 沉积速率 相对适中 表 4 各类岩性段特征综合统计
Table 4. Comprehensive statistics for characteristics of various lithological sections
岩性段类型 TOC(均值) 古气候 古盐度 沉积速率 古生产力 古氧化还原环境 A介壳灰岩段 贫有机质(0.35) 干燥 咸水 相对较慢 低 缺氧还原 B页岩与介壳层互层段 贫有机质(0.72) 半干燥-半潮湿 半咸水 相对适中 较低 缺氧还原 C页岩夹介壳层段 含有机质(1.34) 半潮湿 半咸水-淡水 相对适中 较高 缺氧还原 D纯页岩段 含有机质(1.17) 潮湿 淡水 相对适中 较高 缺氧还原 -
[1] Bernstein, R. E., Byrne, R. H., Schijf, J., 1998. Acantharians: A Missing Link in the Oceanic Biogeochemistry of Barium. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 45(2/3): 491-505. https://doi.org/10.1016/S0967-0637(97)00095-2 [2] Ding, X. J., Liu, G. D., Zha, M., et al., 2015. Relationship between Total Organic Carbon Content and Sedimentation Rate in Ancient Lacustrine Sediments: A Case Study of Erlian Basin, Northern China. Journal of Geochemical Exploration, 149: 22-29. https://doi.org/10.1016/j.gexplo.2014.11.004 [3] Elderfield, H., Greaves, M. J., 1982. The Rare Earth Elements in Seawater. Nature, 296(5854): 214-219. https://doi.org/10.1038/296214a0 [4] Feng, R.C., Wu, Y.Y., Yang, G., et al., 2015. Storm Deposition of the Da'anzhai Member (Jurassic) in Central Sichuan Basin. Acta Sedimentologica Sinica, 33(5): 909-918(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201505007.htm [5] Fu, J.H., Li, S.X., Xu, L.M., et al., 2018. Paleo-Sedimentary Environmental Restoration and Its Significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 45(6): 936-946(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=80696568504849564854484851 [6] Fu, S.T., Yao, J.L., Li, S.X., et al., 2020. Enrichment Characteristics and Resource Potential of Continental Shale Oil in Mesozoic Yanchang Formation, Ordos Basin. Petroleum Geology & Experiment, 42(5): 698-710(in Chinese with English abstract). [7] Gao, Y., Ye, Y.P., He, J.X., et al., 2020. Development Practice of Continental Shale Oil in Jimsar Sag in the Junggar Basin. China Petroleum Exploration, 25(2): 133-141(in Chinese with English abstract). [8] Hatch, J. R., Leventhal, J.S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology, 99(1/2/3): 65-82. https://doi.org/10.1016/0009-2541(92)90031-Y [9] Hu, J.J., Li, Q., Fang, N.Q., et al., 2014. REE Geochemical Characteristics and Geological Significance of Sedimentary Rocks of the Lower Permian Zhanjin Formation in Central Uplift Zone of Qiangtang Basin, Northern Tibet Plateau. Journal of Palaeogeography, 16(6): 926-934(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=GDLX201406013&dbcode=CJFD&year=2014&dflag=pdfdown [10] Huang, D., Duan, Y., Li, Y.C., et al., 2018. Study on the TOC Lower Limit of Shale Oil and Gas of Freshwater Lake Facies: A Case Study on the Jurassic Da'anzhai Member in the Sichuan Basin. China Petroleum Exploration, 23(6): 38-45(in Chinese with English abstract). [11] Hunt, J.M., 1979. Petroleum Geochemistry and Geology. W.H. Freeman and Company, San Francisco. http://www.sciencedirect.com/science/article/pii/0012825280900082 [12] Jiang, Z.F., Ding, X.J., Wang, Z.Q., et al., 2020. Sedimentary Paleoenvironment of Source Rocks of Permian Lucaogou Formation in Jimsar Sag. Lithologic Reservoirs, 32(6): 109-119(in Chinese with English abstract). [13] Jones, B., Manning, D.A.C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1/2/3/4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-X [14] Li, Y., Liu, K.Y., Pu, X.G., et al., 2020. Lithofacies Characteristics and Formation Environments of Mixed Fine Grained Sedimentary Rocks in Second Member of Kongdian Formation in Cangdong Depression, Bohai Bay Basin. Earth Science, 45(10): 3779-3796(in Chinese with English abstract). [15] Li, Z., Jiang, Z.X., Tang, X.L., et al., 2017. Lithofacies Characteristics and Its Effect on Pore Structure of the Marine Shale in the Low Silurian Longmaxi Formation, Southeastern Chongqing. Earth Science, 42(7): 1116-1123(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707007.htm [16] Li, Z.M., Tao, G.L., Li, M.W., et al., 2019. Favorable Interval for Shale Oil Prospecting in Coring Well L69 in the Paleogene Es3L in Zhanhua Sag, Jiyang Depression, Bohai Bay Basin. Oil & Gas Geology, 40(2): 236-247(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201902004.htm [17] Lin, X.H., Zhan, Z.W., Zou, Y.R., et al., 2019. Elemental Geochemical Characteristics of the Lucaogou Formation Oil Shale in the Southeastern Junggar Basin and Its Depositional Environmental Implications. Geochimica, 48(1): 67-78(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX201901006.htm [18] Liu, B., Shi, J.X., Fu, X.F., et al., 2021. Petrological Characteristics and Shale Oil Enrichment of Lacustrine Fine-Grained Sedimentary System: A Case Study of Organic-Rich Shale in First Member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China. Petroleum Exploration and Development, 45(5): 828-838(in Chinese with English abstract). [19] Liu, Z.B., Liu, G.X., Hu, Z.Q., et al., 2019. Lithofacies Types and Assemblage Features of Continental Shale Strata and Their Significance for Shale Gas Exploration: A Case Study of the Middle and Lower Jurassic Strata in the Sichuan Basin. Natural Gas Industry, 39(12): 10-21(in Chinese with English abstract). [20] Ni, J.Y., Pan, J.M., Hu, C.Y., et al., 2006. Biogenic Barium Distribution in Surface Sediments of South China Sea and Its Relationship to Primary Productivity. Geochimica, 35(6): 615-622(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200606006.htm [21] Song, M.S., Liu, H.M., Wang, Y., et al., 2020. Enrichment Rules and Exploration Practices of Paleogene Shale Oil in Jiyang Depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 47(2): 225-235(in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60041-6 [22] Stein, R., 1986. Organic Carbon and Sedimentation Rate-Further Evidence for Anoxic Deep-Water Conditions in the Cenomanian/Turonian Atlantic Ocean. Marine Geology, 72(3/4): 199-209. https://doi.org/10.1016/0025-3227(86)90119-2 [23] Sun, S.S., Yao, Y.B., Lin, W., 2015. Elemental Geochemical Characteristics of the Oil Shale and the Paleo-Lake Environment of the Tongchuan Area, Southern Ordos Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3): 642-645(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201503026.htm [24] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks, 312. http://hellishlq.firebaseapp.com/aa276/the-continental-crust-its-composition-and-evolution-an-examination-of-the-geochemical-record-preserved-in-sedimentary-rocks-by-stuart-r-taylor-scott-m-mclennan-0632011483.pdf [25] Wang, Q.F., Jiang, F.J., Ji, H.C., et al., 2020. Effects of Paleosedimentary Environment on Organic Matter Enrichment in a Saline Lacustrine Rift Basin: A Case Study of Paleogene Source Rock in the Dongpu Depression, Bohai Bay Basin. Journal of Petroleum Science and Engineering, 195: 107658. https://doi.org/10.1016/j.petrol.2020.107658 [26] Wang, W., Huang, D., Yi, H.Y., et al., 2019. Stratigraphic Division and Geochemical Characteristics of Freshwater Lacustrine Shale: A Case Study of Jurassic Da'anzhai Section, Sichuan Basin. Petroleum Geology & Experiment, 41(5): 724-730(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD201905014.htm [27] Wu, S.Q., Tang, X.S., Du, X.J., et al., 2013. Geologic Characteristics of Continental Shale Oil in the Qianjiang Depression, Jianghan Salt Lake Basin. Journal of East China Institute of Technology (Natural Science), 36(3): 282-286(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDDZ201303006.htm [28] Xi, K.L., Li, K., Cao, Y.C., et al., 2020. Laminae Combination and Shale Oil Enrichment Patterns of Chang 73 Sub-Member Organic-Rich Shales in the Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 47(6): 1244-1255(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380420601428 [29] Xie, W.R., Yang, W., Yang, G., et al., 2010. Pore Structure Features of Sandstone Reservoirs in the Upper Triassic Xujiahe Formation in the Central Part of Sichuan Basin. Natural Gas Geoscience, 21(3): 435-440(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-TDKX201003015.htm [30] Yang, W., Zuo, R. S., Chen, D. X., et al., 2019. Climate and Tectonic-Driven Deposition of Sandwiched Continental Shale Units: New Insights from Petrology, Geochemistry, and Integrated Provenance Analyses (the Western Sichuan Subsiding Basin, Southwest China). International Journal of Coal Geology, 211: 103227. https://doi.org/10.1016/j.coal.2019.103227 [31] Yang, Y.M., Huang, D., Yang, G., et al., 2019. Geological Conditions to Form Lacustrine Facies Shale Oil and Gas of Jurassic Daanzhai Member in Sichuan Basin and Exploration Directions. Natural Gas Exploration and Development, 42(2): 1-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRKT201902002.htm [32] Zhao, X.Z., Zhou, L.H., Pu, X.G., et al., 2019. Favorable Formation Conditions and Enrichment Characteristics of Lacustrine Facies Shale Oil in Faulted Lake Basin: A Case Study of Member 2 of Kongdian Formation in Cangdong Sag, Bohai Bay Basin. Acta Petrolei Sinica, 40(9): 1013-1029(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201909001.htm [33] Zhao, Z.Y., Zhao, J.H., Wang, H.J., et al., 2007. Distribution Characteristics and Applications of Trace Elements in Junggar Basin. Natural Gas Exploration and Development, 30(2): 30-32, 40(in Chinese with English abstract). http://www.researchgate.net/publication/302996757_Distribution_characteristics_and_applications_of_trace_elements_in_Junggar_Basin [34] Zheng, R.C., Liu, M.Q., 1999. Study on Palaeosalinity of Chang 6 Oil Reservoir Set in Ordos Basin. Oil & Gas Geology, 20(1): 3-5(in Chinese with English abstract). http://ogg.pepris.com/EN/Y1999/V20/I1/20 [35] Zhou, L.H., Pu, X.G., Xiao, D.Q., et al., 2018. Geological Conditions for Shale Oil Formation and the Main Controlling Factors for the Enrichment of the 2nd Member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin. Natural Gas Geoscience, 29(9): 1323-1332(in Chinese with English abstract). http://www.researchgate.net/publication/329221268_Geological_conditions_for_shale_oil_formation_and_the_main_controlling_factors_for_the_enrichment_of_the_2nd_member_of_Kongdian_Formation_in_the_Cangdong_Sag_Bohai_Bay_Basin [36] 冯荣昌, 吴因业, 杨光, 等, 2015. 川中大安寨段风暴沉积特征及分布模式. 沉积学报, 33(5): 909-918. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201505007.htm [37] 付金华, 李士祥, 徐黎明, 等, 2018. 鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义. 石油勘探与开发, 45(6): 936-946. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806003.htm [38] 付锁堂, 姚泾利, 李士祥, 等, 2020. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力. 石油实验地质, 42(5): 698-710. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202005009.htm [39] 高阳, 叶义平, 何吉祥, 等, 2020. 准噶尔盆地吉木萨尔凹陷陆相页岩油开发实践. 中国石油勘探, 25(2): 133-141. doi: 10.3969/j.issn.1672-7703.2020.02.013 [40] 胡俊杰, 李琦, 方念乔, 等, 2014. 藏北羌塘盆地中央隆起带下二叠统展金组沉积岩稀土元素地球化学特征及其地质意义. 古地理学报, 16(6): 926-934. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201406013.htm [41] 黄东, 段勇, 李育聪, 等, 2018. 淡水湖相页岩油气有机碳含量下限研究: 以四川盆地侏罗系大安寨段为例. 中国石油勘探, 23(6): 38-45. doi: 10.3969/j.issn.1672-7703.2018.06.005 [42] 蒋中发, 丁修建, 王忠泉, 等, 2020. 吉木萨尔凹陷二叠系芦草沟组烃源岩沉积古环境. 岩性油气藏, 32(6): 109-119. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202006010.htm [43] 李圯, 刘可禹, 蒲秀刚, 等, 2020. 沧东凹陷孔二段混合细粒沉积岩相特征及形成环境. 地球科学, 45(10): 3779-3796. doi: 10.3799/dqkx.2020.167 [44] 李志明, 陶国亮, 黎茂稳, 等, 2019. 渤海湾盆地济阳坳陷沾化凹陷L69井古近系沙三下亚段取心段页岩油勘探有利层段. 石油与天然气地质, 40(2): 236-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201902004.htm [45] 李卓, 姜振学, 唐相路, 等, 2017. 渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制. 地球科学, 42(7): 1116-1123. doi: 10.3799/dqkx.2017.090 [46] 林晓慧, 詹兆文, 邹艳荣, 等, 2019. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境意义. 地球化学, 48(1): 67-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201901006.htm [47] 刘忠宝, 刘光祥, 胡宗全, 等, 2019. 陆相页岩层系岩相类型、组合特征及其油气勘探意义: 以四川盆地中下侏罗统为例. 天然气工业, 39(12): 10-21. doi: 10.3787/j.issn.1000-0976.2019.12.002 [48] 柳波, 石佳欣, 付晓飞, 等, 2018. 陆相泥页岩层系岩相特征与页岩油富集条件: 以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例. 石油勘探与开发, 45(5): 828-838. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805009.htm [49] 倪建宇, 潘建明, 扈传昱, 等, 2006. 南海表层沉积物中生物钡的分布特征及其与初级生产力的关系. 地球化学, 35(6): 615-622. doi: 10.3321/j.issn:0379-1726.2006.06.006 [50] 宋明水, 刘惠民, 王勇, 等, 2020. 济阳坳陷古近系页岩油富集规律认识与勘探实践. 石油勘探与开发, 47(2): 225-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002003.htm [51] 孙莎莎, 姚艳斌, 吝文, 2015. 鄂尔多斯盆地南缘铜川地区油页岩元素地球化学特征及古湖泊水体环境. 矿物岩石地球化学通报, 34(3): 642-645. doi: 10.3969/j.issn.1007-2802.2015.03.021 [52] 王玮, 黄东, 易海永, 等, 2019. 淡水湖相页岩小层精细划分及地球化学特征: 以四川盆地侏罗系大安寨段为例. 石油实验地质, 41(5): 724-730. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201905014.htm [53] 吴世强, 唐小山, 杜小娟, 等, 2013. 江汉盆地潜江凹陷陆相页岩油地质特征. 东华理工大学学报(自然科学版), 36(3): 282-286. doi: 10.3969/j.issn.1674-3504.2013.03.006 [54] 葸克来, 李克, 操应长, 等, 2020. 鄂尔多斯盆地三叠系延长组长73亚段富有机质页岩纹层组合与页岩油富集模式. 石油勘探与开发, 47(6): 1244-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006020.htm [55] 谢武仁, 杨威, 杨光, 等, 2010. 川中地区上三叠统须家河组砂岩储层孔隙结构特征. 天然气地球科学, 21(3): 435-440. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201003015.htm [56] 杨跃明, 黄东, 杨光, 等, 2019. 四川盆地侏罗系大安寨段湖相页岩油气形成地质条件及勘探方向. 天然气勘探与开发, 42(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT201902002.htm [57] 赵贤正, 周立宏, 蒲秀刚, 等, 2019. 断陷湖盆湖相页岩油形成有利条件及富集特征: 以渤海湾盆地沧东凹陷孔店组二段为例. 石油学报, 40(9): 1013-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909001.htm [58] 赵增义, 赵建华, 王海静, 等, 2007. 准噶尔盆地微量元素的分布特征及其应用. 天然气勘探与开发, 30(2): 30-32, 40. doi: 10.3969/j.issn.1673-3177.2007.02.007 [59] 郑荣才, 柳梅青, 1999. 鄂尔多斯盆地长6油层组古盐度研究. 石油与天然气地质, 20(1): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT901.019.htm [60] 周立宏, 蒲秀刚, 肖敦清, 等, 2018. 渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素. 天然气地球科学, 29(9): 1323-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809010.htm